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Sub-title: Things I would like some smart young person to work on.

Probability distributions on routed planar networks.

Combinatorics of fringe trees in a phylogenetic model.

Nearest neighbor of nearest neighbor, on the complete network.
Are you smarter than an AI?

The Nearest Unvisited Vertex walk.

Find a qualitatively realistic model for a subway network.

A layer model for random DAGs
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Topic 1: Probability distributions on routed planar networks.
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Introduction
Inter-city networks

Scale-invariant networks
Subway networks

Scale-invariance means: doing this within a randomly positioned
window, the statistics of the subnetwork observed don’t depend on the
scale, i.e. don’t depend on whether the side length is 10 km or 100 km.

David Aldous Random networks embedded in the plane
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As undergraduate project we have looked at real-world subnetwork
topologies (for k = 4 vertices, roughly at corners of a square).
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5/27/2019 Atlas of routed 4-networks

https://www.stat.berkeley.edu/~aldous/Research/all-types.html 3/7
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26 27 28
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(a)
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(b-)

and listed all 71 topologies on 4 vertices – different conventions from
usual planar graph theory. Could compare distributions over these
topologies in real-world spatial networks and in models of spatial
networks.
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Open problems about “routed networks”

Efficient naming (coding) of the different topologies?

Enumeration? [cf. Catherine Greenhill talk Thursday]

Is there a (mathematically) canonical one-parameter family of
probability distributions on these topologies?

(In our small data study) empirical frequencies of topologies are very
non-uniform. Can one make a model where some of the
real-world-rare topologies don’t occur?

We have 2 explicit models of scale-invariant networks;
calculate/simulate the distribution for these models.

References:
https://escholarship.org/content/qt1g44k4dk/qt1g44k4dk.pdf (the 71
topologies).
https://arxiv.org/abs/1204.0817 and https://arxiv.org/abs/2407.07887
(scale-invariant network models).

[All links are live on these slides posted on my home page]
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Topic 2: Combinatorics of fringe trees in a phylogenetic model.

26 DAVID J. ALDOUS AND SVANTE JANSON
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Figure 6. Bottom: cladogram showing phylogenetics of 77 parrot
species, from [41]. Top: simulation of DTCS(77), drawn as fringe
distribution in the style of biological cladograms.
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Broad ongoing project with Svante Janson and Boris Pittel: average
age ≈ 76.

We have a model for a random phylogenetic tree on n leaves
(Svante talk tomorrow)

Has zero parameters, so gives explicit numerical predictions.

Model designed to mimic the (very uneven) way that large splits
occur in real phylogenetic trees.

But does it happen to also mimic the fringe behavior?
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THE CRITICAL BETA-SPLITTING RANDOM TREE III 27
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Figure 7. Proportions of leaves in clades of a given shape, for each
shape with 2 � 6 leaves in the fringe tree. The top number is from
our model, the bottom number [· · · ] from our small data set.

5.4. Combinatorial questions. Regarding the number Nn(�) of copies of a clade
� in DTCS(n), there are aspects which have not been studied (even within the usual
random tree models). For example one could study distributions of the following:

• The number Kn :=
P

� 1(Nn(�)�1) of di↵erent-shape clades within (a real-

ization of) DTCS(n).
• The largest clade that appears more than once within DTCS(n).
• The smallest clade that does not appear within DTCS(n).

The di�culty is that, although one can calculate each p(�) numerically, we do
not have a useful explicit description of the set of probabilities (p(�) : |�| = m) of
size-m clades.
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Here’s one class of open problems about the model.
Write p(χ) = proportion of leaves in a given shape χ tree, in model
(asymptotics of size tree).

Can calculate numerically recursively.

But we don’t have a good description of the set of probabilities
{p(χ) : |χ| = m} over all m-leaf trees.

Variety of combinatorial questions (like birthday or coupon collector)
about the fringe trees within a large n-leaf tree: for instance

How many different shapes occur?

Largest shape that appears twice?

Smallest shape that does not appear?

References:
https://arxiv.org/abs/2412.09655. (preprint)

David Aldous Obscure results and open problems: some of my favorites.



Topic 3: Nearest neighbor of nearest neighbor, on the complete network.

Well known fact:

For the Poisson point process in the plane, the probability that a point is
the nearest neighbor of its nearest neighbor equals a computable
constant c .

One could surely prove by known methods (subadditivity)

For 2n uniform random points in a square, the probability that every
point is the nearest neighbor of its nearest neighbor is ≍ βn for some
(not known to be computable) constant β.

I will discuss a combinatorial version. Write RNN for the “reciprocal
nearest neighbor” relation.
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Consider the complete graph Gm on m vertices, put i.i.d. edge lengths
(say U[0, 1]) .

P(vertices 1 and 2 are RNN’s) = 1/(2m − 3)

because this just says that edge (1,2) is the shortest of the 2m − 3 edges
at 1 or 2. So

P(vertex 1 has a RNN) = (m − 1)/(2m − 3)

That was easy! Continuing, if m = 2n it can be shown

p(n) := P(every vertex has a RNN) =
(2n − 1)!! (2n − 3)!!

(4n − 3)!!

with notation (2n − 1)!! := (2n − 1)(2n − 3)(2n − 5) · · · 3 · 1.
So p(2) = 1/5, p(3) = 1/21, p(4) = 5/429, . . . . . . and p(n) ∼ 2−2n+3/2

as n → ∞.
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Digression: [Extract from email received September 2024]

To keep track of how far the AI systems are from

expert-level capabilities, we are developing Humanity’s
Last Exam, which aims to be the world’s most difficult AI

test.

We’re assembling the largest, broadest coalition of

experts in history to design questions that test how far

AIs are from the human intelligence frontier. If there is

a question (any topic) that would genuinely impress you if

an AI could solve it, we’d like to hear it from you!

We have already received questions from researchers from

MIT, UC Berkeley, Stanford, and more.

The top 50 questions will earn $5000 each.

The next top 500 questions will earn $500 each.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
How hard can this be?
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Some explicit or implicit side conditions for entry to competition:

You know the undisputed answer.

Answer cannot be found on internet.

Not depend on private information; must be answer-able in principle
by sufficiently intelligent human or AI.

State question in words (or only undergraduate-level math concepts)

No trick questions – seek questions that someone might actually ask.

5 AIs must all give incorrect answers.

Then amongst questions accepted for entry, human judges decide prize
winners, presumably seeking a wide range of topics and interesting
questions.
- - - - - - - - - - - - - - - - - - - - -
So harder than it looks at first sight?

Some typical accepted questions here:
https://lastexam.ai/
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I tried 10 math questions. 6 got accepted as entries. Amused myself in
planning how to spend a hypothetical $5,000 prize . . .

. . . but only got a $500 prize.

And the question was . . . . . .
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There is a general “substructures” problem: given an event that is
exponentially unlikely for a n-vertex model, how large is the largest
vertex-subset such that the event holds for the induced structure?
This is very similar to a general “largest common substructure” for two
independent realizations of a n-vertex model.

Familiar example are “largest clique” in Erdös-Rényi, and “longest
increasing subsequence” of a random permutation. Other examples
include leaf-labelled trees (Miklós Rácz talk Thursday).

Open problem: Within our model G2n, what is the size Vn of the largest
vertex-subset within which every vertex is RNN?

We have made the obvious first steps:

Upper bound c2n via first moment method

Lower bound c1n via greedy algorithm

Some usual tricks can improve these constants (starter project for
grad student?)

Of course we expect E[Vn] ∼ cn; but no conjecture for c and no abstract
argument that some c exists. New idea needed! Would be really
impressed if AI could solve this . . . . . .

References: Unpublished notes on request.
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Topic 4: The Nearest Unvisited Vertex walk on Random Graphs

Consider a connected undirected graph G on n vertices, where the edges
e have positive real lengths ℓ(e). Imagine a robot that can move at
speed 1 along edges. We need a rule for how the robot chooses which
edge to take after reaching a vertex. Most familiar is the “random walk”
rule, choose edge e with probability proportional to ℓ(e) or 1/ℓ(e). One
well-studied aspect of the random walk is the cover time, the time until
every vertex has been visited.

Instead of the usual random walk model, let us consider the nearest
unvisited vertex (NUV) walk

after arriving at a vertex, next move at speed 1 along the path
to the closest unvisited vertex

and continue until every vertex has been visited. Note this is deterministic
and has some length (= time) LNUV (G , v0) where v0 is the initial vertex.
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In informal discussion we imagine lengths are scaled so that distance to
closest neighbor is order 1, so LNUV must be at least order n.

Natural first question: when is it O(n) rather than larger order?

There is scattered old “algorithms” literature discussing the NUV walk as
heuristics for TSP or as an algorithm for a robot exploring an unknown
environment, but that literature quickly moved on to better algorithms.

There is a key starting math observation – implicit but rather obscured in
the old literature. For now, we stay with non-random graphs.
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Consider ball-covering: for r > 0 define N(r) = N(G , r) to be the
minimal size of a set S of vertices such that every vertex is within
distance r from some element of S . In other words, such that the union
over s ∈ S of Ball(s, r) covers the entire graph.

Proposition

(i) N(r) ≤ 1 + LNUV /r , 0 < r < ∞.

(ii) LNUV ≤ 2
∫ ∆/2

0
N(r) dr where ∆ = maxv ,w d(v ,w) is the diameter of

the graph.

Note that for continuous spaces, metric entropy implies a notion of
dimension via N(r) ≈ r−dim as r ↓ 0. In our discrete context, if we have
dimension in the sense

N(r) ≈ nr−dim, 1 ≪ r ≪ ∆

then the Proposition has informal interpretation that LNUV is always
O(n) when dim > 1.
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The ball-covering relation is not helpful from the algorithms viewpoint.
But it is useful for some random graph models. In particular, in a model
where we take a unweighted graph and then assign random edge-lengths,
understanding “balls” is precisely the basic issue in first passage
percolation (FPP).

Consider the random graph Gm that is the m ×m grid, that is the
subgraph of the Euclidean lattice Z2, assigned i.i.d. edge-lengths
ℓ(e) > 0. with Eℓ(e) < ∞. Because the shortest edge-length at a given
vertex is Ω(1), clearly LNUV is Ω(m2). Using the shape theorem for FPP
on Z2 one can show

Corollary

For the 2-dimensional grid model Gm above, the sequence
(m−2LNUV (Gm), m ≥ 2) is tight.

The same techniques would give O(n) upper bounds in other simple
models of n-vertex random graphs.
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Open problems

Are there general methods (subadditivity or local weak limits don’t
seem to work) to prove existence of a limit c = limn n

−1LNUV (Gn)
for simple models?

Evaluate c?

Order of magnitude of var(LNUV ) not clear from our small-scale
simulations – seems n1±ε.

References:.
https://arxiv.org/abs/1912.13175. (Paper)
https://www.stat.berkeley.edu/users/aldous/stel-project.html
(Undergrad coding project to analyze a simple prototype of 4X computer
games such as Stellaris)
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Topic 5: Find a qualitatively realistic model for a subway network.
Human population density varies tremendously, so any realistic model of
(say) spatial networks in the human world should not assume positions as
a grid or as a homogeneous Poisson process.

Easier said than done! The simplest setting (that I can imagine) is to
imagine a large 20th century city with a subway network, where typical
journeys are between less dense suburbs and more dense centers.

Wikipedia – rapid transit shows typical topologies (shapes) for small
subway-type networks.

What do we expect to see in a large network?
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We typically see a well-connected core, often delineated by a circular line,
from which branching lines spread away.

Question: Can we reproduce these qualitative features as an optimal
network within some toy model?
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Our very toy model

Gaussian or power-law density of source/destination.

Travel fast on subway network, slow off network.

Seek to minimize mean journey time.

One parameter S = fast/slow ratio.
What are the optimal networks for different total lengths L?

In next figure, dashed circle is 1 s.d. of standard bivariate Gaussian, which
contains 40% of population. (Similar results for power-law density).
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L star [branches] hashtag 3x3 grid
15 [8] 0.75 (0.72) (0.73)
18 [12] 0.79 . (0.78)
21 [12] (0.81) . 0.83

Table 3: General model, S = 4 and W = 0: Optimal and (near optimal) benefits for the
Gaussian density.

L = 8 L = 10 L = 12

Figure 10: General model, S = 8 and W = 0.05, Gaussian population density; for L around
12 the star and hashtag shapes are almost equally good.

L = 18 L = 21

Figure 11: General model, S = 4 and W = 0: for L = 18 the star is optimal but for L =
21 the 3x3 grid is optimal for the Gaussian density,

14
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So our model doesn’t seem to give the desired qualitative property.
(Though we lack some efficient code to study large L for different
networks).

Open problems:.

Devise a better model!

Efficient code for our model with larger L.

References: https://arxiv.org/abs/1902.08786
Unpublished notes on request.
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Topic 6: A layer model for random DAGs

Probability models for DAGs arise (explicitly or implicitly) in many
contexts, but (to my knowledge) there is no broad survey of such models.

Someone should write one!

I will use a quite natural “layer” model. This is reminiscent of neural
network models, but one can study different types of question. I will
consider a minimum-cost flow question.
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Take M layers, each with N vertices. For each 1 ≤ i ≤ M − 1 create
directed edges from some vertices in layer i to some vertices in layer
i + 1. The choice of edges is uniform random, subject to the constraint

each layer-i vertex has out-degree 2, and each layer-(i + 1) vertex has
in-degree 2.

This defines a random graph with MN vertices w and with (2M − 1)N
directed edges e. Aldous: Flows Through a Disordered Network

770 Mathematics of Operations Research 33(4), pp. 769–786, © 2008 INFORMS

Figure 1. A realization of the random layer graph with M = 4, N = 6.

(Rooted means one vertex is distinguished as the root. T is unique up to isomorphism.) Local weak convergence
(Aldous and Steele [7]) means:

Take a uniform random vertex to be a root of the n-vertex graph. As n→", the subgraphs
on vertices within an arbitrary fixed distance (number of edges) from the root converge in
distribution to the corresponding subgraph of the limit T.

(Proving this local weak convergence reduces to the easy fact that, for fixed k, the expected number of cycles
of length k containing a specified vertex tends to 0 as M!N →". (See Steele [23, §4.3] for the details in a
similar model.) Now suppose that on each edge e of the random layer graph there is a nonnegative function
("#e!v$!v≥ 0) representing the cost of a flow of volume v across e. Suppose we wish to send flow of volume
vM!N through the network, i.e., from layer 1 to layer M , along directed edges. Each possible such “global flow”
has some total cost, and so one can seek to study the minimum total cost as a function of volume vM!N under
some model of edge costs.

The edge cost model. Fix a probability distribution on functions "#v$. For each edge e of the random layer
graph, let "#e!v$ be chosen independently from this probability distribution.
Remark (Notational Convention). Akin to the convention that the common distribution of an i.i.d.

sequence (Xi) is denoted as X, we write "#e!v$ for the function at a specific edge e but write "#v$ to denote
the distribution when the specific edge is unimportant.
Discussing M!N → " limits involves scaling conventions, whose details we specify here but which (as

described below) are easily interpretable without these details. Because there are 2N edges between successive
layers, the typical flow per edge will be order vM!N /#2N $. We therefore take “standardized volume” 0< v <"
and set vM!N = 2Nv. With the resulting order 1 flows through edges, the total cost will scale as the number
2N #M − 1$ of edges. Thus we define standardized cost of the optimal flow with standardized volume v to be

%M!N #v$=
1

2N #M − 1$
(minimal cost over flows of volume 2Mv through the network)&

The function %M!N #v$ is random because it depends on the realizations of the graph and of edge-flow functions,
but by virtue of the standardization we expect a deterministic limit function % :

%M!N #v$→%#v$ in probability! 0< v <"
as M!N → " with not too dissimilar orders of magnitude. To interpret the limit function more intuitively,
because the in-degree and out-degree are equal at each vertex, assigning constant flow v to each edge yields a
feasible network flow, which we call the “uniform” flow. This uniform flow has normalized volume v and limit
normalized cost E"#v$. The purpose of the standardizations is simply to be able to compare cost of the optimal
flow of given volume in our model with the cost of the uniform flow of the same volume.
The setting where edges have some finite capacity (maximum allowed volume) fits our setup by taking

"#v$=" for v larger than the capacity. In this case we expect that the network has some finite maximum
standardized volume v∗:

%#v$ < "! v < v∗

= "! v > v∗&
(1)

Note that v∗ will not depend on edge costs, just on edge capacities.
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The cost of a flow with volume v across edge e is a function Φ(e, v) > 0.
For the model we specify a probability distribution over functions ϕ(v).
So a realization of the random network is a realization of the random
DAG, with a realization of i.i.d. functions (Φ(e, v), e ∈ Edges).

Within a realization, there is a minimum-cost flow of any given volume,
from the top to the bottom. To consider M,N → ∞ limits we work with
normalized volume v∗ and normalized optimal cost c∗, that is the volume
of flow is Nv∗ and the total cost is MNc∗. In the limit we will show how
to determine c∗ as a function of v∗. This will depend only on the
distribution of the random function Φ(v).

Aldous: Flows Through a Disordered Network
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Figure 1. A realization of the random layer graph with M = 4, N = 6.

(Rooted means one vertex is distinguished as the root. T is unique up to isomorphism.) Local weak convergence
(Aldous and Steele [7]) means:

Take a uniform random vertex to be a root of the n-vertex graph. As n→", the subgraphs
on vertices within an arbitrary fixed distance (number of edges) from the root converge in
distribution to the corresponding subgraph of the limit T.

(Proving this local weak convergence reduces to the easy fact that, for fixed k, the expected number of cycles
of length k containing a specified vertex tends to 0 as M!N →". (See Steele [23, §4.3] for the details in a
similar model.) Now suppose that on each edge e of the random layer graph there is a nonnegative function
("#e!v$!v≥ 0) representing the cost of a flow of volume v across e. Suppose we wish to send flow of volume
vM!N through the network, i.e., from layer 1 to layer M , along directed edges. Each possible such “global flow”
has some total cost, and so one can seek to study the minimum total cost as a function of volume vM!N under
some model of edge costs.

The edge cost model. Fix a probability distribution on functions "#v$. For each edge e of the random layer
graph, let "#e!v$ be chosen independently from this probability distribution.
Remark (Notational Convention). Akin to the convention that the common distribution of an i.i.d.

sequence (Xi) is denoted as X, we write "#e!v$ for the function at a specific edge e but write "#v$ to denote
the distribution when the specific edge is unimportant.
Discussing M!N → " limits involves scaling conventions, whose details we specify here but which (as

described below) are easily interpretable without these details. Because there are 2N edges between successive
layers, the typical flow per edge will be order vM!N /#2N $. We therefore take “standardized volume” 0< v <"
and set vM!N = 2Nv. With the resulting order 1 flows through edges, the total cost will scale as the number
2N #M − 1$ of edges. Thus we define standardized cost of the optimal flow with standardized volume v to be

%M!N #v$=
1

2N #M − 1$
(minimal cost over flows of volume 2Mv through the network)&

The function %M!N #v$ is random because it depends on the realizations of the graph and of edge-flow functions,
but by virtue of the standardization we expect a deterministic limit function % :

%M!N #v$→%#v$ in probability! 0< v <"
as M!N → " with not too dissimilar orders of magnitude. To interpret the limit function more intuitively,
because the in-degree and out-degree are equal at each vertex, assigning constant flow v to each edge yields a
feasible network flow, which we call the “uniform” flow. This uniform flow has normalized volume v and limit
normalized cost E"#v$. The purpose of the standardizations is simply to be able to compare cost of the optimal
flow of given volume in our model with the cost of the uniform flow of the same volume.
The setting where edges have some finite capacity (maximum allowed volume) fits our setup by taking

"#v$=" for v larger than the capacity. In this case we expect that the network has some finite maximum
standardized volume v∗:

%#v$ < "! v < v∗

= "! v > v∗&
(1)

Note that v∗ will not depend on edge costs, just on edge capacities.
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The local limit network is just the 4-regular tree, so we do calculations
within the tree, via the cavity method of statistical physics. This
method will give the answer in terms of a recursive distributional
equation (particular type of fixed-point equation), which usually can only
be solved numerically.

This is a non-rigorous method (would require work to make rigorous –
maybe not worth doing): hard to explain what you’re doing but easy to
actually do (if you have seen a simpler example first).
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well as their appearance in these kind of mean field (disordered network)
optimization problems, they arise in a broad range of applied probability
problems, as illustrated in the survey [3].

3.4 The general case

We now show how to implement the section 3.2 methodology in the general
infinite network model of section 3.1.

Fix an edge e∗ = (w−, w+) in T. (We use w to denote a vertex, since
we are using v for volume). Delete the other edges at w− and write T+ =
(V+,E+) for the component containing w+; this is an infinite tree with the
same properties as T except that the distinguished vertex w− has out-degree
1 and in-degree 0. See Figure 6.

w− w+
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✲ ✲

✻

✻
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✻
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T+ T3

T2

T1

e∗
2

e∗
3

e∗
1

w+

Figure 6. The tree T+ and its recursive decomposition into T1,T2,T3.

Fix a realization of edge cost-volume functions (Φ(e, v), e ∈ E+ \ {e∗}). Let
F+ be the set of flows f on E+ which satisfy the balance constraints at each
vertex except w−. For 0 ≤ v < ∞ define

X(v) = inf
f∈F+

:f(e∗)=v

∑

e∈E+,e ̸=e∗
(Φ(e, f(e)) − λf(e))
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Directed edge e∗ in 4-regular tree defines 3 subtrees.

Imagine random process X = (X (v), v ≥ 0) defined as
X (v) := relative cost of optimal network flow constrained

to have flow v across e∗ (relative to flow 0).
Can relate optimal flow on tree to optimal flows on subtrees

X =d Fλ(X1,X2,X3,Φ1,Φ2,Φ3)

Fλ(x1(·), x2(·), x3(·), ϕ1(·), ϕ2, (·), ϕ3(·)) is the function

v → inf
v+v1=v2+v3

3∑

i=1

(ϕi (vi )− λvi + xi (vi ))

− inf
v1=v2+v3

3∑

i=1

(ϕi (vi )− λvi + xi (vi ))
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Because we are minimizing under constraint, we introduced a Lagrange
multiplier λ and seek to minimize, over flows (f (e)) on the entire tree,

∑

e

(Φ(e, f (e))− λf (e))

Minimizing the quantity above for a given value (v , say) of f (e∗) gives

Φ(e∗, v)− λv + X+(v) + X−(v)

where the flow is decomposed into flows on T+ and on T− with the
same value of v = f (e∗). Thus the optimal flow is obtained by
minimizing over all possible values v , and so the optimal flow across e∗ is

f (e∗) = argmin
v

(
Φ(e∗, v)− λv + X+(v) + X−(v)

)
.

This is all for one realization of the network.

Finally, this optimal flow f = fλ has normalized volume and cost

v(fλ) = E[f (e∗)]; c(fλ) = E[Φ(e∗, f (e∗))].

This gives the relationship between v∗ and c∗ via this parametrized-by-λ
format.
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Admittedly this is a rather artificial problem, with an unappealing
solution (depends on the solution of the RDE for random process
(X (v), v ≥ 0)); and hard to make rigorous.

Deservedly obscure!

Open problem: Other aspects of layer model of DAGs from a “random
graphs” perspective?

References:
https://arxiv.org/abs/cond-mat/0502346. (This model)
https://www.stat.berkeley.edu/users/aldous/Papers/me101.pdf (Cavity
method)
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