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An ancient optimization problem

A Roman
Emperor’s
dilemma:

PRO: Roads are needed to
move legions quickly around
the country;

CON: Roads are expensive
to build and maintain;
Pro optimo
quod faciendum est?
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A mathematical idealization

Consider N cities x (N) = {x1, . . . , xN} in square side
√

N.

Assess network G = G(x (N)) of roads connecting cities by:

network total road length len(G)

(which is minimized by the Steiner tree ST(x (N)));

versus

average network distance between two randomly chosen
cities,

average(G) =
1

N(N − 1)

∑ ∑
i 6=j

distG(xi , xj) ,

(minimized by laying tarmac for complete graph).



Introduction Stereology Construction Asymptotics and simulation Conclusion References

A mathematical idealization

Consider N cities x (N) = {x1, . . . , xN} in square side
√

N.

Assess network G = G(x (N)) of roads connecting cities by:

network total road length len(G)

(which is minimized by the Steiner tree ST(x (N)));

versus

average network distance between two randomly chosen
cities,

average(G) =
1

N(N − 1)

∑ ∑
i 6=j

distG(xi , xj) ,

(minimized by laying tarmac for complete graph).



Introduction Stereology Construction Asymptotics and simulation Conclusion References

A mathematical idealization

Consider N cities x (N) = {x1, . . . , xN} in square side
√

N.

Assess network G = G(x (N)) of roads connecting cities by:

network total road length len(G)

(which is minimized by the Steiner tree ST(x (N)));

versus

average network distance between two randomly chosen
cities,

average(G) =
1

N(N − 1)

∑ ∑
i 6=j

distG(xi , xj) ,

(minimized by laying tarmac for complete graph).



Introduction Stereology Construction Asymptotics and simulation Conclusion References

A mathematical idealization

Consider N cities x (N) = {x1, . . . , xN} in square side
√

N.

Assess network G = G(x (N)) of roads connecting cities by:

network total road length len(G)
(which is minimized by the Steiner tree ST(x (N)));

versus

average network distance between two randomly chosen
cities,

average(G) =
1

N(N − 1)

∑ ∑
i 6=j

distG(xi , xj) ,

(minimized by laying tarmac for complete graph).



Introduction Stereology Construction Asymptotics and simulation Conclusion References

A mathematical idealization

Consider N cities x (N) = {x1, . . . , xN} in square side
√

N.

Assess network G = G(x (N)) of roads connecting cities by:

network total road length len(G)
(which is minimized by the Steiner tree ST(x (N)));

versus

average network distance between two randomly chosen
cities,

average(G) =
1

N(N − 1)

∑ ∑
i 6=j

distG(xi , xj) ,

(minimized by laying tarmac for complete graph).



Introduction Stereology Construction Asymptotics and simulation Conclusion References

A mathematical idealization

Consider N cities x (N) = {x1, . . . , xN} in square side
√

N.

Assess network G = G(x (N)) of roads connecting cities by:

network total road length len(G)
(which is minimized by the Steiner tree ST(x (N)));

versus

average network distance between two randomly chosen
cities,

average(G) =
1

N(N − 1)

∑ ∑
i 6=j

distG(xi , xj) ,

(minimized by laying tarmac for complete graph).



Introduction Stereology Construction Asymptotics and simulation Conclusion References

Aldous and K. (2007) provide answers for the following
Question

Consider a configuration x (N) of N cities in [0,
√

N]2 as above,
and a well-chosen connecting network G = G(x (N)). How does
large-N trade-off between len(G) and average(G) behave?

And how clever do we have to be to get a good trade-off?
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Today’s focus (I)

Idealize the road network as a low-intensity invariant
Poisson line process Π1.

Pick two cities x and y at distance n units apart.

Remove
lines separating the cities and identify the cell Cx ,y which
then contains the two cities.
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Today’s focus (II)

Upper-bound the “network distance” between the two cities
by the mean semi-perimeter of this cell, 1

2 E
[
len ∂Cx ,y

]
.

Aldous and K. (2007) show how to apply this to resolve our
Question, and how to use other methods from stochastic
geometry to show that the resolution is nearly optimal.
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Georges-Louis Leclerc, Comte de Buffon
(September 7, 1707 - April 16, 1788)

Calculate π by dropping a needle
randomly on a ruled plane and
counting mean proportion of hits,

or (dually)

(H. Steinhaus) compute length of a
regularizable curve by counting
mean number of hits of curve by a
unit-intensity invariant Poisson line
process.
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Tools from stereology and stochastic geometry

Buffon The length of a curve equals the mean number of hits by a
unit-intensity Poisson line process;

Slivynak Condition a Poisson process on placing a “point” z at a
specified location.

The conditioned process is again a
Poisson process with added z;

Angles Generate a planar line process from a unit-intensity
Poisson point process on a reference line `, by
constructing lines through the points whose angles
θ ∈ (0, π) to ` are independent with density 1

2 sin θ.

The
result is a unit-intensity Poisson line process.
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The key construction

For simplicity, renormalize to a unit-intensity line process.

Compute mean length of ∂Cx ,y

by use of independent
unit-intensity invariant Poisson line process Π2, and
determine the mean number of hits.

It is convenient to form Π∗
2 by deleting from Π2 those lines

separating x from y . (Mean number of hits: 2|x − y | = 2n.)
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Some stochastic geometry (I)

We have

E
[
len ∂Cx ,y

]
− 2|x − y | = E

[
#

(
Π∗

2 ∩ ∂Cx ,y
)]

.

This is the total intensity of the intersection point process
Π∗

1 ∩ Π∗
2 thinned by removing z ∈ Π∗

1 ∩ Π∗
2 when z is

separated from both x and y by Π∗
1.

We can appeal to a variant of Slivynak’s theorem: the
retention probability for z is the probability that no line of
Π∗

1 hits both of segments xz and yz, namely

exp
(
−1

2 (|x − z|+ |y − z| − |x − y |)
)

= exp
(
−1

2 (η − n)
)

,

where η = |x − z|+ |y − z|.
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Some stochastic geometry (II)

The intensity of the completely unthinned intersection
process Π1 ∩ Π2 is π

2 .

The intensity of Π∗
1 ∩ Π∗

2 is obtained by careful computation
of the probability that the intersection lines of a point of
Π1 ∩ Π2 do not hit xy , using the “Angle” construction from
above. The resulting intensity is:

π

2
× α− sin α

π
=

α− sin α

2
,

where α is the exterior angle of the triangle ∆xyz at z.
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Mean perimeter length as a double integral

Theorem

E
[
len ∂Cx ,y

]
− 2|x − y | =(intersection

intensity

)
×

∫∫
R2

(
intersection at z:

lines don’t hit xy

)(
retention:

z not sep from xy

)
d z

Note that α = α(z) and η = η(z) both depend on z.

Fixed α: locus of z is circle.

Fixed η: locus of z is
ellipse.
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Asymptotics

Theorem

Careful asymptotics for n →∞ show that

E
[1

2 len ∂Cx ,y
]

=

n + 1
4

∫∫
R2

(α− sin α) exp
(
−1

2 (η − n)
)

d z ≈

n +
4
3

(
log n + γ +

5
3

)
where γ = 0.57721 . . . is the Euler-Mascharoni constant.

Thus a unit-intensity invariant Poisson line process is within
O(log n) of providing connections which are as efficient as
Euclidean connections.
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Simulations (example)

1000 simulations
at n = 10:
average 6.74,
s.e. 0.41,
asymptotic 5.971.

Vertical
exaggeration:

√
n
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Illustration of the final construction

Use a hierarchy

of:
1 a (sparse) Poisson line process;
2 a rectangular grid at a moderately large length scale;
3 the Steiner tree ST(x (N)));
4 a few boxes from a grid at a small length scale, to avoid

potential “hot-spots” where cities are close (boxes are
connected to the cities).
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The result

Theorem

For any configuration x (N) in square side
√

N and for any se-
quence wN →∞ there are connecting networks GN such that:

len(GN) = len(ST(x (N))) + o(N)

average(GN) =
1

N(N − 1)

∑ ∑
i 6=j

‖xi − xj‖+ o(wN log N)

The sequence {wN} can tend to infinity arbitrarily slowly.
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A complementary result

Theorem

Given a configuration of N cities in [0,
√

N]2 which is
LN = o(

√
log N)-equidistributed: random choice XN of city

can be coupled to uniformly random point YN so that

E
[
min

{
1,
|XN − YN |

LN

}]
−→ 0 ;

then any connecting network GN with length bounded
above by a multiple of N

connects the cities with average
connection length exceeding average Euclidean
connection length by at least Ω(

√
log N) .
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√

N]2 which is
LN = o(

√
log N)-equidistributed: random choice XN of city

can be coupled to uniformly random point YN so that

E
[
min

{
1,
|XN − YN |

LN

}]
−→ 0 ;

then any connecting network GN with length bounded
above by a multiple of N connects the cities with average
connection length exceeding average Euclidean
connection length by at least Ω(

√
log N) .
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Sketch of proof

Use tension between two facts:

(a) efficient connection of a random pair of cities forces a path
which is almost parallel to the Euclidean path, and

(b) the coupling means such a random pair is almost an
independent uniform draw from [0,

√
N]2 (equidistribution),

so a random perpendicular to the Euclidean path is almost
a uniformly random line.
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Conclusion

Aldous and K. (2007) show

the “N cities in [0,
√

N]2” connection problem can be
resolved using a Poisson line process to gain nearly
Euclidean efficiency at negligible cost;
conversely any configuration which is not too concentrated
cannot be treated much more efficiently.

Poisson line processes are not computationally hard!

What about random variation of network distance?

What about distances in 3-space or even higher
dimensions?

View as a chapter in the theory of random metric spaces?

QUESTIONS?
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