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1. Recent literature.

Three popular science books, a dozen articles
in Science and Nature, and 154 preprints at
xxx.arXiv.org/cond-mat deal with complex net-
works, which in this context means the em-
pirical and theoretical study of large graphs,
focusing in particular on those possessing the
following three qualitative properties, asserted
to hold in many interesting real-world exam-
ples.

• the degree distribution has power-law tail

• local clustering of edges: graph is not lo-
cally tree-like

• small diameter – O(log (number of vertices)).

The nature of that subject – typically not pre-
sented as rigorous mathematics – is most easily
seen from the long survey papers
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R. Albert and A.-L. Barabási, Statistical me-

chanics of complex networks, Rev. Mod. Phys.

74 (2002), 47–97.

S.N. Dorogovtsev and J.F.F. Mendes, Evo-

lution of networks, Adv. Phys. 51 (2002),

1079–1187.

M.E.J. Newman, The structure and function

of complex networks, SIAM Review 45 (2003),

167–256.

A shorter survey emphasizes rigorous mathe-

matical results

B. Bollobás and O. Riordan, Mathematical re-

sults on scale-free random graphs, Handbook

of Graphs and Networks (S. Bornholdt and

H.G. Schuster, eds.), Wiley, 2002.

See also Durrett lecture notes (Fall 2004).

3



Almost all this literature concerns variants of

two modelling ideas.

Small worlds.

• Take n-vertex lattice-neighborhood graph

• Add long edges in some random way.

Proportional attachment.

• Vertices arrive sequentially (n = 1,2,3, . . .);

• each vertex attaches to k existing vertices v

chosen with probabilities proportional to

c + degree(v).
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Some natural summary statistics for a complex

network.

• ∂̄ = average vertex-degree

• an exponent γ indicating power-law tail be-

havior of degree distribution

• a “clustering coefficient” κ measuring rela-

tive density of triangles

• the average distance ¯̀ between vertex-pairs.

Desiderata for a stochastic model

• mathematical tractability: one can find reasonably ex-

plicit formulas for a variety of quantities of interest

• fitting flexibility: by varying model parameters one can

vary summary statistics (like the 4 listed above) broadly

through their possible ranges

• naturalness: the qualitative properties emerge from

some simple underlying mathematical structure rather

than being forced by fiat.
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No ideal model known. I will describe a specific

two-parameter model, and implicitly a class of

models, which satisfy many of these desider-

ata.

Outline of slides

7 – 8 half description of model
9 - 16 gallery of explicit formulas
17 - 28 complete description of model
29 now see why we can calculate things
30 + the Yule process, local weak convergence, etc

Comment: we are accustomed to models (per-

colation, interacting particle systems) which

are simple to state but complicated to ana-

lyze. In constrast, this model is conceptually

sophisticated to state but easy to analyze (in

some respects).
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Platform for model: directed graphs

(i) Vertices v, w, x, . . . arrive sequentially; some
intrinsic “geometry” given by distances d(v, w).
(ii) Given 1 ≥ p(r) ↓ 0 fast as r ↑ ∞.
(iii) When vertex v arrives, for each existing
vertex w and each existing edge (w, x), new
edges (v, w) and (v, x) appear independently
with probability p(d(v, w)).

So (i) is reminiscent of lattice-based small worlds,
and (iii) of proportional attachment/copying.

Our specific model uses in (i) a model of “ran-
dom points in infinite-dimensional space” – de-
tails later. Has property: number of vertices
within distance r of new vertex grows as er.
This “geometry” model has no dimensionless
parameters.

In (iii) we somewhat arbitrarily take

p(r) = min(1, αλe−λr)

with two parameters α, λ > 0.
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Model gives evolving random graph Gn on n

vertices. Designed so that there is a n → ∞
limit random graph G∗∞ representing “the limit
as seen from a typical vertex”. By doing cal-
culations within the limit graph, we get exact
formulas in the n →∞ limit.

Recall the two parameters enter via the func-
tion

p(r) = min(1, αλe−λr), 0 ≤ r < ∞.

We will need to distinguish between a low clus-
tering region with parameter ranges

0 < α < 1, 0 < λ ≤ 1/α [low].

and the complementary high clustering region
where αλ > 1. In the latter case
p(r) = 1, r ≤ η := λ−1 log(αλ)
and it is convenient to reparametrize using η

in place of α, making the parameter range

0 < η < 1, η + 1/λ < 1. [high].

Greek letters denote quantities computable from
parameters.
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GALLERY OF EXPLICIT FORMULAS
exact in n →∞ limit.
The two parameters control mean degree
and clustering.

First consider Din and Dout, the random in-
degree and out-degree of a typical vertex. Then

EDin = EDout = ∂̄ =


α

1−α [low]
η+1/λ

1−η−1/λ
[high]

(1)

Second, define a normalized clustering coeffi-
cient κcluster as

The proportion of directed 2-paths v1 →
v2 → v3 for which v1 → v3 is also an
edge.

Then

κcluster =


α(1−α)λ
2−α2λ

[low]

(η+ 1
2λ)(1−η−1

λ)

(η+1
λ)(1−η− 1

2λ)
[high]

(2)
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By solving (1,2) we find that every pair of val-

ues of ∂̄, κcluster in the complete range

0 < ∂̄ < ∞, 0 < κcluster < 1

occurs for a unique parameter pair (α, λ) or

(η, λ). Moreover the two regions can be spec-

ified as

0 < ∂̄ < ∞, 0 < κcluster ≤ 1
∂̄+2

[low]

0 < ∂̄ < ∞, 1
∂̄+2

< κcluster < 1. [high]

So the two model parameters α, λ have fairly

direct interpretations in terms of mean degree

and clustering; of course we could re-parametrize

the model in terms of ∂̄ and κcluster, but the

internal mathematical structure is more conve-

niently expressed using the given parameters.
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Distribution of in-degree

The distribution of Din is specified as

1 + Din
d
= Geo(e−βT ) where T

d
= Exp(1)

and where

β =

{
α [low]

η + 1/λ [high]

This works out explicitly as

P (Din = d) =
Γ(d + 1)Γ(1/β)

β2Γ(d + 2 + 1
β)

, d ≥ 0 (3)

with asymptotics

P (Din = d) ∼ β−2Γ(1/β) d
−1−1

β .

Formula (3) appears in recent proportional at-

tachment models, but in fact is a famous 80-

year old calculation.
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Distribution of out-degree

Distribution of Dout determined by the identity

D
d
=

∞∑
i=1

Bin(1 + Di, αλe−λξi) [low]

where D, Di, i ≥ 1 are independent with the

distribution of Dout and where 0 < ξ1 < ξ2 < . . .

are the points of a rate-1 Poisson point process

on (0,∞).

We do not know how to extract a useful ex-

plicit formula from the identity, but we can

compute moments. For instance

var Dout =


α(1−α+α2λ/2)

(1−α)2(1−1
2α2λ)

[low]

(η+ 1
2λ)(2−η−1

λ)

(1−η− 1
2λ)(1−η−1

λ)2
[high]

Note also

Din and Dout are independent.
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Densities of induced subgraphs

Let G be a finite directed acyclic graph. We
expect a limit

χ(G) = lim
n

#subgraphs of Gn isomorphic to G

n
.

For the complete directed acyclic graph Kr on
r ≥ 2 vertices,

χ(Kr) =
r−1∏
u=1

βu

1− βu
.

βu :=

{
u−1αuλu−1 [low]

η + 1
uλ [high]

For the complete bipartite directed graph K2,2,
for β2 < 1

2 (which always holds in the low den-
sity case), the corresponding limit for “sub-
graphs including K2,2” is

1
2χ̄(K2,2) =

∂̄β2(β2 + 1
2∂̄β)

(1− 2β2)(1− β2)
.
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Triangle density as a function of degree

The parameter κcluster gives an overall measure

of triangle density. A more detailed description

is provided by statistics C(k), k ≥ 2 defined by

C(k) =
E(# triangles contain. random degree-k vertex)(

k
2

) .

In principle could obtain exact formula for C(k),

but easier to get the tail property

C(k) ∼
2β2

β − β2
×

1

k
as k →∞.

Relates to suggestion that property C(k) ∼ c/k

indicates “hierarchical structure” in complex

networks.
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Edge-lengths

Our model has a “metric structure”, meaning
that there is a distance dmetric(v, w) between
any two vertices which does not involve the
realization of edges in the random graph. So
each edge (v, w) of the graph has a real-valued
length dmetric(v, w), and so a typical edge has
a random length L. The probability density
function for L is given by the formula

1− α

α

∞∑
i=0

(i + 1)Γ(α + 3) (−λx)i

Γ(i + α + 3)
, 0 < x < ∞ [low].

and f(x) ≈ exp(−(λ ± o(1))x) as x → ∞. In
the underlying metric space, the number of
vertices within distance k of a typical vertex
grows as ek. So one can give a rough reinter-
pretation of the tail behavior of f(x) as

the chance that a vertex has an edge to its
k’th nearest neighbor should scale as k−λ−1.

Note this property appears without being ex-
plicitly built into the model.
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Advantages/disadvantages of the model:

• it has the three qualitative features desired in
a complex networks model (power-law degree
distribution, clustering, small diameter)
• it fits the complete possible range of mean
degree (or scaling exponent) and clustering pa-
rameters
• it permits a broad range of explicit calcula-
tions.

****************************************

• Gn is not connected (for large n).
• There is no power law for distribution of out-
degree.
• in-degree and out-degree are independent.
• The scaling exponent for in-degree is deter-
mined by the mean degree; one might prefer
a model where these could be specified sepa-
rately.
• In the n → ∞ limit not every finite graph is
possible as an induced subgraph.
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Geometry of n points as n →∞.

In d dimensions, pictured for d = 2. Could take
the points ordered or random, in region of area
n. In either case there is a n → ∞ limit: the
infinite lattice, or the Poisson point process.
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Draw attention to one feature of each.
• On lattice, point has 2d “near neighbors”.
• Poisson process is time-equilibrium of a cer-
tain space-time process, in which points move
to infinity as deterministic exponentials x(t2) =
x(t1)e

(t2−t1)/d and new random points arrive
at space-time rate 1. “Enterprise under warp
drive”, or Hoyle’s 1950s steady-state model of
Universe.
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There are various names (random link; randomly-

weighted complete graph; mean field model of

distance) for a static model of n points:

take the
(
n
2

)
inter-point link lengths to be inde-

pendent r.v.’s with Exp (mean n) distribution.

Then set distance = length of shortest path.

Turns out (2 minutes thought!) there is n →∞
limit geometry, as seen from typical point ∅.
Limit geometry is the PWIT. One property:

E(number points within distance r of ∅) = er.

Moreover, PWIT is time-invariant distribution

of the space-time “steady-state Universe” pro-

cess, as in 2 dimensions.
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Finally, we formulate the finite-n model of ar-

riving vertices and evolving geometry which

has the space-time PWIT as its n →∞ limit.

• vertex n arrives at time logn

• the link lengths from n to previous n−1 ver-

tices are independent Exp (mean n) r.v.’s

• distances increase deterministically with time,

at exponential rate 1.

Over this model of geometry we build our com-

plex network model as described earlier, but

with a restriction to near neighbors.

• When vertex v arrives, for each existing near

neighbor w and each existing edge (w, x), new

edges (v, w) and (v, x) appear independently

with probability p(d(v, w)).
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The PWIT – a window centered on point ∅.

Distances 0 < ξ1 < ξ2 < ξ3 < . . . from a vertex

to its near neighbors (indicated by lines) are

successive points of a Poisson (rate 1) process

on (0,∞). Continue recursively.
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An earlier time, when only the three vertices

a, b, c from current-time window had arrived.

.
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Bottom line: we get a non-explicit description

of the n →∞ limit complex network model as

“this process at the current time”. Tractable

because

• everything is time-invariant, so can immedi-

ately write down various equations, e.g. for

out-degree D

D
d
=

∞∑
i=1

Bin(1 + Di, αλe−λξi) [low]

• the process “1 + in-degree(v) at time t” is

precisely a Yule process.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The model’s underlying geometry – random

points in infinite dimensional space – may seem

arbitrary but in fact is less arbitrary than the

usual “extreme” alternates

• vertices are points in d-dimensional space

• no geometry, which is tantamount to assum-

ing all vertex-pairs are at equal intrinsic dis-

tance.
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Yule process of rate µ

Each individual at time t has chance µ dt to have daugh-
ter during [t, t + dt].

N(t) = number individuals at time t (N(0) = 1).

Yule (1924) used as model for species within a genus
and proved two results.

N(t)
d
= Geo(e−µt).

Yule extended model by assuming that from within a
genus, a new species founding a new genus arises at
constant stochastic rate θ. In long run, age of typical

genus has law T/θ for T
d
= Exp(1) and so size N of

typical genus has

N
d
= Geo(e−µT/θ)

which has a power law tail.
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Yule processes appear within our model in two differ-
ent ways. First consider the PWIT, the “geometry” of
random points in infinite-dimensional space. Consider

N(r) = number of points within distance r of ∅
and include ∅ itself, then (N(r), 0 ≤ r) is the Yule pro-
cess of rate 1. So

EN(r) = er.

Next consider our space-time random graph process.
For a typical vertex w consider

N(t) = 1 + in-degree(w) at time t

starting time when w arrives. Using time-invariance of
space-time process of arriving points, and the underlying
stochastic dynamics

When vertex v arrives, for each existing ver-
tex w and each existing edge (w, x), new edges
(v, w) and (v, x) appear independently with prob-
ability p(d(v, w))

easy to see that N(t) is Yule process of rate β for

β =

∫ ∞

0
p(x) dx.
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