
Almost everything so far has had two special

features

• graph is a tree or complete graph

• explicit probability model on graph.

Lecture 4 describes briefly three quite different-

looking topics without those features, each rep-

resentative of some broader topic. All the

proofs are very special to the particular topic,

but the results illustrate the breadth of useful-

ness of LWC.
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Topic 1: What is an infinite planar graph?

Recall the notion of a finite planar graph:
can be embedded into the plane so that edges
do not cross. One can use the same definition
for infinite graphs, implying that the infinite
3-regular tree is planar. But intuitively this
seems wrong – we expect our notion of “in-
finite planar graph” to be something like an
inhomogeneous analog of some planar lattice.

Consider the question: is the rooted infinite 3-
regular tree a local weak limit of finite Gn, for
some choice of

• trees Gn? – no

• graphs Gn – yes

• planar graphs Gn - no.
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The class of infinite (random) graphs defined

as “local weak limits of finite (random) pla-

nar graphs” is therefore a subclass of “infinite

planar graphs” but seems a natural class to

study.

There seems to be exactly one known interest-

ing result:

Theorem: (Benjamini and Schramm, 2001).

Simple random walk on a (random) graph in

this class with bounded degree is recurrent.

The proof is indirect, via disk-packing, and

“non-quantitative” – I won’t elaborate. But

note that the ”qualitative” conclusion of recur-

rence implies some more quantitative result, as

follows.
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Recall recurrence is equivalent to

Ei(number of returns to i) =∞.

Write r(∆, t) for the inf, over all finite planar
graphs with degrees bounded by ∆ , of

EU(number of returns to U before time t)

where U is a uniform random vertex. Then a
compactness (of the space of rooted graphs
with bounded degree) argument shows

Corollary r(∆, t)→∞ as t→∞.

Is there some more probabilistic argument that
gives an explicit lower bound, say of order t1/2?

[blackboard] Intuition: limit graphs can be “more
recurrent” than lattice but not “less recur-
rent”.

Open problems: what can you say about
other “interacting particle systems” models on
this class of graphs?
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Topic 2: Counting quantities associated

with a finite deterministic graph.

An independent set is a graph G is a subset of

vertices, no two of which are adjacent. Write

I(G) = number of independent sets.

Theorem: (Gamarnik - Bandyopadhyay, 2008).

If Gn converges (LWC) to the infinite r-regular

tree (2 ≤ r ≤ 5) then

n−1 log I(Gn)→ log c(r)

where c(r) = x−r/2(2−x)−(r−2)/2 and x solves

x−1 = 1 + xr−1.

Conceptual point: I(G) is a “global” property

of G but to first order (log scale) is determined

by “local” behavior.

[blackboard:] in part similar to our CO argu-

ments.
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Another example within same topic

Theorem: (Lyons 2005). Write τ(G) = num-
ber of spanning trees of a finite G. If Gn →LWC
G where G is a deterministic infinite rooted
graph, then

n−1 log τ(Gn)→ h(G)

where the limit tree-entropy h(G) depends
only on G.

Same conceptual point: τ(G) is a “global”
property of G but to first order (log scale) is
determined by “local” behavior.

Proof involves techniques from a large well-
studied circle of ideas relating spanning trees,
random walk, electrical networks.

One expression for the limit constant is

h(G) = log(degree)−
∑
k≥1

k−1P (T = k)

where T is first return time for random walk
on G.
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Topic 3: uniform distributions on other

combinatorial structures.

A quadrangulation is a planar graph in which

each face has 4 edges. Visualize as [figure 1]

though, to get a nice counting formula we al-

low multiple edges and leaves, as in [figure 2].

This allows the formula (Tutte, 1963): Num-

ber of rooted quadrangulations with n faces

equals

2

n+ 2

3n

n+ 1

(2n
n

)
.

Seeing a simple formula like this suggests there

is some bijective proof, enabling a construction

of uniform random quadrangulation from

simpler random objects. In this case it turns

out there is a useful bijection from the set of

n-vertex rooted quadrangulations to the fol-

lowing set.
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Take a n-vertex rooted ordered tree (“birth

order matters”). Assign label 0 to root and

a label from {1,2,3, . . .} to other vertices, in

such a way that the two labels at end vertices

of an edge differ by exactly 1 (“tree-indexed

simple walk”).

The bijection takes one quadrangulation to one

labeled tree and also gives a bijection between

their vertices. The key feature of the bijec-

tion is that graph-distance from a vertex in

the quadrangulation to the root, equals the la-

bel on the corresponding vertex of the labeled

tree.

[example on blackboard]
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Chassaing - Durhuus (2006) study local weak

limits of the uniform random quadrangulation

via local weak limits of the labeled tree. The

structure of the limit tree is qualitatively the

same as for unlabeled trees.
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They show that, in the limit of of the uniform

random quadrangulation, the number of ver-

tices within distance r of the root grows as

order r4.
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