
Conceptual framework

Compare possible networks on given n cities.

Optimize trade-off between

• cost to build/operate network

• benefit (to operator, or cost to users).

Usually studied as algorithmic question. This

talk focusses on theoretical understanding of

properties of optimal networks in the n → ∞
limit.
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Spatial networks arise in many disciplines

Telephone (landline; cell)

Transportation (road, rail)

Distribution (electricity grid; Walmart)

Regional (spatial) economics

Biological (e.g. blood circulation to cells)

But what does this have to do with probability?
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Analogy: the Galton-Watson branching pro-

cess provides a mathematically simple “toy model”

for broad notion of “branching process”.

Goal: find a collection of mathematically sim-

ple “toy models” for spatial networks. Ran-

domness can be introduced to model disor-

der (inhomogeneity) in space. One well known

model is

Model 1: the geometric random graph (e.g.

Penrose (2003) monograph).

Poisson point process; link two points if they

are at distance ≤ c apart.

Ingredient in models for cell phone (“ad hoc”)

networks; much EE work over last 10 years,

e.g.

P Gupta, PR Kumar (2000): The capacity of

wireless networks. [Cited by 1496].
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I’ll show three snapshots of different models,

involving

optimal design of networks (A, B)

optimal flow through a random network (C).

We study n →∞ asymptotics (n = number of

“cities”), which is a different (and less realis-

tic?) methodology from what’s done in other

“spatial networks” disciplines.

Use a “density 1” convention: n cities in square

of area n.
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(A): Hub-and-spoke networks

(passenger air travel; package delivery)

Seek to model the situation where the time
to travel a route depends on route length and
number of hops/transfers. Introduce a weight-
ing parameter ∆ and define (for a network Gn

linking n cities xn in square of area n)

time to traverse a given route from xi to xj

= n−1/2( route length)+∆( number of transfers ).

time(i, j) = min. time, over all routes

time(Gn) = avei,jtime(i, j)

≥ n−1/2avei,jd(i, j) := dist(xn).

This set-up leads to a 2-parameter question.
What network Gn over cities xn minimizes time(Gn)
for a given value of total length and ∆?

Some numerical solutions from Gastner - M.
Newman (2006).
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Let’s think about designing a network where

routes involve 3 hops (2 transfers). Here’s one

scheme.

Divide area-n square into subsquares of side L.

Put a hub in center of each subsquare.

Link each pair of hubs.

Link each city to the hub in its subsquare (a

spoke).

Cute freshman calculus exercise: what total

network length do we get by optimizing over

L?

[length of short edges]: order nL

[length of long edges]: order (n/L2)2n1/2.

Sum is minimized by L = order n3/10 and total

length is order n13/10.
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This construction gives a network such that

(even for worst-case configuration xn)

(i) time(Gn)− dist(xn) → 2∆

len(Gn) = O(n13/10).

Theorem 1 For “really 2-dimensional” xn, no

networks satisfying (i) can satisfy

len(Gn) = o(n13/10).

Idea of 2-page hack proof: the only way to

improve the construction would be to have

shorter “short edges”, implying more hubs and

hence more “long edges”.

Can you find a 1/2-page proof?
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Schematic: length of network required for a

given average number of hops and given weight

parameter ∆.
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Our analysis is too crude to reveal how (for

fixed large n) optimal network changes as we

vary ∆.
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(B): Optimal design of road/rail networks

Given n “cities” in square of area n. Want

to create a network by adding edges. Study

trade-off between cost and benefit of net-

work. Take

cost = total length of network

and benefit (later) is some notion of “shortness

of routes”. First consider extreme case where

we just minimize total length. The minimum-

length connected network on cities xn is by

definition the Steiner tree, which has some

length ST (xn). But ST is clearly inefficient as

a transportation network: routes are long.
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For a network on {x1, . . . , xn} write

d(i, j) = straight-line distance from xi to xj

`(i, j) = route length from xi to xj.

First statistic to measure “benefit”:

R := avei,j
`(i, j)

d(i, j)
− 1.

First guess at cost-benefit trade-off:

If network-length is constrained to be (say) 1.5

times ST (xn) then we can always make R less

than (say) 0.2.

It turns out that we can do much better than

that. Recall that typically d(i, j) is order n1/2,

so the first guess puts the “excess length”

`(i, j) − d(i, j) as order n1/2. Recall typically

len(ST (xn)) is order n.
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Theorem 2 (with Wilf Kendall) In worst case

we can design networks G(xn) such that

(i) len(G(xn))− len(ST (xn)) = o(n)

(ii) avei,j(`(i, j)− d(i, j)) = o(ωn logn)

for ωn →∞ arbitrarily slowly.

(Preprint on Arxiv).

This rests upon a construction we’ll show. There

is a lower bound: under technical assumptions

that the points are “truly 2-dimensional”, if

(i) holds then the average (ii) is at least order

log1/2 n.
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The construction is simple: take the Steiner
tree and superimpose a Poisson line process

of small density η > 0.

Why does this network have short routes? Key
is a cute calculation.

Lemma 3 Take a PLP of rate 1. Erase the
lines separating (0,0) from (x,0). Now these
two points lie in a convex region R(x) bounded
by PLP lines.

E(boundary length of R(x))− 2x ∼
8

3
logx.

So there is a route using PLP lines from near
(0,0) to near (x,0) of length around x+4

3 logx.

Comment. The math is basically 100-year-old
integral geometry.

The lower bound result is: under an “equidis-
tribution” assumption on xn
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For any network G(xn) whose length is O(n),

avei,j(`(i, j)− d(i, j)) ≥ c∗ log1/2 n.

7-page proof involves tension between two facts.

1. If there is a short route between xi and xj
then a random orthogonal line (rooted where
it crosses xixj) must cross a network line at
some distance ≤ yn from the root and at same
angle π

2 ± δn.

2. For any length Ln network in the square
of area n, the positions and angles of intersec-
tions of a random line with the network have
a mean intensity which just depends on L.

To relate these facts, need to know that the
process

pick random xi, xj from xn, take random line
orthogonal to xixj

is approximately the same as “take a random
line”. Here we need the “equidistribution” as-
sumption on xn.
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(C) Optimal flows through the disordered

lattice. (Preprint on Arxiv). Here cities/roads
correspond to vertices/edges of the two-dimensional
grid.

Order-of-magnitude calculation on N×N grid. Send
flow volume ρN between each (source,destination)
pair. Average flow volume f̄ across edges is

(N2 ×N2)× ρN ×N ≈ f̄ ×N2

To make f̄ be order 1 we take

ρN = ρN−3 where ρ is normalized demand.

Open Problem. Take i.i.d. random capaci-
ties (cap(e)) with 0 < c− ≤ cap(e) ≤ c+ < ∞.
Obvious: a feasible flow with normalized de-
mand ρ exists for ρ < ρ− and doesn’t exist for
ρ > ρ+. Prove there is a constant ρ∗ depending
on distribution of cap(e) such that as N →∞

P (∃ feasible flow, norm. demand ρ) → 1 , ρ < ρ∗
→ 0 , ρ > ρ∗.
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Instead of focussing on capacities, let’s focus

on congestion. In a network without conges-

tion, the cost (to system; all users combined)

of a flow of volume f(e) scales linearly with

f(e). With congestion, extra users impose ex-

tra costs on other users as well as on them-

selves. So cost scales super-linearly with f(e).
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Model: The cost of a flow f = (f(e)) in an

environment c = (c(e)) is

cost(N)(f , c) =
∑
e

c(e)f2(e).

Theorem 1. N ×N torus (for simplicity)

Large constant bound B on edge-capacity (for

simplicity)

i.i.d. cost-factors c(e) with

0 < c− ≤ c(e) ≤ c+ < ∞.

Let ΓN be minimum cost of flow with normal-

ized intensity ρ = 1. Then

N−2EΓN → constant(B,dist(c(e))).

Comments. Methodology is to compare with

flows across (boundary-to-boundary) M × M

squares. Should work to prove existence of

limits in other “optimal flows on N × N grid”

models. But details are surprisingly hard to

prove. Theorem 1 has 36 page proof!
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