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This talk presents a conjecture for the SIS epidemic (contact
process) on a general network.

General network maybe means different things to different people;
I mean a general finite connected edge-weighted graph.

It suggests analogous conjectures for more general processes with
sub/supercritical regimes.

Can prove analog for the SI epidemic (bond percolation) but method
does not extend.

Digression/rant: In almost all networks there is some quantitative
“strength of relationship” representable as an edge-weight. Here are the
examples of “large-scale network data that people have used for
research” used by the Easley - Kleinberg text Networks Crowds and
Markets (2010) sec 2.4 to illustrate the field.
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Collaboration Graphs
• co-authorships among scientists
• co-appearance in movies by actors
• corporate types on same major board of directors
• Wikipedia editors ever edited same article
• World of Warcraft users ever been allied

Who-talks-to-Whom Graphs
• Microsoft IM graph
• e-mail logs within a company or a university
• phone calls (number-to-number) in given period
• physical proximity (individuals) in given period from cell phone tracking
• buyers and sellers in a market

Information Linkage Graphs
• WWW graph of web pages/links
• linkages among bloggers
• ”friends” on Facebook or MySpace

Technological Networks
• physical Internet (AS graph)
• electricity generating stations in a power grid

Networks in the Natural World
• food webs
• neurons

• biochemical interactions within cells
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I want to avoid any specific model for a network. In particular I want to
imagine really heterogeneous networks – statistically distinct in different
regions. Can we say anything interesting as math theory in such a
general setting?

Let me focus on epidemic models where edge-weights indicate
probability (rate) of transmission of infection. For conventional toy
models with only a few parameters, we have a familiar notion of sub- or
super-critical. In our finite setting, formalize via initial o(n) infectives;

subcritical: w.h.p. epidemic size is o(n)

supercritical: w.h.p. epidemic size is Ω(n)

And we expect a phase transition (in parameter-space) between these
regions.

[board sketch]
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Surely we all believe that the existence of a phase transition is
“universal” – any (more realistic) model with 1000 parameters, the
parameter space can be partitioned into sub- and super-critical regions,
with a co-dimension 1 “critical” interface. This should not depend on
any particular network model.

Can we prove – or even state a precise conjecture for – this idea?

In this talk:

A result for the SI epidemic (= bond percolation)

A conjecture for the SIS epidemic (= contact process)

But the format of the conjecture doesn’t depend on epidemic model
details. I emphasize generality but this refers to the network. We use
Exponential distributions for dynamics, which of course are not real-world.
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Bond percolation on a general network.

An edge e of weight we becomes open at an Exponential(we)
random time.

In this process we can consider

C (t) = max size (number of vertices) in a connected
component of open edges at time t.

And consider “emergence of the giant component”. Studied
extensively on many non-random and specific models of random
networks. Can we say anything about (almost) arbitrary networks?

Traditional setting: number of vertices n→∞ asymptotics.
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Suppose (after time-scaling) there exist constants δ > 0,K <∞ such
that

lim
n

ECn(δ)/n = 0; lim
n

ECn(K )/n > 0. (1)

In the language of random graphs, this condition says a giant component
emerges (with non-vanishing probability) at some random time of order 1.

Proposition 1

Given a sequence of networks satisfying (1), there exist constants
τn ∈ [δ,K ] such that, for every sequence εn ↓ 0 sufficiently slowly, the
random times

Tn := inf{t : Cn(t) ≥ εnn}

satisfy
Tn − τn →p 0.

The Proposition asserts, informally, that the “incipient” time at which
the giant component starts to emerge is deterministic to first order.
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From The Incipient Giant Component in Bond Percolation . . . (2016),

Just for fun, a math example;
Take vertices as integers 1, 2, 3, . . . ,N and edge-weights

wij = g.c.d.(i , j)

with normalization 1/(N logN). Here are 6 realizations of CN(·) for
N = 72, 000.
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Result is from The Incipient Giant Component in Bond Percolation . . .
(2016). But it depends on the fact that Tn is a hitting time for a
monotone set-valued Markov chain.

David Aldous Epidemics on general networks: a conjecture



Recall that bond percolation is equivalent (in one sense) to the SI
epidemic model – easy as math but conceptually rather subtle. So how
does the Proposition translate?

An SI model refers to a model in which individuals are either infected or
susceptible. In our context, individuals are represented as vertices of an
edge-weighted graph, and the model is

for each edge (vy), if at some time one individual (v or y)
becomes infected while the other is susceptible, then the other
will later become infected with some transmission probability
pvy .

These transmission events are independent over edges. Regardless of
details of the time for such transmissions to occur, this SI model is
related to the random graph model defined by

edges e = (vy) are present independently with probabilities
pe = pvy .

The relation is:

(*) The set of ultimately infected individuals in the SI model is,
in the random graph model, the union of the connected
components which contain initially infected individuals.
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In modeling an SI epidemic within a population with a given graph
structure, we regard edge-weights we = wvy as indicating relative
frequency of contact. Introduce a virulence parameter θ, and define
transmission probabilities

pe = 1− exp(−weθ). (2)

Note this allows completely arbitrary values of (pe), by appropriate choice
of (we). Now the point of the parametrization (2) is that the random
graph model in (*) above is exactly the same as the time-θ configuration
in the bond percolation model. So we can translate Proposition 1 into a
statement about the SI epidemic model.

Note the conceptual shift in this translation. Proposition 1 is

most naturally interpreted as a result about a random graph

process evolving with time t, and the proof relies on this being

a Markov process on graph-space. But in the SI model we retain

no notion of ‘‘time"; we use (2) as a device to define a

one-parameter family (with parameter θ) of edge-transmission

probabilities, designed to pass through an arbitrary given set

(pe), and our results concern how the size of the epidemic varies

with θ.
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Recall the relation:

(*) The set of ultimately infected individuals in the SI model is,
in the random graph model, the union of the connected
components which contain initially infected individuals.

If we initially “sprinkle” a moderately large number of infectives, then
when a giant component emerges in the random graph model, it will
contain one of those initial infectives and so the entire component is
infected in the SI model.

This leads to the desired translation of Proposition 1.
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Say a sequence of non-negative random variables (Yn) is bounded away
from 0 in probability if

lim
δ↓0

lim sup
n

P(Yn ≤ δ) = 0

and write this as Yn �p 0.

Proposition 2

Take edge-weighted graphs with n→∞, consider the SI epidemics with
transmission probabilities of form (2), and write C ′n,k(θ) for the number
of ultimately infected individuals in the epidemic started with k uniformly
random infected individuals. Suppose there exist some 0 < θ1 < θ2 <∞
such that, for all kn →∞ sufficiently slowly,

lim
n

n−1EC ′n,kn(θ1) = 0; lim inf
n

n−1EC ′n,kn(θ2) > 0. (3)

Then there exist deterministic τn ∈ [θ1, θ2] such that, for all kn →∞
sufficiently slowly,

n−1C ′n,kn(τn − δ)→p 0, n−1C ′n,kn(τn + δ)�p 0

for all fixed δ > 0.
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Proposition 2 provides a subcritical/supercritical dichotomy for the SI
epidemics under consideration. The conceptual point is that, for virulence
parameter θ not close to the critical value τn, either almost all or almost
none of the realizations of the epidemic affect a non-negligible proportion
of the population. It really is a phase transition.

The central point of this talk is that the format of Proposition 2
suggests conjectures for analogous “general network” results in other
sub/supercritical settings, such as SIS epidemics (next slides). But
different proofs are apparently required, because the trick in the SI setting
(reducing to hitting times in a Markov chain) will not work elsewhere.
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An SIS model: Given a network (finite connected edge-weighted graph)
and a rate function µv on vertices v . Introduce a parameter 0 < θ <∞
and a (small) parameter ε > 0.

Each v is in state S (susceptible) or I (infected); transition rates at
v as follows.

I → S at rate µv .

S → I at rate ε+ θ
∑
{wvy : y infected } .

Conceptually, you get infected by your contacts with “virulence”
parameter θ, or from “outside” with low probability.

Mathematically this is a finite state Markov chain and so has a stationary
distribution; we study Xθ,ε = number of infected vertices, at stationarity.
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Now consider a sequence of such networks/rate functions, indexed by
n = number of vertices. The basic assumption we will make is:
there exist 0 < θ∗ < θ∗ <∞ such that, for every sequence εn ↓ 0
sufficiently slowly,

n−1X
(n)
θ∗,εn

→ 0 in probability; n−1X
(n)
θ∗,εn

�p 0. (4)

Conjecture 1

Under assumption (4) (and perhaps further but weak assumptions), there
exist θn ∈ [θ∗, θ

∗] such that, for all εn ↓ 0 sufficiently slowly,

n−1X
(n)
θn−δ,εn → 0 in probability; n−1X

(n)
θn+δ,εn

�p 0∀δ > 0.

I have no idea how to prove this.
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Note: a (wrong) soft approach.

For sparse networks we could assume local weak convergence to a limit
infinite network, which (in our “really heterogeneous” setting) would be
non-ergodic. We could define a limit constant θcrit in terms of the critical
point for SIS epidemics on the ergodic slices in the infinite model. But in
general this is different from the constant we are seeking because . . . . . .
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