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Work of Jean-Francois Le Gall, Gregory Miermont and many others has
created a theory of random planar maps that is elegant, mathematically
deep and surprisingly well-connected with other areas of mathematics and
physics. In that theory, a map is a topological isomorphism class of
networks. But this setting is not so relevant to study of macroscopic
real-world networks in the plane, where vertices have given positions.

Nowadays we are aware of many kinds of network, and the quantitative
study of networks has attracted a huge literature in many areas of the
mathematical sciences over the last 20 years. The phrase spatial
networks has come into use to indicate contexts such as

(a) transportation (roads, railways) and distribution (electricity, gas,
water) networks where the edges represent connections physically
situated in two-dimensional space,

or more generally, contexts such as
(b) airline routes, wireless networks, where the vertices are situated in
two-dimensional space and the physical distance between vertices is
important.
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Spatial networks have been studied implicitly in fields outside Probability:

Operations Research
Computational Geometry
Theory of Algorithms

One might assume that the 2-dimensional setting made study easier than
the abstract setting of a network as an (edge-weighted) graph, but not
necessarily so, and one can ask rather different questions. Consider the
question:

what is the shortest network linking n given points?

On an abstract network this is the minimum spanning tree (MST),
obtained by a simple greedy algorithm. In 2-dimensional space it is the
minimal Steiner tree – algorithmically NP.
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Random spatial networks in mathematical probability

Two relevant well-studied areas with authoritative monographs
stochastic geometry, e.g. the Delaunay Triangulation (left)
continuum percolation/random geometric graph (right)
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Within modeling, random geometric graphs are used in theoretical study
of ad hoc wireless networks (e.g. Gupta - Kumar (2000) The capacity of
wireless networks, cited by 10030).

Much academic study of general networks has been done within a
statistical physics style. A Google Scholar search on “spatial networks”
gets a 2011 survey paper by Marc Barthelemy (IPhT, Paris Saclay) and
also his 2018 monograph ”Morphogenesis of Spatial Networks” in
statistical physics style. In contrast, toy models for spatial networks with
physical links have been little studied within theorem-proof mathematics.
I will talk about work of mine and others over the last 10 years seeking to
bridge the gap.
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Seeking because I don’t claim much success – no remarkable theorems.
Perhaps because

Real world networks are finite and heterogeneous – our familiar
models tend to be spatially homogeneous and we tend to study
asymptotics.

Orders of magnitude often obvious, anything more often very
difficult.

So we often rely on simulation. This actually has a positive aspect

One can invent many easy-to-define models not studied before, and
so one can involve undergraduates in simulation projects.
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I will describe models for transportation networks in 3 different settings.

Inter-city road or rail networks. As in classical models earlier, we
first define a network for arbitrary point-sets, then study the random
networks obtained from a PPP. But instead of a simple rule for
constructing the network we want to consider optimal networks (in
some sense). [Aldous-Shun 2010]

A model of scale-invariant networks in the continuum (cf. random
walk and Brownian motion, finite trees and continuum random tree).
The only sophisticated math underlying this talk – many open
theory problems. [Aldous-Ganesan 2013]

Subway network – for a given population density in a city, where do
you build subway lines (using some optimality criterion)? This
addresses the non-homogeneous setting. [Aldous-Barthelemy 2019]
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Setting 1: Optimal inter-city networks, model cities as rate-1 PPP
on the infinite plane.

In considering optimal networks, a natural simplification is to regard the
cost of a network as its total length. And to measure the benefit as
having short routes.

Formalizing such benefits turns out to be rather subtle, as shown by the
following very elementary observation from Aldous - Kendall (2008).
Given n cities in square of area n, first construct the (minimum
connected length) Steiner tree, then overlay a sparse Poisson line process.

Networks on discrete points
Continuum spatial random networks

Proximity graphs
Network distance
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A graph is a set {V,E}, where V is a set of m vertices (nodes) and E is a

set of n edges that link (associate) pairs of vertices to each other. A graph

may be embedded in a space, in which case the set V is associated with a

set of m points, one for each vertex, and the set E is represented by lines

connecting points, one line for each edge. 

This applet illustrates several graphs that may be computed for a set of m

data points embedded in a space. These are discussed in Chapter 8 of The

Grammar of Graphics (Springer-Verlag, 1999). The Voronoi tessellation

partitions a set of data points such that every point within a polygon is

David Aldous Connected spatial random networks
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So we can construct networks N n that are first-order optimal for both
total length and average route-lengths, that is attain the optimal
constants for

lim
n

n−1length(N n) and

(∗) lim
n

n−1/2avev1,v2 [route length(v1, v2)].

So in the n→∞ asymptotic regime there is no trade-off between cost
and benefit as defined by (*) – we can optimize both at once.

This answer is clearly unrealistic, and a warning against naive
asymptotics.
Let’s instead require short route-lengths on all scales. That is, consider

ρ(d) =
E(network distance between cities at distance d)

d
− 1

Observation: In both simple math models and real-world data we see a
characteristic shape for the function ρ(d).
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This prompts us to use the statistic

R := max
0<d<∞

ρ(d).

In words, R = 0.2 means that on every scale of distance, route-lengths
are on average at most 20% longer than straight line distance.

Next figure compares values of R and L for different networks over a
Poisson point process.
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The smooth curve is from the β-skeleton family of proximity graphs,
which are defined by a simple “local” rule and look like

We conjecture that this family is almost optimal in our sense, but have
no theorems.
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Conclusions from Setting 1: inter-city networks.

1. Graphic is plausible as qualitative trade-off between length and “short
routes” in such networks. Indeed leads to a prediction that in an efficient
network designed to link N cities in a region of area A, the total length
should be around 2

√
NA.

2. But visually wrong. Real world networks have long motorways (or
main railway lines) running roughly straight; cannot reproduce this by
local rules, even if we vary city sizes.
3. Real-world road networks have a hierarchy of “size” or “importance”
of road, measured by number of lanes or traffic volume or numbering
system. We do not know how to obtain this as an emergent property of
optimal networks.

Our next, completely different, model paradigm does lead to such a
spectrum of “sizes” of road.
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* * * start simulation * * *

Setting 2: Scale-invariant random spatial networks

A map on paper has a definite scale: maybe every street in a small town,
or maybe the major road network of an entire country. These have
intrinsically different real-world patterns, but we can attempt a (not so
realistic) a modeling framework which is consistent over different spatial
scales.

Conceptual starting point:

Online road maps differ from paper maps in 2 [obvious] ways that will
motivate our modeling.

Can zoom in – see greater detail in window covering less area.

Can get routes between any two specified addresses.
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Idea behind our set-up: start with routes between addresses instead of
roads.

We abstract Google maps as an “oracle” that for any start/desination
pair (z1, z2) in the plane gives us a route r(z1, z2).

Analogous to ergodic theory regarding the Don Quixote text as one
realization from a stationary source, we regard Google maps as
containing one realization of a “continuum random spatial network” with
some distribution. We will define a class of such random networks by
axiomatizing properties of random routes R(z1, z2).

The key assumption is scale-invariance, described intuitively as follows.

David Aldous Random networks embedded in the plane



Introduction
Inter-city networks

Scale-invariant networks
Subway networks

7 points in a window.
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Scale-invariance means: doing this within a randomly positioned
window, the statistics of the subnetwork observed don’t depend on the
scale, i.e. don’t depend on whether the side length is 10 km or 100 km.
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Comments re scale-invariance:

To have a network model which is exactly scale-invariant, we need to
work in the continuum (cf. random walk and Brownian motion).

Naive Euclidean scaling, not “scaling exponent”.
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Axiomatic setup: 1

Details are pretty technical, but ......

Process is presented via FDDs of random routes R(z1, z2); in other words
we are given a distribution for the random subnetwork spanning each
finite set {z1, . . . , zk}, Kolmogorov-consistent.

Assume

Translation and rotation-invariant

Scale-invariant

So route-length Dr between points at (Euclidean) distance r apart must

scale as Dr
d
= rD1.

Assume ED1 <∞ so not fractal.
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Axiomatic setup: 2

Envisage the route R(z1, z2) as the path that optimizes something (e.g.
travel time) but do not formalize that idea; instead

Assume a route-compatability property.

Convenient to study the process via the subnetwork S(λ) spanning a
Poisson point process (rate λ per unit area).

Define a statistic

` = length-per-unit-area of S(1).

Assume ` <∞.
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Axiomatic setup: 3

Sample points of a rate-λ PPP; draw only routes between points in A
and points in B.

A B

A real-world road network would have the property: as λ→∞ the
number of places where one of these routes crosses an intervening line
stays finite. We can define a numerical constant ρ (details omitted)
indicating the rate of such crossings, and require ρ <∞.
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We have defined a class of processes we’ll call

SIRSN: Scale-invariant random spatial networks.

for which we have very many questions but very few answers.

Do a broad variety of SIRSNs actually exist?

Can we specific particular canonical or optimal ones?

What are their math properties?

Any realistic aspects?
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Elegant construction by Kendall (2014) From Random Lines to Metric
Spaces uses a Poisson line process, different lines representing roads with
different speeds, and routes are minimum-time path.

Geodesics SIRSN Π-paths Π-geodesics SIRSNs Random Metrics

Simulations (approximate!) of a typical set of routes

Case γ = 16

109

Geodesics SIRSN Π-paths Π-geodesics SIRSNs Random Metrics

Are Π-geodesics unique? (I)
Suppose now d = 2 and γ > 2, and we fix ξ1 and ξ2 ∈ R2. If
Π is to generate a network between a finite set of points,
then we need to know the Π-geodesic between ξ1 and ξ2 is
almost surely unique.

Theorem: “line meets line”

All non-singleton intersections of a Π-geodesic with lines ` of
Π are of the form “line meets line”.

First, reduce to case of ` being fastest line in region,
with speed w.
Now change focus from high speed v to low “cost”,
where

“cost” = cscθ
v

− cotθ
w

.

where θ is angle of line with `.
Argue that Π-geodesic hits ` using line of finite cost.

110

Geodesics SIRSN Π-paths Π-geodesics SIRSNs Random Metrics

Are Π-geodesics unique? (II)

So Π-geodesics between ξ1 and ξ2 are made up of countable
collection of intervals of lines of Π.

Fix a given ` from Π, and consider the set S of such
intervals lying in `.

Consider two different finite collections S1 ⊂ S and
S2 ⊂ S, each composed of non-overlapping intervals.
Probability density argument: the total lengths of S1 and
S2 have a joint density, unless one is empty.
Conditioning on time spent off `, almost surely two
Π-paths using S1 and S2 respectively must have different
total travel times.
Almost surely two Π-geodesics between ξ1 and ξ2 must
use the same finite collection of non-overlapping
intervals from each ` of Π.
But we can reconstruct the Π-geodesic uniquely from the
collections of intervals of each line ` in Π.

111

Geodesics SIRSN Π-paths Π-geodesics SIRSNs Random Metrics

Theorem: Uniqueness of Π-geodesics in planar case

Suppose Π is a speed-marked Poisson line process in R2 with
intensity measure 1

2(γ − 1)v−γ dv d r dθ. If γ > 2 then for
any point pair ξ1 and ξ2 in R2 it is almost surely the case that
there is just one Π-geodesic between ξ1 and ξ2.

Almost surely there will exist non-unique Π-geodesics!

112
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Heuristically, we can construct via “dynamic” variants of the “static”
proximity graphs like

Throw points one-by-one; for a new point ξ,
put an edge to an existing point ξ′ iff the
disc with diameter (ξ, ξ′) contains no third
existing point. * * * show simulations * * *

Want to define routes as shortest path; technically difficulty to verify a.s.
uniqueness. But given the limit process exists, it must be scale-invariant.
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Do a broad variety of SIRSNs actually exist?

Can we specific particular canonical or optimal ones?

Canonical analogous to Brownian motion or the continuum random tree?
Optimal in terms of cost-benefit parameters ` and ED1.

I don’t know.

What are their math properties?

Any realistic aspects?
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First-passage percolation (FPP) on the plane lattice is a well-studied
model where routes appear: questions studied there can be asked of
SIRSNs (but remember this is a class of processes, and no bottom level
of pure randomness).

For a SIRSN:

At least one semi-infinite geodesic from 0.

By self-similarity, behavior near 0 relates to behavior near infinity.

No doubly-infinite geodesics.

hierarchy of regularity conditions, starting with “unique semi-infinite
geodesic from 0” and increasing strength to . . .

∀ε ∃ random δ > 0 s.t. all routes disc(0, δ) to disc(1, δ) coincide
outside disc(0, ε) ∪ disc(1, ε). This formalizes idea that map
(z1, z2)→ R(z1, z2) is a.e. continuous.

∃ random δ > 0 s.t. all routes disc(0, δ) to disc(0, 1/δ) cross
circle(0, 1) at the same point.

In proving uniqueness of routes in the two models constructed rigorously,
we actually prove this last property.
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Define E(r) to be the “skeleton” of the network consisting of points ξ in
the network which are in some route R(ξ1, ξ2) for which both endpoints
are at distance ≥ r from ξ.

This gives a notion of “major road”, and then the “importance” of a
point ξ in the network can be defined as

m(ξ) = sup{r : ξ ∈ E(r)}.

Two conjectures is this context:

1. Heuristically if the volume of traffic flow between (ξ1, ξ2) is
proportional to ||ξ1 − ξ2||−α then the volume of flow through a typical
point of “importance” m is proportional to mβ(α).
2. Starting from the intersection of two major roads, there is a boundary
between the region reached by starting along the first road and the region
reached by starting along the first road; we conjecture this boundary is
fractal.
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As undergraduate project we have looked at real-world subnetwork
topologies:
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5/27/2019 Atlas of routed 4-networks

https://www.stat.berkeley.edu/~aldous/Research/all-types.html 3/7

23 24 25

26 27 28

29 30 31

(a)

(b+)

(b-)

and listed all topologies on 4 addresses – different conventions from usual
planar graph theory. Could compare distributions over these topologies in
real-world and models.
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Conclusions from Setting 2: Scale-invariant random spatial
networks.

Mostly open problems. Someone please think about them!

Do a broad variety of SIRSNs actually exist?

Can we specific particular canonical or optimal ones?

What are their math properties?

Any realistic aspects?
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Setting 3: Optimal subway networks.

In my “real world” context I describe typical math probability models
(like the SIRSN) as “fantasy” – unconnected to any real data. But now
I’ll tell you an even more extreme fantasy – which will lead to an
elementary-to-state math problem.
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Imagine that somewhere there’s an eccentric multi-billionaire with a taste
for dramatic projects

and imagine there’s a large spread-out metropolitan region without good
public transport but with bad road traffic.

And then the billionaire has an idea . . . . . .
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Where should one put a hypothetical such network?

Background. Wikipedia – rapid transit shows typical topologies (shapes)
for subway-type networks.

An interesting problem – see Aldous-Barthelemy (2019) but not discussed
today – is can we reproduce these as optimal under some slightly-realistic
toy model?

Musk’s hypothetical tunnel network suggests an extreme model: “infinite
speed, no wait time, no discrete stations”.
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Problem (a) Find the connected network of length L that minimizes the
expected distance from a random start to the closest point on the
network.

This depends on the density ρ of starting point; as default take
2-dimensional standard Normal.

This model implies constant speed outside the network, infinite speed
within the network, but one is forced to use the network. Slightly more
realistic to allow a direct route outside the network:

Problem (b) Find the connected network of length L that minimizes the
expected time t(ξ1, ξ2) between independent(ρ) points,

t(ξ1, ξ2) = min(||ξ1 − ξ2||, s(ξ1) + s(ξ2))

s(ξ) = distance from ξ to the closest point on the network.

(For large L the two problems are essentially the same).
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We seek the actual optimal network for each L – how does the shape
evolve as L grows?

We work numerically. Mostly we consider specific parameterized
shapes and optimize over parameters

Alternatively try simulated annealing to optimize over all networks.

Lemma: An optimal network must be a tree (or single path).

Because: If there is a circuit, removing a length ε segment costs order ε2

but reattaching it elsewhere benefits order ε.

We do have a theorem concerning the L→∞ behavior. This result is
not so interesting, so [recall name of Musk’s tunneling company]
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Take a starting density ρ. Write d(L) for the expected
distance-to-network in the optimal network of length L.

Theorem (The Boring Theorem)

d(L) ∼ 1

4L

(∫

R2

ρ1/2(z) dz

)2

as L→∞.

What the argument actually shows is that a sequence of networks is
asymptotically optimal as L→∞ if and only if the rescaled local pattern
around a typical position z consists of asymptotically parallel lines with
spacing proportional to ρ−1/2(z), but the orientations can depend
arbitrarily on z . Visualize a fingerprint.
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Near-optimal network for uniform density on square.

Note that the argument above show that, in this extreme model,

d
dLopt(L) � 1

4 ↵̄(L).

Note also that the proofs of both parts of Proposition 1 require S = 1: in part (a) because
the original route may use the removed segment, in part (b) because the original route
might be go via A⇤.

The large L setting. A next observation is that, for the uniform density on a square
and for large L, it seems intuitively clear that a network as in Figure 1 will be near-optimal.
We want the network to come close to all points in the square; for a curve of length L the
region within distance � of the curve can have at most area L� (plus a small area near
the endpoints) and so is maximized by straight lines, and decreased by both curves and
junctions which cause “overlap” of adjacent regions. This intuition leads to a theorem in
the asymptotic regime. We state and prove the result for dist(L), the mean distance from
a ✓-random point to the closest point in the network, and then re-interpret for the extreme
model.

Figure 1: A near-optimal network for the uniform distribution on a square.

Theorem 2 (a) In the extreme model, for any density ✓,

lim
L!1

L · dist(L) = 1
4

✓Z
f1/2(z)dz

◆2

. (1)

(iv) If ✓ is radially symmetric (rotationally invariant) then certain spiral networks are
asymptotically optimal.

Outline proof of Theorem 2. The argument follows a style of analysis used in many “spatial
optimization” settings (for instance, the Euclidean TSP) for studying this “denser and

6
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A simple topology is the star network, with n ≥ 2 branches of lengths
L/n from the center, with optimal choice of n = nL. Comparing with the
other shapes we have examined leads us to the (rather unexciting)

Observation. For the Gaussian density, the star networks are optimal or
near-optimal over the range 0 < L ≤ 16.

[We guess this is quite robust – true for other densities]
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L = 0.5 L = 4
L = 9

Figure 3: The optimal star networks for L = 0.5 and L = 4 and L = 9 (Gaussian density:
the dashed circle indicates 1 s.d., so contains about 40% of the population).

L = 8.0 L = 8.5 L = 11.0

Figure 4: The “horse” network (left), the 2-arc network (center) and the 4-arc network
(right).

Figure 5: Benefit from “horse” network (left) and from 2- and 4-arc networks (right) com-
pared with star network.

10
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L = 14.0

Figure 6: The spider network.

Figure 7: Benefit from spider network compared with star network.

11

Figure 8: L = 40: A locally optimal tree within the hexagonal lattice found by simulated
annealing.

Figure 9: A finite approximation to an asymptotically optimal tree network.

12

As L grows an asymptotically optimal network becomes a branching tree.

Also one can construct spirals as asymptotically optimal. But contrary to
our intuition, numerics say the tree is better (at second order).
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Recall
Observation. For the Gaussian density, the star networks are optimal or
near-optimal over the range 0 < L ≤ 16.

This was originally rather surprising.

By “reverse engineering” the Boring Theorem we see that star networks
are asymptotically optimal for the non-Gaussian density of the rotationally
invariant distribution on the radius-r0 disc with R uniform on [0, r0].

Suggests robustness to density.
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Conclusions from Setting 3: Optimal subway networks.

Model is too unrealistic.

Our intuition was poor.

Don’t hold your breath for the global sensation.
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