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As you know . . . . . .

Since 2000 there has been a huge literature on quantitative aspects
of networks in general

In the more specific setting of spatial networks, the definitive
reference has been the 2011 survey by Marc Barthélemy – cited by
2440 on Google Scholar. Now a new book in 2022.

But only 45 citations within MathSciNet, which covers most of
theorem-proof mathematics.

Instead, a large theorem-proof literature on the specific random
geometric graph model.

Many different topics within spatial networks, so there should be
scope for more theorem-proof work . . . . . .

. . . . . . but difficult for most existing topics.

I will talk about two “theory” topics that I find interesting (one old, one
new) outside of the main literature.
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1. Scale-invariant random spatial networks

I will show a simulation of the following type of process.

Start with an arbitrary network on the infinite plane (see a window).

New vertices arrive as “Poisson rain” in space-time.

Each arriving vertex is then linked to the existing network by new
edges defined by some rule that is “scale invariant” in the sense of
depending only on relative distances. For instance “link to the 2
closest vertices”.

Now “zoom out”, that is continually expand the plane, to maintain
a constant mean number of vertices within the window.

https:

//www.stat.berkeley.edu/~aldous/Research/SInetwork-4.mp4
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Claim: under minimal assumptions on the “rule” and the initial network,
this process converges in distribution to a random network on the plane
which is invariant under this “expand and add new vertices” procedure.

Comment 1. I have not tried to write a general proof – looks similar to
standard methods for random geometric graphs – student project?

Comment 2. Can one do any quantitative study of this invariant
distribution (in terms of the rule)? For instance, distribution of
edge-lengths at a typical vertex?
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According to physicists’ heuristics, in models like this, the shortest route
between vertices a large distance L apart will stay within some distance
Lα from the straight line (α < 1). I want to make a slightly more realistic
model for inter-city road networks. In the real world, different roads have
different speed limits, so I will make a model in which roads have
different speeds.

Consider the time-invariant distribution as the time-0 configuration
of the dynamic process run over time −∞ < t ≤ 0.

On an edge (road) appearing at time t < 0, the speed is e−βt > 1.

Define the route between two vertices as the shortest-time route.
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Now imagine (sorry, no graphics) the simulated process, scaled to have
1,000,000 vertices in the unit square window.

Fix k positions in the square – say k = 7.
Choose k vertices close to these k positions and draw the

(
k
2

)
routes

between each pair.

If we didn’t have the hierarchy of different speeds, these routes would be
almost straight lines between each pair. But now our routes depend on
relative speeds along edges. From the time-invariance of the dynamic
construction, we get (heuristics now) a scale-invariance property in the ‘
density of vertices →∞ limit.
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7 points in a window.
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Scale-invariance means: doing this within a randomly positioned
window, the statistics of the subnetwork observed don’t depend on the
scale, i.e. don’t depend on whether the side length is 1 unit or 100 units.
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As undergraduate project we have looked at real-world subnetwork
topologies (for k = 4 vertices, roughly at corners of a square).
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5/27/2019 Atlas of routed 4-networks

https://www.stat.berkeley.edu/~aldous/Research/all-types.html 3/7
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(a)
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(b-)

and listed all topologies on 4 addresses – different conventions from usual
planar graph theory. Could compare distributions over these topologies in
real-world and models.
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The dynamic process is very artificial, but the heuristics suggest existence
of a large class of processes which we will axiomatize as follows.

Conceptual starting point:

Online road maps differ from paper maps in 2 [obvious] ways that will
motivate our modeling.

Can zoom in – see greater detail in window covering less area.

Can get routes between any two specified addresses.

Idea behind our mathematical set-up: start with routes between
addresses instead of roads, and work in the continuum plane.
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We abstract Google maps as an “oracle” that for any start/destination
pair (z1, z2) in the plane gives us a route r(z1, z2).

Analogous to ergodic theory regarding the Don Quixote text as one
realization from a stationary source, we regard Google maps as
containing one realization of a “continuum random spatial network” with
some distribution. We will define a class of such random networks by
axiomatizing properties of random routes R(z1, z2).

The key assumption is scale-invariance, described earlier.
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Axiomatic setup: 1

Details are pretty technical, but ......

Process is presented via FDDs of random routes R(z1, z2); in other words
we are given a distribution for the random subnetwork spanning each
finite set {z1, . . . , zk}, Kolmogorov-consistent.

Assume

Translation and rotation-invariant

Scale-invariant

So route-length Dr between points at (Euclidean) distance r apart must

scale as Dr
d
= rD1.

Assume E[D1] <∞ so not fractal.
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Axiomatic setup: 2

Envisage the route R(z1, z2) as the path that optimizes something (e.g.
travel time) but do not formalize that idea; instead

Assume a route-compatability property.

Technically convenient to study the process via the subnetwork S(λ)
spanning a Poisson point process (rate λ per unit area).

Define a statistic

` = length-per-unit-area of S(1).

Assume ` <∞.
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We have defined a class of processes we’ll call

SIRSN: Scale-invariant random spatial networks.

for which we have very many questions but very few answers.

Do a broad variety of SIRSNs actually exist?

Can we specific particular canonical ones?

Which SIRSNs optimize the trade-off between E[D1] and `, that is
“short routes” versus “cost”?

What are their mathematical properties? Similar or different from
first-passage percolation paths? Doubly-infinite geodesics?

Any realistic aspects?
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Old papers contain two rigorous explicit constructions of SIRSN models,
based on a rectangular grid or a Poisson line process for the different
speed edges.
We do not have rigorous proof based on the dynamic construction in this
talk. The technical difficulty is in proving one gets unique routes
between (almost all) pairs (z1, z2) in the plane.

(Aldous, David and Karthik Ganesan). True scale-invariant random
spatial networks. Proc. Natl. Acad. Sci. USA 110 (2013).

(Aldous, David). Scale-Invariant Random Spatial Networks.
Electronic J. Probability 19 (2014) article 15: 1–41.

(Kendall, Wilfrid S). From random lines to metric spaces. Ann.
Probab. 45 (2017), no. 1, 469–517.

(Kahn, Jonas). Improper Poisson line process as SIRSN in any
dimension. Ann. Probab. 44 (2016), no. 4, 2694–2725.

Little subsequent work.
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2: The Nearest Unvisited Vertex walk on Random Graphs

Consider a connected undirected graph G on n vertices, where the edges
e have positive real lengths `(e). Imagine a robot that can move at
speed 1 along edges. We need a rule for how the robot chooses which
edge to take after reaching a vertex. Most familiar is the “random walk”
rule, choose edge e with probability proportional to `(e) or 1/`(e). One
well-studied aspect of the random walk is the cover time, the time until
every vertex has been visited.

Instead of the usual random walk model, let us consider the nearest
unvisited vertex (NUV) walk

after arriving at a vertex, next move at speed 1 along the path
to the closest unvisited vertex and

continue until every vertex has been visited. Note this is deterministic
and has some length (= time) LNUV (G , v0) where v0 is the initial vertex.
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Of course distance d(v , v ′) is shortest path length. In informal discussion
we imagine lengths are scaled so that distance to closest neighbor is order
1, so LNUV must be at least order n.

Natural first question: when is it O(n) rather than larger order?

There is scattered old “algorithms” literature discussing the NUV walk as
heuristics for TSP or as an algorithm for a robot exploring an unknown
environment, but that literature quickly moved on to better algorithms.

I will show some (quite easy) results from my preprint The Nearest
Unvisited Vertex Walk on Random Graphs. Part 3 will explain one
motivation.

There is a key starting math observation – implicit but rather obscured in
the old literature. For now, we stay with non-random graphs.
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Consider ball-covering: for r > 0 define N(r) = N(G , r) to be the
minimal size of a set S of vertices such that every vertex is within
distance r from some element of S . In other words, such that the union
over s ∈ S of Ball(s, r) covers the entire graph.

Proposition

(i) N(r) ≤ 1 + LNUV /r , 0 < r <∞.

(ii) LNUV ≤ 2
∫ ∆/2

0
N(r) dr where ∆ = maxv ,w d(v ,w) is the diameter of

the graph.

Note that for continuous spaces, metric entropy implies a notion of
dimension via N(r) ≈ r−dim as r ↓ 0. In our discrete context, if we have
dimension in the sense

N(r) ≈ nr−dim, 1� r � ∆

then the Proposition has informal interpretation that LNUV is always
O(n) when dim > 1.
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Isolating that Proposition as the starting point, we can easily recover the
two classical (1970s) results for non-random graphs.

Corollary

There is a constant A such that, for the complete graph on n arbitrary
points in the area-n square, with Euclidean lengths,

LNUV ≤ An.

Note this implies the well known corresponding result LTSP ≤ An .

Corollary

Let a(n) be the maximum, over all connected n-vertex graphs with edge
lengths and all initial vertices, of the ratio LNUV /LTSP . Then
a(n) = Θ(log n).

David Aldous
Open problems within three topics in spatial networks: scale-invariance, the nearest unvisited vertex walk, and a toy model of 4X games.



Introduction
Scale-invariant networks

NUV walk on 800 random points in the square.
Simulation by Yechen Wang.
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The ball-covering relation is not helpful from the algorithms viewpoint.
But it is useful for some random graph models. In particular, in a model
where we take a unweighted graph and then assign random edge-lengths,
understanding “balls” is precisely the basic issue in first passage
percolation (FPP).

Consider the random graph Gm that is the m ×m grid, that is the
subgraph of the Euclidean lattice Z2, assigned i.i.d. edge-lengths
`(e) > 0. with E`(e) <∞. Because the shortest edge-length at a given
vertex is Ω(1), clearly LNUV is Ω(m2). Using the shape theorem for FPP
on Z2 one can show

Corollary

For the 2-dimensional grid model Gm above, the sequence
(m−2LNUV (Gm), m ≥ 2) is tight.

The same techniques would give O(n) upper bounds in other simple
models of n-vertex random graphs.
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Open problems

Are there general methods (subadditivity or local weak limits don’t
seem to work) to prove existence of a limit c = limn n

−1LNUV (Gn)
for simple models?

Evaluate c?

Order of magnitude of var(LNUV ) not clear from our small-scale
simulations – seems n1±ε.

Take-away message. There is an unexpected connection between the
NUV walk and FPP. Does this suggest that the variance problem is
difficult?
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3: Games people play

I’m interested in probability and graphs; and also games.
Search MathSciNet for “graph and game” in title: get 654.
None are games people actually play.

Are there “graph” games that millions of people do play?

Yes: Go, for instance.

But such traditional board games are closely tied to a fixed graph; I want
games that can be played on a random graph, different every time you
play. Are there any?

Well . . . . . . yes and no.
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3. Games

4X (abbreviation of Explore, Expand, Exploit, Exterminate) is a subgenre
of strategy-based computer and board games, and include both
turn-based and real-time strategy titles. The gameplay involves building
an empire. Emphasis is placed upon economic and technological
development, as well as a range of non-military routes to supremacy.
(Wikipedia).

A representative game is Stellaris.

https://steamdb.info/app/281990/graphs/

https://stellaris.paradoxwikis.com/Category:Game_concepts
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4X games are very complicated in detail. Much over-simplifying, let me
invent a simple game which abstracts the common elements of the initial
“Explore, Expand” phases, as follows.

My simple game. Copy the background setting of the NUV walk. There
is a connected undirected graph G on n vertices, where the edges e have
positive real lengths `(e). You have a unit that you can move at speed 1
along edges. But you only see a neighborhood of the vertices that you
have already visited. The “neighborhood” is defined so that you could (if
you choose) implement the NUV walk. Make a game with k players,
each with a unit moving simultaneously. A vertex you visit becomes part
of your empire; other players cannot visit.

Easy fact: if at least one player is not completely stupid, this simple
game will end with the vertices partitioned into the connected empires of
the different players.

Goal: form the largest empire.
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The graph is different every time you play, a realization of some unknown
probability distribution on graphs.

(very vague) Open Problem: What is a good strategy?

aggressive: move away from starting vertex in some direction until
meeting an opponent, then attempt to block.

defensive: colonize a growing ball around your starting vertex.

NUV: seems somewhat between.

Intuitively, the best strategy depends on connectivity – for a locally
tree-like graph with large visible neighborhood, “aggressive” is clearly
better. Fun student project, in progress.

Take-away message? Clearly not do-able as theorem-proof
mathematics, but good to “search away from the streetlight” and engage
actual 21st century activity.
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