Conceptual framework

Compare possible networks on given n cities.

Optimize trade-off between

- cost to build/operate network
- benefit (to operator, or cost to users).

Usually studied as algorithmic question. This talk focusses on theoretical understanding of properties of optimal networks in the $n \to \infty$ limit.

Spatial networks arise in many disciplines

Telephone (landline; cell)

Transportation (road, rail)

Distribution (electricity grid; Walmart)

Regional (spatial) economics

Biological (e.g. blood circulation to cells)

But what does this have to do with probability?

Analogy: the Galton-Watson branching process provides a mathematically simple "toy model" for broad notion of "branching process".

Goal: find a collection of mathematically simple "toy models" for spatial networks. Randomness can be introduced to model disorder (inhomogeneity) in space. One well known model is

Model 1: the geometric random graph (e.g. Penrose (2003) monograph).

Poisson point process; link two points if they are at distance $\leq c$ apart.

Ingredient in models for cell phone ("ad hoc") networks; much EE work over last 10 years, e.g.

P Gupta, PR Kumar (2000): The capacity of wireless networks. [Cited by 1496].

I'll show three snapshots of different models, involving

optimal design of networks (A, B)

optimal flow through a random network (C).

We study $n \to \infty$ asymptotics (n = number of "cities"), which is a different (and less realistic?) methodology from what's done in other "spatial networks" disciplines.

Use a "density 1" convention: n cities in square of area n.

(A): Hub-and-spoke networks

(passenger air travel; package delivery)

Seek to model the situation where the time to travel a route depends on route length and number of hops/transfers. Introduce a weighting parameter Δ and define (for a network \mathcal{G}_n linking *n* cities \mathbf{x}_n in square of area *n*)

time to traverse a given route from x_i to x_j

 $= n^{-1/2}$ (route length) + Δ (number of transfers).

time(i, j) = min. time, over all routes

time(
$$\mathcal{G}_n$$
) = ave_{*i*,*j*}time(*i*,*j*)
 $\geq n^{-1/2}$ ave_{*i*,*j*}d(*i*,*j*) := dist(\mathbf{x}_n).

This set-up leads to a 2-parameter question. What network \mathcal{G}_n over cities \mathbf{x}_n minimizes time(\mathcal{G}_n) for a given value of total length and Δ ?

Some numerical solutions from Gastner - M. Newman (2006).

Let's think about designing a network where routes involve 3 hops (2 transfers). Here's one scheme.

Divide area-n square into subsquares of side L. Put a **hub** in center of each subsquare.

Link each pair of hubs.

Link each city to the hub in its subsquare (a **spoke**).

Cute freshman calculus exercise: what total network length do we get by optimizing over L?

[length of short edges]: order nL

[length of long edges]: order $(n/L^2)^2 n^{1/2}$.

Sum is minimized by $L = \text{order } n^{3/10}$ and total length is order $n^{13/10}$.

This construction gives a network such that (even for worst-case configuration \mathbf{x}_n)

(i)
$$\operatorname{time}(\mathcal{G}_n) - \operatorname{dist}(\mathbf{x}_n) \to 2\Delta$$

 $\operatorname{len}(\mathcal{G}_n) = O(n^{13/10}).$

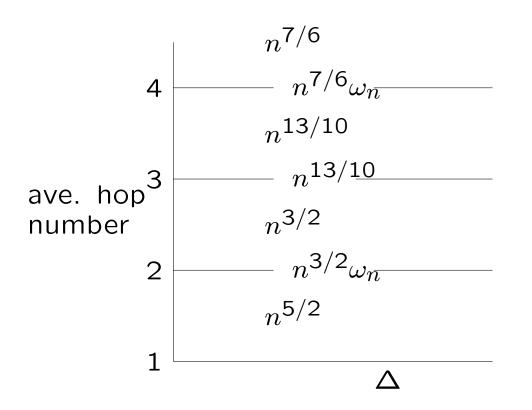
Theorem 1 For "really 2-dimensional" \mathbf{x}_n , no networks satisfying (i) can satisfy

$$\operatorname{len}(\mathcal{G}_n) = o(n^{13/10}).$$

Idea of 2-page hack proof: the only way to improve the construction would be to have shorter "short edges", implying more hubs and hence more "long edges".

Can you find a 1/2-page proof?

Schematic: length of network required for a given average number of hops and given weight parameter Δ .



Our analysis is too crude to reveal how (for fixed large n) optimal network changes as we vary Δ .

(B): Optimal design of road/rail networks

Given n "cities" in square of area n. Want to create a network by adding edges. Study trade-off between **cost** and **benefit** of network. Take

cost = total length of network

and benefit (later) is some notion of "shortness of routes". First consider extreme case where we just minimize total length. The minimumlength connected network on cities \mathbf{x}_n is by definition the **Steiner tree**, which has some length $ST(\mathbf{x}_n)$. But ST is clearly inefficient as a transportation network: routes are long. For a network on $\{x_1, \ldots, x_n\}$ write $d(i, j) = \text{straight-line distance from } x_i \text{ to } x_j$ $\ell(i, j) = \text{route length from } x_i \text{ to } x_j.$

First statistic to measure "benefit":

$$R := \operatorname{ave}_{i,j} \frac{\ell(i,j)}{d(i,j)} - 1.$$

First guess at cost-benefit trade-off:

If network-length is constrained to be (say) 1.5 times $ST(\mathbf{x}_n)$ then we can always make R less than (say) 0.2.

It turns out that we can do much better than that. Recall that typically d(i, j) is order $n^{1/2}$, so the first guess puts the "excess length" $\ell(i, j) - d(i, j)$ as order $n^{1/2}$. Recall typically $len(ST(\mathbf{x}^n))$ is order n. **Theorem 2 (with Wilf Kendall)** In worst case we can design networks $\mathcal{G}(\mathbf{x}_n)$ such that

(i) $\operatorname{len}(\mathcal{G}(\mathbf{x}_n)) - \operatorname{len}(ST(\mathbf{x}_n)) = o(n)$

(*ii*) ave_{*i*,*j*}(
$$\ell(i,j) - d(i,j)$$
) = $o(\omega_n \log n)$

for $\omega_n \to \infty$ arbitrarily slowly.

(Preprint on Arxiv).

This rests upon a construction we'll show. There is a lower bound: under technical assumptions that the points are "truly 2-dimensional", if (i) holds then the average (ii) is at least order $\log^{1/2} n$.

The construction is simple: take the Steiner tree and superimpose a **Poisson line process** of small density $\eta > 0$.

Why does this network have short routes? Key is a cute calculation.

Lemma 3 Take a PLP of rate 1. Erase the lines separating (0,0) from (x,0). Now these two points lie in a convex region R(x) bounded by PLP lines.

 $\mathbb{E}(boundary \ length \ of \ R(x)) - 2x \sim \frac{8}{3} \log x.$

So there is a route using PLP lines from near (0,0) to near (x,0) of length around $x + \frac{4}{3} \log x$.

Comment. The math is basically 100-year-old integral geometry.

The lower bound result is: under an "equidis-tribution" assumption on \mathbf{x}_n

For any network $\mathcal{G}(\mathbf{x}_n)$ whose length is O(n),

$$\operatorname{ave}_{i,j}(\ell(i,j) - d(i,j)) \ge c_* \log^{1/2} n.$$

7-page proof involves tension between two facts.

1. If there is a short route between x_i and x_j then a random orthogonal line (rooted where it crosses $\overline{x_i x_j}$) must cross a network line at some distance $\leq y_n$ from the root and at same angle $\frac{\pi}{2} \pm \delta_n$.

2. For any length Ln network in the square of area n, the positions and angles of intersections of a random line with the network have a mean intensity which just depends on L.

To relate these facts, need to know that the process

pick random x_i, x_j from \mathbf{x}_n , take random line orthogonal to $\overline{x_i x_j}$

is approximately the same as "take a random line". Here we need the "equidistribution" assumption on \mathbf{x}_n .

(C) Optimal flows through the disordered lattice. (Preprint on Arxiv). Here cities/roads correspond to vertices/edges of the two-dimensional grid.

Order-of-magnitude calculation on $N \times N$ grid. Send flow volume ρ_N between each (source, destination) pair. Average flow volume \overline{f} across edges is

 $(N^2 \times N^2) \times \rho_N \times N \approx \overline{f} \times N^2$

To make \overline{f} be order 1 we take $\rho_N = \rho N^{-3}$ where ρ is normalized demand.

Open Problem. Take i.i.d. random capacities (cap(e)) with $0 < c_{-} \leq cap(e) \leq c_{+} < \infty$. Obvious: a feasible flow with normalized demand ρ exists for $\rho < \rho_{-}$ and doesn't exist for $\rho > \rho_{+}$. Prove there is a constant ρ_{*} depending on distribution of cap(e) such that as $N \to \infty$

 $\begin{array}{rl} P(\exists \text{ feasible flow, norm. demand } \rho) & \rightarrow 1 &, \ \rho < \rho_* \\ & \rightarrow 0 &, \ \rho > \rho_*. \end{array}$

Instead of focussing on capacities, let's focus on <u>congestion</u>. In a network without congestion, the cost (to system; all users combined) of a flow of volume f(e) scales linearly with f(e). With congestion, extra users impose extra costs on other users as well as on themselves. So cost scales super-linearly with f(e). **Model:** The cost of a flow $\mathbf{f} = (f(e))$ in an environment $\mathbf{c} = (c(e))$ is

$$\operatorname{cost}_{(N)}(\mathbf{f},\mathbf{c}) = \sum_{e} c(e) f^2(e).$$

Theorem 1. $N \times N$ torus (for simplicity) Large constant bound *B* on edge-capacity (for simplicity)

i.i.d. cost-factors c(e) with

$$0 < c_{-} \leq c(e) \leq c^{+} < \infty.$$

Let Γ_N be minimum cost of flow with normalized intensity $\rho = 1$. Then

 $N^{-2}E\Gamma_N \to \text{constant}(B, \text{dist}(c(e))).$

Comments. Methodology is to compare with flows across (boundary-to-boundary) $M \times M$ squares. Should work to prove existence of limits in other "optimal flows on $N \times N$ grid" models. But details are surprisingly hard to prove. Theorem 1 has 36 page proof!