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Consider a graph with

N vertices

O(1) average degree

vertices have distinct “names”, strings of length O(log N) from a
fixed finite alphabet.

Envisage some association between vertex names and graph structure, as
in

phylogenetic trees on species

road networks.

I claim this is the “interesting” setting for data compression of sparse
graphs, because the “entropy” of both the graph structure and of the
names has the same order, N log N. [Will say more later].



Lots of existing work is somewhat related to the setting above – see the
survey by Szpankowski - Choi Compression of graphical structures:
Fundamental limits, algorithms, and experiments.

This is a conceptual talk, arguing that (at some position on the
theory-applications spectrum) this is the right setting to study.

I have no big theorem, just one technical lemma.

The first half of the talk gives my take on classical Shannon theory, both
math and conceptual. But to digress for 2 slides, I teach a course
“probability and the real world” with the following style.



The course consists of 20 lectures, on topics chosen to be maximally
diverse. Here are my desiderata for an ideal topic.

It is appropriate for the target audience: those interested in the
relation between mathematics and the real world, rather than those
interested in the mathematics itself.

There is some concrete bottom line conclusion, which can be said in
words . . .

. . . but where mathematics has been used to derive conclusions . . .

. . . . . . and where mathematics leads to some theoretical quantitative
prediction that my students can test by gathering fresh data.

There is available “further reading”, both non-technical and
technical, that I can recommend to students.

Very few topics permit all this, so the actual lectures fail to attain the
ideal!

Here are the topics from 2011, and student feedback “like minus dislike”.



(22) Psychology of probability: predictable irrationality
(18) Global economic risks
(17) Everyday perception of chance
(16) Luck
(16) Science fiction meets science
(14) Risk to individuals: perception and reality
(13) Probability and algorithms.
(13) Game theory.
(13) Coincidences and paradoxes.
(11) So what do I do in my own research? (spatial networks)
(10) Stock Market investment, as gambling on a favorable game
(10) Mixing and sorting
(9) Tipping points and phase transitions
(9) Size-biasing, regression effect and dust-to-dust phenomena
(6) Prediction markets, fair games and martingales
(6) Branching processes, advantageous mutations and epidemics
(5) Toy models of social networks
(4) The local uniformity principle
(2) Coding and entropy
(-5) From neutral alleles to diversity statistics.



For any probability distribution p = (ps) = (p(s)) on any finite set S , its
entropy is the number

ent(p) = −
∑
s

ps log ps .
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For any probability distribution p = (ps) = (p(s)) on any finite set S , its
entropy is the number

ent(p) = −
∑
s

ps log ps .

What’s the point of this definition?

Write B for the set of binary strings b = b1b2 . . . bm and len(b) = m.
Then (Huffman code) given X with distribution p, there exists a coding
fp : S → B such that

E len(fp(X )) ≈ ent2(p).

Note

”a coding” just means a 1− 1 function.

S is arbitrary.

fp depends (very much) on p.



A quick rant
90 years of bad teaching of freshman Statistics, and shorthand like “the
data is statistically significant”, has led to the widespread blunder of
thinking that statistical significance is an attribute of observed data; of
course it’s really an attribute of the hypothetical probability model that
may or may not be generating the data.

I suspect this all started with the bad choice of using the same words
(mean, s.d., etc) for data and for models.

Here’s an example with entropy.



Suppose, from a library of about one million books, you pick one book
uniformly at random and write out the entire text of that book. What is
the entropy of what you write?

Answer [according to our definition]: 20 bits.

On the other hand, widely claimed “entropy of English language is about
1.3 bits per letter”, so the text of a book with 300,000 letters should
have entropy about 400,000 bits.

Point (again): there is a distinction between actual data and
hypothetical probability models by which the data might have been
generated.

Here’s a less artificial example. From the Hall of Fame for
back-of-an-envelope calculations.





In fact I claim there is a good analogy between issues of password
strength and issues of data compression of sparse graphs.

It’s easy/fun to invent probability models of how
• people might create passwords
• sparse labeled graphs might arise
and compute entropy for the model; this tells us (roughly speaking how
easy it is for
• an adversary to find the password
• us to compress the graph
for a typical realization of a known model.

But in neither case are we engaging real data.



Classical Shannon setting.
A stationary ergodic sequence X = (Xi ), values in finite alphabet, has an
entropy rate H, characterized in several ways.

H = lim
k→∞

k−1ent(X1, . . . ,Xk) (1)

H = −E log p(X0 ∈ ·|X−1,X−2, . . .) (2)

The former implies that, given the distribution of X and ε, we can use
block codes to code X1, . . . ,Xn as a binary sequence of length Ln with

ELn ≤ (H + ε+ o(1))n as n→∞.

What if the distribution of X is unknown? As a “horrible hack” one could
use some initial portion to estimate the distribution of k-blocks and then
use the optimal code for that estimated distribution. In the 1970s more
elegant Lempel-Ziv type algorithms were devised which are “universal” in
the sense that

ELn = (H + o(1))n as n→∞.



The preceding is just mathematics, but . . . . . .

The magic of classic Shannon theory
Specific to “text” – length-N strings from a known finite alphabet. Real
text comes from some source which does not fit the dictionary definition
of the word random –
proceeding, made, or occurring without definite aim, reason, or pattern.
But we can pretend source is random, in the sense of stationary ergodic,
and apply Lempel-Ziv algorithm to compress. One cannot check the claim

ELn = (H + o(1))n as n→∞

because we have no prior definition of H.
A simple checkable theoretical prediction is that if you take a long piece
of text, split it into two halves of equal uncompressed length, and
compress each half separately, then the two compressed halves will be
approximately the same length.

uncompressed compressed
first half of Don Quixote 1109963 444456

second half of Don Quixote 1109901 451336



After this long ramble we come to the point of this talk:

how much of this theory for sequences can we push over to the setting of
sparse graphs with vertex-names?

There are two technical reasons why I chose this specific setting.

Reason 1. Because sparse we may assume there is a local weak limit
of the graph structure, a random infinite rooted unlabeled graph with an
analog of the stationarity property. One could develop a theory for
unlabeled graphs, or with labels from a fixed finite alphabet, but this
doesn’t seem so relevant to actual data.



Recall: entropy is about constants, not orders of magnitude

For typical English text with N letters, the most naive way to store in
binary uses c1N bits, the most efficient way uses c2N bits.

Similarly, for a typical sparse graph on vertices 1, . . . ,N, the most naive
way to store in binary uses c1N log N bits, the most efficient way uses
c2N log N bits.

And (unless very sparse) the same holds for unlabeled sparse graphs. So
there is order N log N entropy from graph structure.

Having vertex-names be strings of length O(log N) from a fixed finite
alphabet means there is also order N log N entropy from the names.

Reason 2. Having the same (order of) entropy from both ingredients is
the “interesting” case where you need to pay attention to both.

As already mentioned, easy/fun to invent probability models and show

ent(GN) ∼ cN log N

for some entropy rate c .
(Cute observation: in this N log N world, c does not depend on base of
logarithms).



(Backing up one slide)

how much of classical Shannon theory for sequences can we push over to
the setting of sparse graphs with vertex-names?

Because sparse we may assume there is a local weak limit of the graph
structure, a random infinite rooted unlabeled graph with an analog of the
stationarity property.

Here’s a simple example to show the most we can hope to get out of the
LWC approach.



Fix a finite alphabet, and for each n let Xn = (Xn,i , 1 ≤ i ≤ n) be a
random string, and make (only) the following assumption. Take Un

uniform on {1, . . . , n} and suppose that for each k ≥ 1

(Xn,Un+i ,−k ≤ i ≤ k)
d→ (Zi ,−k ≤ i ≤ k) as n→∞ (3)

for some doubly-infinite random sequence (Zi ). This is of course
equivalent to LWC of Xn considered as the linear path graph with
vertex-labels in the alphabet. Then (Zi ) is stationary and has some
entropy rate H. Think of H as a “local” property of the random string.

A straightforward consequence of subadditivity of entropy is that

lim sup
n

n−1ent(Xn) ≤ H.

And we can remove assumption (3) by taking H∗ := max of H over all
subsequential limits.



lim sup
n

n−1ent(Xn) ≤ H∗. (4)

Note that, for the base-b expansion of a real number x , the assertion “x
is normal in base b” is exactly the assertion that, taking Xn as the first n
digits, (3) holds with limit process i.i.d. uniform on {0, 1, . . . , b − 1}.

This dramatically shows that in general we do not have equality in (4).

Roughly speaking, this is what Lempel-Ziv and any conceivable
“universal” algorithm does – compress to length nH but not to length
ent(Xn).

This is the “real story” of Shannon, without assuming data is from an
infinite stationary sequence.



Informal statement of actual minor result.

Given (GN) – some model of random sparse graphs with vertex-names –
we are interested in entropy rate

c := lim sup
N

ent(GN)

N log N

Consider the subgraph on a s-vertex neighborhood of a uniform random
vertex, and suppose the entropy of this random subgraph grows as
cs log N, as N →∞ for fixed s. Then

c ≤ lim sup
s→∞

s−1cs (5)

provided the graph is not expander-like, in the sense that we can choose
large K (ε) and partition vertices into clusters of size ≈ K (ε) so that the
proportion ε of all edges linking different clusters is ≤ ε for large N.

Not surprising! The argument rests on the following “size-biasing”
lemma.



Consider a collection {Ci (Ai ), i ≥ 1} where (Ai ) is a partition of
{1, . . . ,N} and Ci (Ai ) is an object (from some specified finite set of
possible objects) comprising Ai and some extra structure. Now let C be a
random such collection, regarded as an unordered set. Take U uniform
random on {1, . . . ,N}, independent of C, and for the I = I (U) such that
U ∈ AI write A∗ = AI and C∗(A∗) = CI (AI ). (In words, C∗(A∗) is a
size-biased selection from C). Let q1(s) = P(|C∗(A∗)| = s) and let Z s

1

have the conditional distribution of C∗(A∗) given |A∗| = m.

Lemma

ent(C) ≤ (N + 1)
∑
s≥1

q1(s)
Γ− log q1(s) + ent(Z s

1 )

s + 1
+ N log N

N−M (6)

where M is the expected number of components in C = (Ci (Ai ), i ≥ 1)
and Γ is a numerical constant.



This lemma is key to the proof (for non-expander graphs) that

cglobal ≤ clocal

where

cglobal := lim sup
N

ent(GN)

N log N

clocal := lim
s→∞

s−1 lim sup
N

ent(BN(s))

N

for BN(s) the subgraph on a s-vertex n’hood of a random vertex. That
is, an inequality between “global” and “local” definitions of entropy rate.
Extending this inequality to expander-type graphs is a “do-able” open
problem.

Thesis: a general-purpose algorithm cannot do better than clocal . So
don’t try.



Two Research Projects
1. Give some abstract condition on a model, analogous to “ergodic” in
Shannon theory, for cglobal to exist as a N →∞ limit (not just limsup)
and for cglobal = clocal .

This should just be some very weak “no long range dependence”
condition, without any assumption of models built from independent
pieces. Part of the condition will be LWC of the unlabeled graphs.

2. Give some stronger condition on a model and a pseudo-universal
algorithm which compresses realizations from such models to
(c + o(1))N log N.

To me these are “serious” problem that we don’t know how to do.

What we do know how to do is to study particular models, where the
arguments for the upper bound in ent(GN) ∼ cN log N are often
themselves algorithmic. Here are 2 slides.



Simpler setting 1: Graphs with labels 1, . . . ,N as binary strings.

1. There is a simple universal algorithm that compresses to length
1
2 d̄N log N + O(N), where d̄ is average degree.

2. For sparse Erdös-Rényi random graph G(N, α/N) we have entropy
∼ 1

2αN log N.

3. Intuitively, any probability model where there is no strong association
of adjacent labels will have entropy rate c = 1

2×(ave degree)., e.g.
configuration model.
Next is an example which does have strong association.

4. Construct a random tree TN as follows. Take V3,V4, . . . ,VN

independent uniform on {1, . . . ,N}. Link vertex 2 to vertex 1. For
k = 3, 4, . . . ,N link vertex k to vertex min(k − 1,Vk).
It is known (by an indirect argument – not obvious) that if one first
constructs TN , then applies a uniform random permutation to the
vertex-labels, the resulting random tree T ∗N is uniform on the set of all
NN−2 labelled trees. Here (T ∗N ) has entropy rate c = 1 whereas (TN) has
entropy rate c = 1/2.



For a more geometric setting, start with the N1/2 × N1/2 discrete
torus graph with its usual coordinate labels. Make a “small worlds”
model in which extra edges (v ,w) are present with chance proportional
to a negative power of the distance ||w − v ||2. We can parametrize so
that mean degree = α and the length distribution L of these extra edges
has P(L = `) � `−γ , 1 < ` ≤ O(L1/2).

If γ > 2 then EL = O(1) and entropy grows as O(N).

If γ < 2 then log L ∼ log N1/2 and entropy grows as α
2 N log N as in the

non-geometric setting.

In the critical case γ = 2 we have log L uniform on [0, 12 ]× log N and the
entropy grows as α

4 N log N.



(no more slides – improvise on blackboard!)

1. First non-trivial model.

2. Lempel-Ziv style algorithms.


