Lectures discuss one idea, reinvented often un-
der different names, which I call local weak
convergence (LWCQ).

Setting: given a random finite structure, which
either includes an n-vertex graph or to which
we can naturally attach an n-vertex graph, want
to study n — oo asymptotics. Do this by con-
sidering distributions of structure in neighbor-
hood of a random vertex.

One purpose: sometimes one can get limit
behavior of “global” statistics out of this “lo-
cal” limit.

My own main focus has been on

e combinatorial optimization over random data

e in particular, within " mean-field model of distance”.

(lectures 2 and 3) but other areas include
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e (pure probabilistic combinatorics): fringe
subtrees of random trees (lecture 1); ran-
dom quadrangulations etc

e deterministic approximate counting: of span-
ning trees (Lyons); of independent sets and
colorings (Bandyopadhyay - Gamarnik)

e involution invariance as ‘'stationarity’” for
countable random graphs; Benjamini-Schramm
and Aldous-Lyons

e in modeling complex networks (lecture 3)

Lecture 1 gives set-up and basic examples —
Very easy, no serious theorems, just “a way of
looking at things”.

The serious theorems require different ad hoc
technical methods; LWC is just a starting place.
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Stuff you already know about weak con-
vergence

Consider an abstract space S (complete separable
metric space) With a notion of convergence z,, — =.
There is a notion of convergence of probability
measures on S which respects the topology: all
reasonable definitions are equivalent and the
most intuitive is

Un — Moo Iff there exist S-valued random vari-
ables X/ such that

dist(X)) = un;, P(X] — X)) =1.

This is called weak convergence, but rather
than naming distributions explicitly we typically
write X, <4 X to mean dist(X,) — dist(X)

and call it convergence in distribution.



Conceptual point: In our context of a ran-
dom finite structure, we get to choose how
to represent it as a random element of some
abstract space S of our choice.

Having done that, we don’t need to think about
what convergence of distributions means.



Digression on definitions: consider Chung’s
definition of a random variable.

A real, extended-valued random variable is a
function X whose domain is a set A in F and
whose range is contained in R* = [—o0, o0] such
that for each B in B* we have

{w: X(w) e Ble ANF
where A NJF is the trace of F on A.

Easy to poke fun but illustrates a genuine issue
— do you want to cover every possible variant
in an initial definition?



Stuff you already know about graphs.

A graph G has vertices v and (undirected)
edges e. degree(v) = number of edges at v.

A root is a distinguished vertex (for now, as-
sume other vertices unlabeled).

Distance d(v,w) is (as a default) number of
edges on shortest path.

Can define a subgraph Ball(G;r) on the ver-
tices at distance < r from the root. Say G
is locally finite if each Ball(G; r) is finite (i.e.
finite number of vertices). If G is connected
then “locally finite” equivalent to “each v has
finite degree’.



Stuff you probably haven’t thought about

We can define an abstract space

S = {locally finite rooted graphs}

after identifying isomorphic ones. This has a
natural topology:

Gn — Go mMmeans that for each fixed r, for
n > ng(r) there is an isomorphism between
Ball(Gp;r) and Ball(G; T).

This space S is nice enough; so we automati-
cally have a notion of convergence in distribu-
tion for random locally finite rooted graphs.

Note: typically G, finite, G~ infinite.
Analogous to convergence of infinite sequences
of integers.



A complication; often we will deal with a net-
work, that is a graph with extra structure, typ-
ically marks or numbers attached to edges or
vertices. Hard (cf. Chung) to choose a level of
generality in which to write down a definition.

Extend previous definition

G — G means that for each fixed r, for n > no(r) there
is an isomorphism between Ball(Gy;r) and Ball(G; 7).

by requiring that marks converge too (under
isomorphism).

But a special rule comes into play when edge-
marks are lengths. Then distance d(v,w) is
shortest route-length and this distance is used
in definition of Ball(G; ) and hence in the mean-
ing of “locally finite” and the topology of con-
vergence of locally finite rooted networks. Call
this the “continuum setting” in contrast to
“graph setting”.



Given n-vertex network G, (deterministic or
random) let U,, be uniform random vertex. Write
Gn|Uy] for Gy rooted at U,.

Definition. If G,[Uy] 4 some G, call this
local weak convergence (LWC) of G, to G
and write Gp = rweo Goo -

Formalizes the idea: for large n the local structure of G,
near a typical vertex is approximately the local structure
of G5 near the root.

Note odd syntax; convergence of finite unrooted net-
works to an infinite rooted network

Intuition: in models where degree(U,,) is tight as n — oo
we expect LWC to some limit infinite network. More
precisely, in the “plain graph” setting the condition

for each r the size of Ball(G,[U,]; r) is tight

is the condition for compactness, i.e. for some conver-

gent subsequence.



The rest of Lecture 1 is playing around with
this definition.

Let's start with a simple deterministic example;
consider the discrete d-dimensional cube graph
of side-length m:

ct =10,1,...,m—1]% n=mo
Clearly as m — oo we have

Cﬁfl —IWCO 7% rooted at 0.

Now make C% into a random network by at-
taching IID marks to edges; clearly we have
LWC to Z% with IID marks on edges.

What happens if the edge-marks are random
but not IID7? Let’s think about the d = 1 case
and forget graphs for a moment.
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For each n let (X, 1,... Xnn) be arbitrary R-

valued. Take Ujp 4 Uniform[1,n] and suppose

(Xnu,, m=>1)is tight .

Then there is a subsequence in which

(Yn,ia —00 <i<00) = (Xn,Un—l—z'a —00 < i < 00)

4, (Y;, —o0 < i < 00)

where the limit process is stationary; moreover
every stationary process arises this way.

Xn,0 X, Un Xn,n
o L L L L L L L L L L L
Yn,O

Could view example as random network over
line graph.
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Conceptual point: In LWC the possible lim-
its (random rooted infinite networks) are the
network analogs of stationary processes.

Note also that LWC provides a sense in which
sampling without replacement converges to sam-
pling with replacement.

Returning to the discrete cube graph
Cflnz [0,1,....m—1]% n=md

take IID edge-lengths (L¢). Provided L. strictly
positive, we do have LWC in the “continuum
setting” to the obvious limit — Z2 with IID
edge-lengths.
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Consider a point process model: intuitively, n
random (independent, uniform) points in square
of area n ‘‘converges’ to Poisson point process
of rate 1 on RZ2.

One way to state this: from the n points
({ni, 1 < i < n) pick a random point &n,u, and
look at displacements

(Eni — EnU,t <1< n).
These converge (usual sense of weak conver-

gence of point processes) to Poisson point pro-
cess on R?2 with a point planted at O.

Equivalently if we take the complete graph on
the n points (&, ;,7 < i < n) with edge-lengths
= Euclidean lengths, then this random network
Gy, converges (LWC in continuum setting) to
the complete graph on the Poisson point pro-
cess on R2.

T his example indicates why the continuum set-
ting is useful; can be applied even when limit
graph has infinite degrees.
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Similarly, fix ¢ > 0 and consider the random
geometric graph Gy c on the n points (&, ;,1 <
i < n) where [definition] G, contains only
edges of length <ec¢. Then

Gn,c —rLwc Goo,c

the limit being the random geometric graph on
the limit Poisson process.
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In practice thinking in terms of LWC doesn't
add anything to these examples, but ......

Conceptual point: convergence of Z%-indexed
processes and convergence of point processes
on R? can often be viewed as special cases of
LWC.

Note the word local in LWC is intended to con-
trast with global weak convergence, exempli-
fied by convergence of random walk to Brow-
nian motion, in which the entire finite random
structure is rescaled.
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Roughly speaking, every bounded-mean-degree
sequence of deterministic or random graphs
has some local weak limit. Here are 2 more
deterministic examples (do on blackboard).

Balanced finite binary tree.

de Bruijn graph.
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The (implicitly) classic example concerns the
sparse Erdos-Renyi random graph G(n,c/n).

Recall this has n vertices, and each possible
edge is present independently with chance ¢/n,
for fixed 0 < ¢ < c0o. We have

G(n,c/n) —rwe PGW(c)

where the limit is the Galton-Watson branch-
ing process (viewed as a rooted tree) with Poisson(c)
offspring.

(PGW stands for Poisson-Galton-Watson).

Why is this true? — outline on blackboard.
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Digression; every freshman probability /statistics
course should include an example like “family
size distributions’ :

if (p(2),i > 0) is distribution of “number i
of children per family”, then the distribution
(p(7),7 > 0) of “number 5 of siblings of ran-
dom child” is

p(j) o< (G + )p(j + 1).

... a basic instance of size-biasing; cf. internet
search session lengths.
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There are a variety of models G(n,q) on n ver-
tices which formalize the notion “random sub-
ject to degree distribution approximately the
prescribed distribution q = (¢(7),7 > 0).

All such models have the property

G(n,q) —rwe GW(q,q)

where the limit is the Galton-Watson branch-
ing process with q offspring in the first genera-
tion and q offspring in subsequent generations.

In particular, for a random r-regular graph the
LWC limit is the (deterministic) infinite r-regular
rooted tree.
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An example to be used in Lecture 2.

Cayley’s formula says that the number of trees
on n labeled vertices equals n*~2 (unrooted) or
n™~1 (rooted). For a uniform random such tree
Gn we can write down many explicit formulas
“lust by counting’. For instance, the chance
we see

@ other n — 4 vertices

root

(n—4) (n—4)-1

nn—l

equals . Removing labels, the chance

WeE Ssee

T

QQQ other n — 4 vertices

root

(n—4) (n—4)-1

nn—l

4

equals X (n)g ~e 7.
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Now the chance the PGW(1), drawn in an un-
usual way, is

T

O—0O—0)

root

equals e_l/2><e_1 x1-e lxe 1x2 = e~ the fi-
nal x2 because either first-generation offspring
could have the child.

Repeating the argument with an arbitrary finite
rooted tree shows the following. Let G, = uni-
form random tree on n labeled vertices (then
delete labels). Let U, be uniform random ver-
tex. Delete largest component attached to U,,
and write GSmal[{y,] for remaining rooted tree.
Then

Ggsmaliy] 4 pGW(1).

This idea goes back to Grimmett (1980).
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This isn't quite LWC, but by continuing these
combinatorial arguments, or by a general result
mentioned below,

one can show

where the |limit is as follows. Take one-sided
infinite path from root; attach i.i.d. “bushes”
which are independent PGW(1).

O
00
O O O 0O
\ / N/
o O 00 O 0O OC})
| \ /] \ /] \ /

root O—0—0—0—0—0—0—0—0—0-0-------
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Though not the most interesting setting, it

turns out (Aldous 1991) there's a ““general the-

ory" of LWC when the given graphs G, are
(rooted) trees, and this parallels the example
above. Each vertex v of a finite rooted tree de-

fines a subtree rooted at v. Take some model

of random n-vertex rooted tree G,,; pick v = Up,
uniformly at random to get the random fringe subtree
Fn.

Empirical Observation. For most “natural”
families of random trees,

Fn 4 F (say), as n — oo

where the limit is a finite random rooted tree
but with infinite mean number of vertices.

Note (blackboard) the path and the star are

extreme “bad’ examples. To illustrate what's

going on, consider the Crump-Mode-Jagers

general continuous-time branching process, i.e.
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The Pessimist’s View of Life

1. You're born; you have a random number of
children at random times; you die.

2. Your children behave in the same way, in-
dependently of you.

Model. Continuous-time BP where each
individual has C children (EC > 1) at times
(&1,&0,...,&0) (arbitrary distribution) after own
birth.
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Standard facts. Under minor technical assump-
tions, conditional on non-extinction:

1. (Number born before t) := N(t) ~ Ze? for
a certain constant 6.

2. Pick individual at random from those born
before deterministic time T'; look at individual
and descendants born before T'. As T — oo
this “random family tree” F has the following
limit F-

Start the BP with 1 individual and watch for
an Exponential(8) time.

Note the “infinite mean” size of JF arises as
[EN(t) - 0e= 9 dt.

Point. Many of the tractable models of com-
binatorial random trees are tractable precisely
because they are similar to critical or super-
critical branching process models.
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Example: greedy undirected tree.

n vertices, one distinguished (root). Start with
no edges. Repeat n — 1 times

add edge, chosen at random (uniformly) from set of all
edges whose addition would not create a cycle

to get random tree 13,.

Fact. random fringe subtrees F, LA F where
F is family tree of the following multitype BP.

Type space (0,00). Type s individual has:
Poisson(\(s)) offspring of type s

Poisson (rate p(s*™)) process of offspring of types
s* < s

Progenitor type has density v(s).

(Explicit formulas for v, A\, p omitted).

So asymptotic proportion of leaves in Ty, equals
chance progenitor in F has no offspring

/OO exp (—)\(S) — /OS p(s*)ds*) v(ds) ~ 0.408.

0
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Recall setting: underlying network G, is itself
a random tree, so can define random fringe
subtree F,.

A (perhaps) surprising Theorem is that con-
vergence of random fringe subtrees to some
limit Fn, 4 Foo implies the (a priori stronger)
LWC of G, to a limit 7 determined by F.
The limit always has the same qualitative struc-
ture as in previous two examples:

semi-infinite path with finite bushes attached
to baseline. Bush at root is F.
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