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This talk is a fast overview of several topics relating to exchangeability. I
will give references to topics 1-4; topic 5 is work in progress.

1 Structure theory for exchangeable arrays

2 A general program for continuum limits of discrete random
structures . . .

3 . . . illustrated by dense graph limits and by measured metric spaces

4 A conjectured compactification of some finite reversible Markov
chains

5 The compulsive gambler and the metric coalescent
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Structure theory for exchangeable arrays

Take independent Uniform(0, 1) random variables

U, (Ui , 1 ≤ i <∞), (Uij , 1 ≤ i < j <∞)

and then set Uji = Uij for j > i .
Take measurable f : [0, 1]4 → S , symmetric in middle two arguments,
define

Xij = f (U,Ui ,Uj ,Uij), i 6= j . (1)

This gives an infinite random array which is symmetric (Xij = Xji ) and
has the jointly exchangeable property

(Xij , i 6= j)
d
= (Xπ(i)π(j), i 6= j) for each finite permutation π of N.

Theorem (The representation theorem)

(a) Each infinite symmetric jointly exchangeable array of RVs is
distributed as the array (1) for some f .
(b) (informally) The representing function f is unique up to replacing
each Ui by φ(Ui ) for measure-preserving φ : [0, 1]→ [0, 1], and similarly
for U and Uij .

David Aldous Exchangeability and Continuum Limits



This result became known around 1980. If forced to attach names, I
attach Hoover-Aldous-Kallenberg. Olav’s contributions have been

Clear statement and proof of the uniqueness assertion (1989).

Many variants (1988-95).

Definitive monograph Probabilistic symmetries and invariance
principles (2005).

Three remarks:

The representation theorem is purely measure-theoretic; the range
space S is a general Borel space. No topology involved.

Concise recent treatment in Tim Austin’s Exchangeable Random
Arrays.

Around 1980 others (Kingman; Diaconis-Freedman; Dawid;
Lauritzen) were interested for various reasons (e.g. Bayesian
statistics). The topics that follow in this talk were not anticipated
then.
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Continuum limits of discrete random structures

I will outline a “general program”, where “general” 6= “always works” but
instead means “works in various settings that otherwise look different”.
For some different settings see my survey paper More Uses of
Exchangeability: Representations of complicated Random Structures in
the 2010 Kingman Festschrift.

Rather obvious idea:

One way of examining a complicated mathematical structure
equipped with a probability measure is to sample IID random
points and look at some form of induced substructure relating
the random points

which assumes we are given the complicated structure.

Less obvious idea:

We can often use exchangeability in the construction of
complicated random structures as the n→∞ limits of random
finite n-element structures G(n).

What’s the point? Use when there’s no natural way to think of each
G(n), as n varies, as taking values in the same space.
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To expand the idea:

Within the n-element structure G(n) pick k IID random
elements, look at an induced substructure on these k elements
– call this S(n, k) – taking values in some space S(k) that
depends on k but not n. Take a limit (in distribution) as
n→∞ for fixed k, any necessary rescaling having been already
done in the definition of S(n, k) – call this limit Sk . Within the
limit random structures (Sk , 2 ≤ k <∞), the k elements are
exchangeable, and the distributions are consistent as k increases
and therefore can be used to define an infinite structure S∞.

Where one can implement this program, the random structure S∞ will
for many purposes serve as a n→∞ limit of the original n-element
structures. Note that S∞ makes sense as a rather abstract object, via
the Kolmogorov extension theorem, but in concrete cases one tries

to identify S∞ with some more concrete construction

to characterize all possible limits of a given class of finite structures.
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Follow-up idea:

This implicitly gives a topology on the space of all “complicated
mathematical structures equipped with a probability measure”
that we are studying.

That is, a sequence of structures converges if, for each k, the induced
substructures on k sampled elements converge.
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Dense graph limits

Suppose that for each n there is a graph Gn on n vertices.
But we don’t see the edges of Gn.
Instead we can sample k random vertices and see the induced subgraph
on the sampled vertices.

not square grid!

David Aldous Exchangeability and Continuum Limits



not square grid!

3

4

1

5

2

David Aldous Exchangeability and Continuum Limits



Induced subgraph S(n, k) on k of the n vertices of Gn.
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One sense of “convergence” of graphs Gn is that for each fixed k the
random subgraphs S(n, k) converge in distribution to some limit S(∞, k).

This notion of “dense graph convergence”was introduced (in superficially
different form) by Lovász - Szegedy (2006), and has attracted a large
literature. In one sense it’s atypical of the general methodology in that it
applies to deterministic n-vertex graphs and gives a compactification; its
use is in extremal graph theory, not in random graph theory.
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Convergence of measured metric spaces

Consider the case where a “structure” is a measured metric space
(MMS) written (S , d , µ); that is,

• (S , d) is a complete separable metric space;
• µ is a probability measure on S .

Take (ξi , 1 ≤ i <∞) i.i.d. (µ) and consider the infinite random array

Xij = d(ξi , ξj), 1 ≤ i , j <∞

Say (S , d , µ) and (S ′, d ′, µ′) are equivalent is there is a
measure-preserving isometry between them. Clearly, for equivalent MMSs
we have

(Xij , 1 ≤ i , j <∞)
d
= (X ′ij , 1 ≤ i , j <∞)

and the uniqueness part of the representation theorem implies the
converse: the distribution of the array (Xij , 1 ≤ i , j <∞) determines the
MMS up to equivalence.
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Consider now a sequence (Sn, dn, µn) of MMSs. In terms of the arrays
Xn defined above

X n
ij = dn(ξni , ξ

n
j ), 1 ≤ i , j <∞

we can define a notion of convergence to a limit MMS

(Sn, dn, µn)→ (S∞, d∞, µ∞) is defined to mean Xn d→ X∞.

It is not obvious that this is equivalent to convergence in some natural
metric on the space of all (equivalence classes of) MMSs, but this is true,
for the Gromov-Prohorov metric.

David Aldous Exchangeability and Continuum Limits



The equivalance is implicit in work of Gromov (with quite different
motivations); a clearer treatment for probabilists is in Greven -
Pfaffelhuber - Winter (2009). One “probabilistic” motivation involves
continuum random trees and their generalizations. An n-vertex tree can
be regarded as a metric space on n points by taking edge-lengths
= n−1/2; including the uniform distribution on the n vertices makes it a
MMS. For various models of “uniform random n-vertex tree” Tn we have

Tn
d→ T∞ (2)

where the limit “Brownian CRT” can be constructed explictly from
Brownian excursion, but is abstractly a random MMS.

Note the point: the realizations of Tn and T∞ are MMSs, so to fit (2)
into the usual theory of weak convergence we want a nice metric
topology on the space of all MMSs.

David Aldous Exchangeability and Continuum Limits



A conjectured compactification of some finite reversible
Markov chains

[There is a write-up on my Talks web page].

In rather vague words, the conjecture is

Given a sequence of n-state reversible chains which does not
have the L2 cutoff property, there is a subsequence in which,
after relabeling states, the transition densities converge to those
of some limit general-state-space reversible Markov process.

We emphasize that the n-state chains are arbitrary in the sense that we
do not assume any connection between the chains as n varies. The
conjectured behavior is a compactness assertion, in the spirit of the
Lovász - Szegedy work on dense graph limits.

For simplicity we work with uniform stationary distributions, but we
anticipate that the general reversible case will be similar.
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Consider an n-state irreducible continuous-time Markov chain with
symmetric transition rate matrix. Write p(i , j ; t) for the transition
probabilities P(X (t) = j |X (0) = i). Consider the function

G (t) :=
∑
i

p(i , i ; t).

The basic convergence theorem implies G (t)→ 1 as t →∞, and the
spectral representation gives the more detailed result

G (t) = 1 +
n∑

u=2

e−λut (3)

where 0 = λ1 < λ2 ≤ . . . ≤ λn are the eigenvalues associated with the
transition rate matrix. One can regard the time τ at which G (τ) = 3/2
as one of many possible notions of “mixing time”. Rescaling time by this
τ , we can standardize according to the convention

G (1) = 3/2.
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The notion of L2 cutoff studied in detail in (Chen - Saloff-Coste 2010) is,
in our context, the property that a sequence of time-standardized chains
has

G (n)(t)→∞, t < 1; G (n)(t)→ 1, t > 1. (4)

Now imagine a continuous-space analog. That is, a probability measure π
on a space S and an S-valued Markov process X ∗(t) such that for t > 0
there exist transition densities

p∗(x , ·; t) = density of P(X ∗(t) ∈ ·|X ∗(0) = x) w.r.t. π

which are symmetric: p∗(x , y ; t) = p∗(y , x ; t). The analog of G (t) is

G∗(t) :=

∫
S

p∗(x , x ; t) π(dx).

Assume G∗(t) <∞ for t > 0. Then we expect the analog of (3)

G∗(t) = 1 +
∞∑
u=2

e−λ
∗
u t (5)

where 0 = λ∗1 < λ∗2 ≤ λ∗3 ≤ . . . are the eigenvalues associated with the
appropriate generator. And we can standardize to make G∗(1) = 3/2.
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Now consider a sequence of chains with n→∞, where n is the number
of states, but without assuming any relation between the chains as n
varies, except for the “no L2 cutoff” assumption

sup
n

G (n)(t) <∞ ∀0 < t < 1. (6)

As a standard analytic fact, because each G (n) is of form (3) there is a
subsequence in which G (n)(·)→ G∗(·) for some limit function

G∗(t) = 1 +
∞∑
u=2

e−λ
∗
u t

of form (5). This starts to hint at what is going on; the conjectured limit
continuous-space process will be one with this function G∗(·).
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Isomorphic processes
Consider a Markov process on a measurable space S with stationary
distribution π, which we will view naively as a family of symmetric
densities p∗(·, ·; t) satisfying the Chapman-Kolmogorov relations, with a
UTC (unspecified technical condition) on the t ↓ 0 behavior. Analogous to
our treatment of MMSs, define an infinite partially exchangeable random
array (whose entries are functions of t) by

take i.i.d.(π) random elements (ξi , 1 ≤ i <∞) of S

set X ∗ij = p∗(ξi , ξj ; t), i , j ≥ 1. (7)

This array has some distribution Ψ. There is a natural notion of
“isomorphism” between two stationary Markov processes X 1 and X 2 on
different spaces S1 and S2: processes are isomorphic if there exists a
bijection φ : S1 → S2 that preserves joint distributions

(φ(X 1
0 ), φ(X 1

t ))
d
= (X 2

0 ,X
2
t )

and hence preserves transition densities. And as before it is obvious that,
for two isomorphic processes, we get the same Ψ.
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Conjecture

If two symmetric Markov processes (on different spaces) have the same Ψ
then they are isomorphic.
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Convergence of processes
Now do exactly the same array construction for chains on finite sets Sn:
• take i.i.d. uniform random elements (ξi , 1 ≤ i <∞) of Sn

• set X n
ij = pn(ξi , ξj ; t), i , j ≥ 1.

Time-standardize, and recall that the “no L2 cutoff” assumption lets us
assume

G n(t)→ G∗(t) as n→∞ (8)

for some limit function with 1 < G∗(t) <∞ for 0 < t <∞. This is just
saying that EX n

11 → G∗(·). Now an easy argument gives EX12 ≤ EX11,
and so we can take a subsequence in which

(X n
ij , i , j ≥ 1)→d (X ∗ij , i , j ≥ 1) as n→∞ (9)

(in the usual sense of convergence of finite sub-arrays) for some limit
random function-valued array.

Conjecture

For any array (X ∗ij , i , j ≥ 1) that arises as a limit (9) from finite chains,
there exists a general-space chain with some transition densities p∗ such
that the representation (7) holds.
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The compulsive gambler process

There is a general setup: “interacting particle systems reinterpreted as
stochastic social dynamics”.

n agents; each in some state ∈ S

each pair of agents (i , j) meet at times of a Poisson process of given
rate νij

enter such a meeting in states (Xi (t−),Xj(t−)), leave in states
(Xi (t+),Xj(t+)) given by some deterministic or random rule
F : S × S → S × S .

As a simple but less-familar example, in the averaging process
(Aldous-Lanoue 2012) we take S = R as money and when agents meet
they share their money equally.

The “process” is the rule; and we seek to study how (non-asymptotic)
behavior depends on the finite meeting rates (νij). Analogous to study of
mixing times for finite Markov chains.
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In the Compulsive Gambler process, agents initially have a 100-krone
note each. When two agents with non-zero money meet, they instantly
play a fair game in which one wins the other’s money.

Interesting as methodology: there are 4 techniques which are useful for
studying this process. (Work in progress, with grad student Dan Lanoue).

1. Martingales.
2. Comparison with the Kingman Coalescent chain (which is the
mean-field model νij ≡ 1) for number of agents with non-zero money.

3. Imagine the initial currency notes have IID random serial numbers.
The Compulsive Gambler process is the same (unconditionally, if you
don’t see the serial numbers) as the process in which the winner of each
bet is determined as the possessor of the lowest serial number note.
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4. If we run the process as above (determined by serial numbers) and see
how much money each agent has at time t

A B C D E F G H I J

then the allocation of the ordered serial numbers
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) is uniform random.

This is an exchangeability property, reminiscent of the theory of
exchangeable coalescents (Bertoin et al).
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Here is one of several directions of our “work in progress”.

Place the n agents at positions s1, . . . , sn in a metric space (S , d). Define
meeting rates as a decreasing function of distance

νij = φ(d(si , sj)).

Rescale so there unit money in total; initially each agent has 1/n money.
Can now regard state space of CG process as the space P(S) of
probability measures on S . Given a continuous distribution µ ∈ P(S),
choose (si , 1 ≤ i <∞) such that

µ(n) := empirical dist.(s1, . . . , sn) → µ.

Natural to guess that the CG processes started from µ(n) converge to
some limit process, which at times t > 0 has locally finite support but
which converges to µ as t ↓ 0. We call this the metric coalescent.
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Key observation: one of our previous techniques implies a construction of
the finite-agent CG process (based on uniform random order) which
extends to a construction of the metric coalescent (based on IID samples
from µ).

3. Imagine the initial currency notes have IID random serial numbers.
The Compulsive Gambler process is the same (unconditionally, if you
don’t see the serial numbers) as the process in which the winner of each
bet is determined as the possessor of the lowest serial number note.

The detailed argument involves rather subtle exchangeability properties of
the construction.
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