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Actual content is math theory: inventing and studying a (slightly) new
class of random process, an abstraction of road networks.

@ Axiomatic setup
@ Math examples — particular processes within the class.
@ Consequences — properties of such processes.

@ Realism?

Framing the topic:
@ How does your car GPS device find routes?

@ Online road maps/routes differ from paper maps in 2 ways that
influence the way we set up the model.

@ (end of talk) reflections upon data vs specific models vs. classes of
process.
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Background

How your car GPS device finds routes

You type street address (=~ 100 million in U.S.).

Recognized as between two street intersections.

U.S road network represented as a graph on about 15 million street
intersections (vertices).

Want to compute the shortest route between two vertices. Neither of the
following two extremes is practical.

@ pre-compute and store the routes for all possible pairs;

@ or use a classical Dijkstra-style algorithm for a given pair without

any preprocessing.

Key idea: there is a set of about 10,000 intersections (transit nodes)
with the property that, unless the start and destination points are close,
the shortest route goes via some transit node near the start and some
transit node near the destination.
[ Bast - Funke - Sanders - Schultes (2007); Science paper and patent]
Given such a set, one can pre-compute shortest routes and route-lengths
between each pair of transit nodes; then answer a query by using the
classical algorithm to calculate the route lengths from starting (and from
destination) point to each nearby transit node, and finally minimizing
over pairs of such transit nodes. Takes 0.1 sec.
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Background

Could regard this key fact (10,000 transit nodes such that ...... ) as
merely an empirical property of real network. And in some qualitative
sense it's obvious — there's a hierarchy of roads from freeways to dirt
tracks, and “transit nodes” are intersections of major roads.

Is there some Theory? How do transit nodes arise in a math model?
Why 10,000 instead of 1,000 or 100,0007

Abraham - Fiat - Goldberg - Werneck (SODA 2010) define highway
dimension as the smallest integer h such that for every r and every ball
of radius 4r, there exists a set of h vertices such that every shortest route
of length > r within the ball passes through some vertex in the set.

They analyse algorithms exploiting transit nodes and other structure,
giving performance bounds involving h and number of vertices and
network diameter.
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What kind of mathematical object should we model a road

network as? Traditional paper maps suggest two possibilities. First, for
intercity road networks.
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Background

Second, a “street map”

showing every road within a town.

OpenStreetMap http://www.openstreetmap.org/index html
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(fun aside): every road in the U.S.
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Background

Conceptual point: Online road maps/routes differ from paper maps in
2 [obvious] ways that will motivate our modeling.

@ Can zoom in — see greater detail in window covering less area.

@ Can get routes between any two specified addresses.

Print - Maps p bing. ips/print.aspx?mki=

Print
Route: 849.6 mi, 12 hr 22 min

This was your map view in the browsor window:
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Idea behind our set-up: start with routes instead of roads.

We abstract Google maps as an “oracle” that for any start/desination
pair (z1, z) in the plane gives us a route r(z, z2).

Analogous to ergodic theory regarding the Hamlet text as one realization
from a stationary source, we regard Bing maps as containing one
realization of a “continuum random spatial network”. We will axiomatize
this object by axiomatizing properties of random routes R(z1, z2).

The key assumption is scale-invariance, described intuitively as follows.
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7 points in a window.
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Scale-invariance means: doing this within a randomly positioned
window, the statistics of the subnetwork observed don't depend on the
scale, i.e. don't depend on whether the side length is 5 miles or 100 miles.
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Background

Comments re scale-invariance:

o Wikipedia has nice “zoom in” animation for Brownian
scale-invariance.

@ For any real-world phenomena one might model by BM, there is
some “bottom level”, some microscopic scale at which the BM
model breaks down.

@ Visualize animation of zooming into a particular model in our S-I
class

@ To have a network model which is exactly scale-invariant, we need to
work in the continuum.

@ Naive Euclidean scaling, not “scaling exponent”.
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Background

Thoughts from a well-known mathematician 120 years ago.

“What do you consider the largest map that would be really useful?”

“About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards
to the mile. Then we tried a hundred yards to the mile. And then came
the grandest idea of alll We actually made a map of the country, on the

scale of a mile to the mile!”
“Have you used it much?" | enquired.

“It has never been spread out, yet,” said Mein Herr: “The farmers
objected: they said it would cover the whole country, and shut out the
sunlight! So we now use the country itself, as its own map, and | assure

you it does nearly as well.”

Sylvie and Bruno Concluded. Lewis Carroll (1889)
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Axiomatic setup: 1
Details are pretty technical, but ......

Process is presented as FDDs of random routes R(z1, z2); in other words
we are given a distribution for the random subnetwork spanning each
finite set {z1, ..., zc}, Kolmogorov-consistent.
Assume

@ Translation and rotation-invariant

@ Scale-invariant
So route-length D, between points at (Euclidean) distance r apart must

d
scale as D, = rDy.

Assume ED; < oo
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Axiomatic setup: 2

Envisage the route R(z1,2) as the path that optimizes something but do
not formalize that idea; instead

Assume a route-compatability property.

Convenient to study the process via the subnetwork S(\) spanning a
Poisson point process (rate A per unit area).

Define a statistic
¢ = length-per-unit-area of S(1).

Assume ¢/ < oo.

There's one final assumption, which we first describe qualitatively.
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Sample points of a rate-A\ PPP; draw only routes between points in A
and points in B.

A real-world road network would have the property: as A\ — oo the
number of places where one of these routes crosses a intervening line
stays finite. We'll rephrase this in a tidier way, below.
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SIRSNs

Sample points of a rate-A\ PPP; draw only routes between points in A
and points in B.
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A real-world road network would have the property: as A\ — oo the
number of places where one of these routes crosses a intervening line
stays finite. We'll rephrase this in a tidier way, below.
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SIRSNs

Sample points of a rate-A\ PPP; draw only routes between points in A
and points in B.
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A real-world road network would have the property: as A\ — oo the
number of places where one of these routes crosses a intervening line
stays finite. We'll rephrase this in a tidier way, below.
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Technical point. Recall Kolmogorov - Doob - Skorokhod theory of
continuous-time processes (X;). We nowadays typically pass from FDDs
to “the process as a whole" by using a version with sample path
regularity. Not obvious how to do this in our model of R(z, z). A
realization can’t have unique paths for every (zi, z2).

Conceptual point. There are several real-world measures of “size” of a
road segment, quantifying the minor road — major road spectrum

@ number of lanes

@ highway numbering system

o traffic volume.
Both paper and online maps designed to indicate size of road.

Online maps designed to make minor roads become visible as we zoom in.

In our setup we are just given routes without an explicit notion of “size of
road” forming the route. But, as a first “interesting consequence” of our
setup, a notion of “size” automatically emerges.
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Axiomatic setup: 3

Define £(), r) to be the road sections which are in some route R(&,¢’) in
S(A) at distance > r from each of the endpoints &, ¢’

Then let A T oo to define £(oo, r). Up to null sets (technical) £(oo, r) is
a random line process, independent of the sampling PPP, with some
“mean length per unit area” := p(r).

Scale-invariance implies p(r) = p(1)/r.

Final assumption: p(1) < oc.

We have defined a class of processes we'll call

SIRSN: Scale-invariant random spatial networks.
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Technical point: we used one of 3 possible ways to start axiomatics

(1) Start with routes R(z, z’).
(2) Start with sub-networks E(g) of major roads.
(3) Start with a random metric d(z,z’) and define routes as geodesics.

(2) or (3) fine for constructing a particular model but don't seem to

work to define a class of processes — there is no simple way to guarantee
unique routes R(z,z’) — need to add assumption of uniqueness.
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@ p(1) < oo is the promised tidier form of the property above, natural
for a real-world road network.

@ p(1) < oo serves as a technical “regularity assumption” that makes
E(oco, r) a tractable object and enables us to talk about the process
(R(z1,2); 21,2 € R?) as a whole.

@ p(1) is an interesting numerical statistic of a particular process in
this class.

o For a road segment we can define its “size” (importance) as the
largest r such that the segment is in £(oo, r), that is such that it is
in the route between some two points are distance > r from itself.
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Repeat page 1
Actual content is math theory: inventing and studying a (slightly) new
class of random process, an abstraction of road networks.
@ Axiomatic setup
@ Math examples — particular processes within the class.
o Consequences — properties of such processes.
@ Realism?

Framing the topic:
@ How does your car GPS device find routes?

@ Online road maps/routes differ from paper maps in 2 ways that
influence the way we set up the model.

@ (end of talk) reflections upon data vs specific models vs. classes of
process.
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Properties of SIRSNs.

[xxx discuss on board]

@ Unique semi-infinite geodesics?

e Continuity of (z1, z) — R(z1, z2)?
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Repeat earlier page — GPS navigation

Could regard this key fact (10,000 transit nodes such that ...... ) as
merely an empirical property of real network. And in some qualitative
sense it's obvious — there's a hierarchy of roads from freeways to dirt
tracks, and “transit nodes” are intersections of major roads.

Is there some Theory? How do transit nodes arise in a math model?
Why 10,000 instead of 1,000 or 100,0007

Abraham - Fiat - Goldberg - Werneck (SODA 2010) define highway
dimension as the smallest integer h such that for every r and every ball
of radius 4r, there exists a set of h vertices such that every shortest route
of length > r within the ball passes through some vertex in the set.

They analyse algorithms exploiting transit nodes and other structure,
giving performance bounds involving h and number of vertices and
network diameter.
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Back-of-envelope calculation — model real road network as a
SIRSN, truncated below.

A: area of country

7: ave number road segments per unit area.

p(r): “length per unit area” of subnetwork &(o0, r)

Assume scale-invariant (over distances r > 1 mile), translation-invariant.

Choose any r we like; then can find a set of transit nodes (depend on r)
such that

(i) Number of local (distance < r) transit nodes is O(p(1)).

(ii) regarding time-cost of single Dijkstra search as O( number edges),
the time-cost of local search is O ( (nr?)p(1))

(i) space-cost of a k x k inter-transit-node matrix is O(k?); so this
space-cost is O ( (p(1)A/r?)?).

After combining costs and optimizing over r, the total cost scales as
(An)*/3 p*3(1) = M?/3 p*/3(1) for
M = number of road segments in country (say 20 million).
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A particular model based on “binary lattice hierarchy”.

0
Start with square grid of roads, but impose “binary hierarchy of speeds”:
a road meeting an axis at (2/ + 1)2° has speed limit 4° for a parameter
1 < v < 2. Define a route to be a shortest-time path.

(weird — axes have infinite speed limits! )
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Key point of construction: given a minimum cost path from z; = (xq, y1)
to zo = (x2, ¥»2), scaling by 2 gives a minimum cost path from 2z to 2z.
(Each possible path within 272 has same relative cost as in Z?; never
optimal to use odd-numbered streets).

Aside from the (technically hard) issue of uniqueness of routes, “soft”
arguments extend this construction to a scale-invariant network on the
plane.

o Consistent under binary refinement of lattice, so defines routes
between points in R2.

o Force translation invariance by large-spread random translation.
@ Force rotation invariance by randomization.

@ Invariant under scaling by 2; scaling randomization gives full scaling
invariance.

Need calculations (bounds) to show finiteness of the parameters.
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Unexpectedly hard to prove a.a. uniqueness of routes.

|

Routes like this are possible. Indeed they must happen on some scales
because the process has the “unique semi-infinite geodesics” property.
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Other particular models of a SIRSN: where we haven't worked
through the details.

2: Use a Poisson line process, the lines having with varying speeds.
(Nicer than the binary lattice model because it automatically has the
desired invariance properties; harder to analyze paths to prove uniqueness
of minimum-time paths).

3: “Dynamic” variants of the “static” proximity graphs like

Throw points one-by-one; for a new point &,
put an edge to an existing point &’ iff the
disc with diameter (&, &’) contains no third
existing point.
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What about real-world road networks? Scale-invariance cannot be exactly
true, but is it roughly true over some scales? What are some testable
predictions?

1. Scale-invariance implies, for instance, that
(average route-length between addresses at distance r)/r is constant in r
which is empirically roughly correct.

2. Kalapala - Sanwalani - Clauset - Moore (2006) give data on
average proportion of total route-length in the five largest segments

0-750mi 046 0.21 0.12 0.07 0.04
750 - 1250 mi  0.40 0.21 0.13 0.08 0.05
1250 + mi 0.38 0.20 0.13 0.08 0.05

3. Could look (future undergrad project?) at topologies of the
subnetworks on 4 points forming a square; do the frequencies of the
different topologies vary much with scale?
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Conceptual point: distinguish between a specific probability model
(few parameters) a “class of processes”.

Discussing a “class of processes” risks degenerating into “general
abstract nonsense” theory. To stay concrete, | want to have a numerical
statistic for each process in the class; the statistic should be non-obvious
but say something about behavior of that process.

Class statistic of particular model
stationary process entropy

finite-state Markov chain  mixing time

random fractal fractal dimension

social network models 7

S-1 road network models  p(1) (this talk)

Discussion point: in applied probability we tend to invent/study some
specific model even when it's not a good fit to data; maybe more fruitful
to view data as coming from some unspecified model within a specified
class of models.
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