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Many models of size-n random trees have been studied, with exact
results by combinatorialists and n→∞ asymptotics by probabilists. This
talk concerns a “new” model with quite different asymptotics.

Some (weak) real-world motivation.

Being a “random tree” model, there are many aspects to study, and
many different techniques one can attempt to use.

Can compare and contrast with the known continuum random tree
limits of other models.

A classical analysis technique (analysis of recursions) gets
surprisingly sharp answers to certain basic questions.

We have many results and many open problems suitable for some
smart young person.

2 long preprints on arXiv
The Critical Beta-splitting Random Tree, I and II
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This “uneven split” property holds for most phylogenies – just type “xxx
phylogeny” into Google Images.

To demonstrate, having already said “dead parrot” let’s continue the
Monty Python theme by showing phylogenetic trees for

Brontosaurus

Swallows

Pythons
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264 F.H. Sheldon et al. / Molecular Phylogenetics and Evolution 35 (2005) 254–270

The second major group of swallows is the monophyletic
“core martins,” consisting of the two disparate Phedina
species, the sand martins (Riparia), and the New World
endemic genera. The third major group of hirunidinines,
which may or may not be monophyletic, consists of the
“basal relicts”: Australian white-backed swallow (Chera-
moeca), African grey-rumped swallow (Pseudhirundo),
and African saw-wings (Psalidoprocne). Cheramoeca and
Pseudhirundo are sister taxa, and all three genera may be
monophyletic (Fig. 3), but we have not shown this
unequivocally. Unfortunately, we were also unable to
determine the exact branching sequence of mud nesters,
core martins, and basal relicts relative to one another.
Nevertheless, the division of the hirundinines into three
fundamental groups provides a convenient structure for
further discussion of our results.

In this discussion, we refer frequently to uncorrected
cytb distances. We do not espouse the use of cytb diver-

gences to deWne species, but believe comparisons of cytb
distances are useful in assessing the likelihood that taxa
may or may not be members of the same species (Johns
and Avise, 1998). The ultimate designation of species
rests on reproduction, behavior, diagnosibility, or other
criteria.

4.1.1. Mud-nesting swallows
The mud nesters comprise the largest group of swal-

lows (39 species). They are cosmopolitan, but with diver-
sity concentrated in Africa (25 species). Their
monophyly is strongly supported (Figs. 3 and 4), but
their sister group remains unknown.

Within the mud nesters, we examined three of the 4
species of crag martins (Ptyonoprogne) (Figs. 5 and 7).
They form a monophyletic group in which species
generally replace one another geographically or altitudi-
nally (Vaurie, 1951; Voous, 1977). The African species,

Fig. 7. A summary tree of swallow relationships. Dashed lines indicate likely relationships that have not been established unequivocally by the
sequence analyses (see Section 3). Cross hatches indicate synapomorphic �Wb7 indels. The indel groupings are: Petrochelidon spilodera, P. ariel, and
P. nigricans (7 nucleotide indel); Phedina borbonica and Riparia cincta (5 nucleotide indel); Psalidoprocne pristoptera holomelas and P. fuliginosa (5
nucleotide and a 1 nucleotide indel); Delichon, Cecropis, and Petrochelidon (1 nucleotide indel). Homoplastic indels occur between Hirundo abyssinica
and Petrochelidon preussi (1 nucleotide) and between Ptyonoprogne fuligula and Phedina borbonica (4 nucleotides).
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Is there a simple probability model that replicates this “uneven
splits” aspect of real cladograms?

At each split within a cladogram, a clade (sub-tree) of size m species is
split into clades of sizes i and m − i . Data often shows (Aldous, Stat.
Sci, 2001) that the median size of the smaller subtree scales as roughly
m1/2. Simple probability models used before 2000 would predict median
size O(1) or O(log m) or Ω(m).

One could invent models with several real parameters, and then see if any
parameter values gave order m1/2.

Is there a simple model that predicts m1/2?
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A class of probability models for n-leaf rooted binary trees.

Recursive, but in opposite direction from e.g.

Galton-Watson.

For each m ≥ 2, specify a probability distribution (q(m, i), 1 ≤ i ≤ m− 1)
with the symmetry condition q(m, i) ≡ q(m,m − i).

Given n, construct the random tree by specifying that there is a left edge
and a right edge at the root, leading to a left subtree which will have Ln

leaves and a right subtree which will have Rn = n − Ln leaves, where Ln

(and also Rn, by symmetry) has distribution q(n, ·).

Continue recursively; a subtree which will have m ≥ 2 leaves is split into
two subtrees of random size from the distribution q(m, ·); continue until
reaching subtrees of size 1, which are leaves.
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Figure: Representation as discrete interval-splitting: n = 20.
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Specialize to a 1-parameter family, which we call beta-splitting:
roughly it is

q(n, i) ∝ iβ(n − i)β , 1 ≤ i ≤ n − 1

which is interesting for −2 ≤ β ≤ ∞.

In this model the height of a typical leaf (number of edges to the root)
grows as

(β > −1): order log n
(β < −1): order n−β−1.

We will study the critical case β = −1.

Two motivations:
(i) Will fit the order m1/2 data.
(ii) A stochastic model, with a “phase transition” separating qualitatively
different behaviors, often has mathematically interesting special
properties at the critical value of the parameter.

This project was proposed in (Aldous, Probability Distributions on
Cladograms, 1995) but not followed up.
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Simulation of model, drawn as cladogram.
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OK, forget the biology, now onto the mathematics.

Our model: splitting probability q(n, i) ∝ 1
i(n−i) .

Note 1
i(n−i) = 1

n ( 1
i + 1

n−i ), so we get the normalization constant

q(n, i) =
n

2hn−1

1

i(n − i)
, 1 ≤ i ≤ n − 1

where hn =
∑n

i=1
1
i ∼ log n . So the median size of the smaller split is

essentially n1/2 because when we sum over 1 ≤ i ≤ n1/2

2× 1

2hn−1
×

n1/2∑
i=1

1

i
≈ 1

log n
× log n1/2 ≈ 1

2
.

So now, what does the random tree look like drawn from the root? First
we have to think how we will draw a tree.
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Figure: Equivalent representations of a realization of DTCS(20).

The tree on the right has some specific structure: leaves occur as pairs at
the end of a stem, or as a singleton on one side of a branch. This
“pruned” form turns out to be mathematically convenient when we
switch to continuous time.
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Overview of results

There is a canonical way to embed the discrete-time model into a
continuous-time model (which we call CTCS(n)) by specifying that
a clade of size m ≥ 2 is split at rate hm−1.

For the height (time reached) Dn of a uniform random leaf in the
CTCS(n) model, E[Dn] ∼ 6

π2 log n and also there is a Gaussian limit
distribution. Paper #1 shows many related results of surprising
sharpness, obtained via analysis of recursions, for both DTCS(n)
and CTCS(n).

We can describe the limit fringe distribution of CTCS(n), that is the
local weak limit relative to a random leaf.

There is a non-obvious consistency property of (CTCS(n), n ≥ 2) in
its “pruned” form: given CTCS(n+1), delete a random leaf and
prune; this gives CTCS(n). In reverse this gives an explicit algorithm
for growing CTCS(n+1) from CTCS(n).

There is a scaling limit of (CTCS(n), n ≥ 2), as a process of splitting
the continuous interval (0, 1), with a corresponding continuum tree.
The pruned spanning tree on n random points is CTCS(n).
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Our discrete time construction was:

At each unit time, split a size m clade into (i ,m − i) clades with
probability

q(m, i) =
m

2hm−1

1

i(m − i)
, 1 ≤ i ≤ m − 1

Instead we will work with a continuous time model CTCS(n) where
we split size m clades at rate hm−1 instead. That is:

Split rate is = m
2

1
i(m−i) , 1 ≤ i ≤ m − 1

This turns out to be mathematically more tractable.

We will mostly be doing n→∞ asymptotics, so what does a tree on 400
leaves look like?
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The consistency property

Note that in our discrete-time model, there’s no direct relation between
the trees for n and n + 1, we have to start over with the construction.
Somewhat magically, there is a simple connection for the continuous-time
model:

Given CTCS(n+1), delete a random leaf and prune; this gives
CTCS(n).

Here’s a discussion.
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To formulate a consistency property, first consider spanning sub-trees on
a given set of leaves within a large tree.

r
r

r r
r

r
r
r
r r

0
b

b
b b

b
b
b b b b

Height

Figure: A spanning tree on k = 10 leaves within CTCS(n) for some n � k
(left) and the corresponding pruned tree PRU(n,k) (right).
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The key consequence of the continuous-time embedding is (via a simple
calculation)

(*) Within CTCS(n), the time Sn at which the paths to 2 different
random leaves diverge satisfies

(∗) Sn has exactly Exponential(1) distribution.

This makes it intuitively clear that, for the pruned tree PRU(n,k) on k
random leaves, there must be some limit

PRU(n,k)→ T(k) as n→∞

because (*) says we already did the right order of scaling. By
construction, the family (T(k), k ≥ 2) must be consistent under “delete
random leaf and prune”.

Is this T(k) the same as CTCS(k)?

David Aldous The Critical Beta-Splitting Random Tree Model: Results and Open Problems



Is this T(k) the same as CTCS(k)?

Yes: there is an abstract-but-strangely-unconvincing proof. This implies
the family is consistent under “delete random leaf and re-prune”. But
more informative to check by explicit formulas for the distribution of
shape/density-of-edge-lengths, which leads to the following inductive
construction of (CTCS(n), n ≥ 2)

Algorithm: given CTCS(k)

Pick uniform random leaf; move up path from root toward that leaf.
A “stop” event occurs at rate = 1/(size of subclade from current
position).

If “stop” before reaching target leaf, make a side-leaf.

Otherwise, extend target leaf into a twig of Exponential(1) length to
make a leaf-pair.
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Figure: The possible transitions from CTCS(10) to CTCS(11): the added leaf
is •.

Challenge #1. Is this construction useful for doing calculations? Is
there some relevant martingale and a.s. limits?
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Height of leaves

Most of our (ongoing collaboration with Boris Pittel, who did the actual
math) actual results start from detailed study of

Dn := height of random leaf ` in CTCS(n).

Along the path from the root to `, at each time t we are in a clade of
some size Xt . By size-biasing of the split probabilities q(m, i) we find
that the process Xt is the decreasing continuous-time Markov chain on
{n, n − 1, n − 2, . . . , 1} started at n, absorbing at 1, with transition rates

λ(j , i) =
1

j − i
, 1 ≤ i < j ≤ n.

Let’s call Xt the explorer chain.

[Needs a better name. Has it been studied before in some other context
???]
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A simple “stochastic calculus” argument shows

E[Xt ] = 1 + (n − 1)e−t

implying
(∗) E[Dn] ≤ 1 + log(n − 1).

In fact this is not the right way to study E[Dn], but allows me to
introduce an alternative proof of (*) via recursions.

Because of the recursive structure of the model, E[Dn] is determined by a
certain recurrence:
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E[D1] = 0

E[Dn] = 1
hn−1

(
1 +

n−1∑
k=1

E[Dk ]
n−k

)
, n ≥ 2. (1)

We will prove
E[Dn] ≤ f (n) := 1 + log(n − 1). (2)

It is enough to show that f (n) satisfies

f (n) ≥ 1

hn−1

(
1 +

n−1∑
i=1

f (i)
n−i

)
, n ≥ 2. (3)

Since f (x) is concave for x > 1, we have

1

hn−1

(
1 +

n−1∑
i=1

f (i)
n−i

)
≤ 1

hn−1
+ f

(n−1∑
i=1

i
n−i

)
= 1

hn−1
+ f
(
n − n−1

hn−1

)
≤ 1

hn−1
+ f (n)− f ′(n)

(
n−1
hn−1

)
,

which is exactly f (n), since f ′(x) = 1
x−1 for x > 1.
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To most of this audience, that “recurrence” argument is less
informative/natural than the “probability” argument, which established
an exact result on the way. But the simplicity of the probability argument
in this case is purely lucky.

In the context of probability-on-trees, (and many analysis-of-algorithms
settings), one can often set up such recurrences. And anything defined by
a recurrence can in principle be bounded by inductively verifying a bound.

This talk focusses on probabilistic proofs (in preprint #2), whereas
preprint #1 proves a variety of refinements based on the recurrence
method above.
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A key insight is that the explorer chain Xt is decreasing in some
“multiplicative” way. Recall the elementary textbook example:

What is the behavior of Mn :=
∏n

i=1 Ui for i.i.d.U[0,1] RVs Ui ?

First answer: E[Mn] = 2−n.

Better answer: Mn ≈ e−n because log Mn =
∑n

i=1 log Ui and so
n−1 log Mn → E[log U] = e−1.

So let’s go back to our explorer chain and take logs.
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X (t) is the continuous-time Markov chain on {1, 2, 3, . . . , n} started at
n, absorbing at 1, with rates

λ(j , i) =
1

j − i
, 1 ≤ i < j ≤ n.

Study Z (t) := log X (t). A transition z → z − a is a transition

x = ez → ez−a = xe−a = x − x(1− e−a).

So rate of transitions z → [0, z − a] is

x∑
i=x(1−e−a)

1/i ∼ − log(1− e−a).

which does not depend on z .
This says that the process log X (t) is essentially just a (continuous time)
random walk. More specifically:
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There is a σ-finite measure ψ on (0,∞) with ψ[a,∞) = − log(1− e−a).
Write Y (t) for the subordinator with Levy measure ψ. Then, for X (n)(t)
the chain started at n,

log X (n)(t) ≈ log n − Y (t) until this is O(1). (4)

We are studying
Dn := inf{t : X (n)(t) = 1}.

But we have a SLLN and CLT for the subordinator. Assuming the
approximation (4) is good enough:

t−1Y (t)→ ρ :=

∫ ∞
0

ψ[a,∞) da

and so Dn ∼ ρ−1 log n. By a classical identity ρ = ζ(2) = π2/6 so our
simple bound EDn ≤ 1 + log(n − 1) is upgraded to EDn ∼ 6π−2 log n.
And finally the CLT:
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Theorem

Dn − µ log n√
log n

→d Normal(0, µ3σ2)

where

µ := 1/ζ(2) = 6/π2 = 0.6079...; σ2 := 2ζ(3) = 2.4040.....

So in outline this is just the textbook CLT for renewal processes, but the
technical work is in justifying the approximation (4). Our proof (preprint
# 2) seems a Horrible Hack: there must be some better way . . . . . . .
Challenge #2.

In parallel, preprint #1 gives an analytic proof based on the recurrence
for the Laplace transform. But also technically intricate.
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Sharp results by analysis of recurrences

E[Dn] is determined by the recurrence: E[D1] = 0 and

E[Dn] = 1
hn−1

(
1 +

n−1∑
k=1

E[Dk ]
n−k

)
, n ≥ 2. (5)

Theorem

E[Dn] = 6
π2 log n + O(1) as n→∞.

Proposition

Assuming the h-ansatz, there exists a constant c0 such that

E[Dn] = 6
π2 log n + c0 − 3

π2 n−1 + O(n−2). (6)

One can calculate E[Dn] numerically via the basic recurrence, and doing
so up to n = 400, 000 gives a good fit to (6) with c0 = 0.7951556604.....
Yes, really 10 significant digits . . . . . .
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Proofs are long and technical; they depend on sharp estimates like

Lemma

n−1∑
k=1

log(k/n)
n−k = −π

2

6 + log(2πe)
2n + log n

12n2 + O(n−2).

which are proved, in the spirit of Knuth’s Concrete Mathematics, via
ingredients such as Euler’s summation formula: if f (x) is a smooth
differentiable function for x ∈ [a, b] such that the even derivatives
f (2), f (4), . . . are all of the same sign, then for every m ≥ 1

∑
a≤k<b

f (k) =

∫ b

a

f (x) dx − 1
2 f (x)

∣∣∣b
a

+
m∑
`=1

B2`

(2`)! f
(2`−1)(x)

∣∣b
a

+ θm
B2m+2

(2m+2)! f
(2m+1)(x)

∣∣b
a
. (7)

Here θm is some real in (0, 1) and the {B2`} are the even Bernoulli
numbers, defined by z

ez−1 =
∑
µ≥0 Bµ

zµ

µ! .
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In the tree model, Dn arises from two levels of randomness, as the
distance d(Un,Tn) within a random tree Tn from the root to a uniform
random leaf Un of that tree. Write a(Tn) for the average height of the n
leaves of Tn. The law of total variance says

var[Dn] = E[var(d(Un,Tn)|Tn)] + var[a(Tn)]. (8)

As statisticians say, the first term of the right indicates the “within tree”
variability of leaf height, and the second term indicates the “between
trees” variability. As a standard technique, one can calculate the
proportion of “between trees” variance

rn :=
var[a(Tn)]

var[Dn]

because it is essentially the correlation between the D’s of two random
leaves from the same realization of Tn.

Theorem

Assuming the h-ansatz: for Euler’s constant γ

lim
n→∞

rn = γ ζ(2)
2ζ(3) = 0.3949404179 . . . ,
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Theorem

Assuming the h-ansatz: for Euler’s constant γ

lim
n→∞

rn = γ ζ(2)
2ζ(3) = 0.3949404179 . . . ,

If we could find a nicer “probability” proof of the CLT for Dn, that could
presumably be extended to a bivariate Gaussian limit in this setting.
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[repeat earlier slide]
Overview of results/problems

X There is a canonical way to embed the discrete-time model into
a continuous-time model (which we call CTCS(n)) by specifying
that a clade of size m ≥ 2 is split at rate hm−1.

X For the height (time reached) Dn of a uniform random leaf in
the CTCS(n) model, E[Dn] ∼ 6

π2 log n and also there is a Gaussian
limit distribution. Many related results of surprising sharpness can
be obtained via analysis of recursions.

We can describe the limit fringe distribution of CTCS(n), that is the
local weak limit relative to a random leaf.

X There is a non-obvious consistency property of (CTCS(n), n ≥ 2)
in its “pruned” form: given CTCS(n+1), delete a random leaf and
prune; this gives CTCS(n). In reverse this gives an explicit algorithm
for growing CTCS(n+1) from CTCS(n).

There is a scaling limit of (CTCS(n), n ≥ 2), as a process of splitting
the continuous interval (0, 1), with a corresponding continuum tree.
The pruned spanning tree on n random points is CTCS(n).
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The fringe process
Consider the quantity

a(n, i) := P(explorer chain started at state n is ever in state i)

[same for the discrete or continuous models.] By a coupling argument

Proposition

The limit ai := limn→∞ a(n, i) exists, i = 1, 2, . . ..

Ongoing work by Svante Janson shows

ai = 6hi−1

π2(i−1) .

The motivation for this Proposition involves the distribution of the
asymptotic fringe process for the tree model, that is the description of
the tree relative to a typical leaf, which in the n→∞ limit can be
described in terms of the ai as follows.
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ai is the probability that the typical leaf in in some clade of size i . So
Bayes rule tells us that the sequence of clade sizes as one moves away
from the leaf is the discrete time Markov chain started at state 1, whose
“upward” transition probabilities are

q↑(i , j) =
iaj
jai

(q(j , i) + q(j , j − i)), j > i . (9)

At each such step i → j there is the sibling clade of size j − i , and this
clade is simply distributed as DTCS(j-i).

In particular, the first step (to the clade that the leaf first joins) is given
by

q↑(1, j) =
aj
j (q(j , 1) + q(j , j − 1)), j > 1

for which
q↑(1, j) ∼ 12

π2
1
j2 . (10)

If we could code the fringe tree as some kind of random walk and then
take a scaling limit, would it be something like a 1-sided Cauchy process?
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The scaling limit

Heuristically, there is a scaling limit of (CTCS(n), n ≥ 2), as a
process of splitting the continuous interval (0, 1), with a
corresponding continuum tree. The pruned spanning tree on n
random points is CTCS(n).

Challenge #4.. Think rigorously about this, and connections with
below.

There is a classical “applied probability” literature on
interval-splitting, focussed on the distribution of fragment lengths,
which in our model would be clade sizes at a given time.

A more recent approach is via exchangeable partitions, see e..g.
Haas - Miermont - Pitman - Winkel 2008.
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Consider a process of splitting the continuous unit interval [0, 1].

An interval of length x is split into sub-intervals of lengths (y , x − y) at
σ-finite rate x

2y(x−y) dy . Hard to draw a good picture, but the induced

spanning tree on k points has the previous type of structure (right side).

There are many analogs/differences between this setting and the theory
around the Brownian CRT. Perhaps a “Cauchy” analog?
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