
Flows through random networks

David Aldous – June 2005

Title brings to mind many somewhat-related

topics; is there a core theory?

• General setup

• Wanted: the right toy model

• 3 specific models/problems under study

• use of the cavity method (novel in this con-

text)

• Miscellaneous problems
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Graph: has vertices and edges

Network: a graph with some context-dependent

extra structure. We consider networks (trans-

portation/communication) whose purpose is

to move stuff/information from one place to

another.

Assume edges have lengths. Could take the

default “edge-length = 1” but taking generic

real lengths is more convenient because it gives

unique shortest paths.

Study deterministic flows (as in the max-flow

min-cut theorem) but with simultaneous flows

between different source-destination pairs (mul-

ticommodity flow). Take simplest case: con-

stant flow between each source-destination pair.

So a 1-parameter flow demand.

Given some notion of cost of a flow (e.g. route-

length) and some constraints (e.g. edge ca-

pacities) we seek the minimum-cost routing.
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Much studied as algorithmic questions (Ahuja

et al Network Flows book) but many inter-

esting questions are NP-complete.

Statistical physics view of networks. Put

some probability model on n-vertex networks

(on graph, cost, constraints etc). Imagine op-

timal solution is found by the network (or study

sub-optimal flow found by specified algorithm).

Then there is a maximum feasible volume and

a cost-volume function giving cost of optimal

flows as a function of the 1-parameter volume

of flows.

cf. classical statistical physics of ideal gases;

derive macroscopic properties (temperature, pres-

sure) from microscopic models.
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The M/M/1 queue provides a math tractable

model for queueing theory, elucidating the “ob-

vious” sub/supercritical phase transition.

Wanted: the right toy model for following

“obvious” phenomenon. Imagine a road-traffic

network, as volume increases. Below the crit-

ical value at which demand cannot be satis-

fied because of congestion, the set E of not-

congested edges spans the network. Above

the critical value, E does not span, perhaps

because of

(a) freeways (high-capacity edges: backbone)

get congested

or (b) residential streets (low-capacity edges:

periphery) get congested.

Note that in a well-designed network, (a) and

(b) should occur at the same point.
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Why difficult to devise a model?

• Regular grid, constant edge-costs and capac-

ities.

doesn’t capture nonhomogeneity of real world

• Regular grid, random costs or capacities.

Leads to difficult mathematics: fine structure of first-

passage percolation.

• Tree network.

easy to analyze, but unrealistic.

• Mean-field (“random graph” -like) networks

seem the best choice for a toy model.
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Our methodology

Some model of random n-vertex network.

• n→ ∞ limits

• Bounded mean degree

Such models often have as local weak limits

some random infinite graph

(e.g. limit of n× n grid is the ∞×∞ grid).

The math tractability of “random graph” mod-

els arises in part from their “local tree-like”

structure (formally: local weak convergence to

an infinite random tree). The cavity method

provides a very powerful non-rigorous way of

doing calculations on locally tree-like networks.
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Model 1 (Aldous: Cost-volume relationships

for flows through a disordered network)

Consider a network with

• M layers

• N vertices per layer

• directed edges upwards from one layer to next

• edges between successive layers are placed

randomly subject to each vertex having

in-degree = out-degree = 2.

Within this model we’ll consider a “special”

and a “general” problem.
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Special problem. Suppose
• edges have capacity = 1.
• retain each edge with probability p, delete with prob-
ability 1 − p.
Study maximum flow from bottom to top layers; same
as maximum number of edge-disjoint paths from bot-
tom to top layers. Clearly for p = 1 the maximum flow
= 2N , so for general p we consider the relative flow

FN,M(p) = 1
2N

× (max flow through network).

We anticipate a limit function

EFN,N(p) → v∗(p) as n→ ∞.

Cavity method tells you how to write down an equation

whose solution determines v∗(p).
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General problem. Same underlying random

graph model: in-degree = out-degree = 2.

• On each edge there is a cost-volume func-

tion:

φ(v) = cost-per-unit flow when flow volume = v.

• The functions φ are i.i.d. over edges.

The cavity method lets us calculate (via nu-

merical solution of an equation) the network

cost-volume function ψ(·) = normalized total

cost of flow when normalized total volume = v.
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Here we take a particular form (long curve) for cost-
volume function on an edge. This arises from a road-
traffic model in which speed is decreasing linear function
of density, cost = 1/(speed).

Make maximum volume be i.i.d. Exponential (1) over

edges. Short curve shows the network cost-volume func-

tion, with maximum volume (congestion) around 0.34.
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What is the cavity method? Recall that in

branching process theory, we can study some

quantities (e.g. total population size Z) by

conditioning on number of children to get an

equation satisfied by dist(Z). In our formu-

lation of the cavity method for optimization

problems, we study optimization on the limit

infinite tree, introduce a process (Z(v), v ≥ 0)

representing cost-difference between optimal

flow constrained to have flow v across a given

edge and constrained to have flow 0. The re-

cursive structure of the tree gives an equation

for the distribution of this process.

Some history, after introducing another model.
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The mean-field model of distance

Take complete graph on n vertices. Let each of the
(

n
2

)

edges (i, j) have random length, independently, with

Exponential (mean n) distribution. This model has sev-
eral names:
• Complete graph with random edge weights
• random link model
• stochastic mean-field model of distance.
Within this model one can study classical combinato-
rial optimization problems such as TSP and MST. The
length Ln of optimal solutions will scale as n.

Here is a systematic way to study many problems within
the mean-field model. From a typical vertex, the dis-
tances

0 < ξn,1 < ξn,2 < . . . < ξn,n−1

to other vertices, in increasing order, have a n→ ∞ limit
in distribution

0 < ξ1 < ξ2 < ξ3 < . . .

which is the Poisson process of rate 1 on (0,∞).

In the sense of local weak convergence, the model has a

n→ ∞ limit which we call the PWIT (Poisson weighted

infinite tree).
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A remarkable insight by Mezard-Parisi (≈ 1985;

but ignored for 15 years) is that one can give

detailed non-algorithmic analysis of optimal

TSP solution tour in the model. NP-hardness

is not directly relevant. Conceptual point is

not: probability model gives instances which

are algorithmically easy

but is: the theoretical analysis allows us to

construct (on infinite tree limit) realization of

problem and of solution simultaneously.

Making these arguments rigorous is active chal-

lenging problem in theoretical probability.
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Model 2 (Aldous - Bhamidi in progress).

In mean-field model of distance, easy to see

that distance D(i, j) between specified vertices

i, j satisfies

D(i, j) = logn±O(1) in prob.

Send flow of volume 1/n between each pair

(i, j) along shortest path. Each edge e gets

some total flow Fn(e). What is the distribution

of edge-flows (Fn(e) : e an edge)?

Call edges of length O(1) “short”. Easy to see

intuitively that short edges should get flow of

order logn.
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Theorem 1 As n→ ∞ for fixed z > 0,

1
n#{e : Fn(e) > z logn} →L1

G(z) :=
∫ ∞

0
P (W1W2e

−u > z) du

whereW1 andW2 are independent Exponential(1).

In particular

1
nE#{e : Fn(e) > z logn} → G(z).

Proof is intricate “bare-hands” calculations,

exploiting i.i.d. Exponential edge-lengths.

Here is a heuristic argument for why the limit

is this particular function G(z).

Background fact: the process

N(t) = number of vertices within

distance t of a specified vertex

is (exactly) the Yule process in the PWIT, and

(approximately) the Yule process in the finite-n

model.
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Consider a short edge e, and suppose there

are W ′(τ) vertices within a fixed large distance

τ of one end of the edge, and W ′′(τ) ver-

tices within distance τ of the other end. A

shortest-length path between distant vertices

which passes through e must enter and exit

the region above via some pair of vertices in

the sets above, and there are W ′(τ)W ′′(τ) such

pairs. The dependence on the length L is more

subtle. By the Yule process approximation, the

number of vertices within distance r of an ini-

tial vertex grows as er, and it turns out that

the flow through e depends on L as exp(−L)

because of the availability of alternate possi-

ble shortest paths. So flow through e should

be proportional to W ′(τ)W ′′(τ) exp(−L). But

(again by the Yule process approximation) for

large τ the r.v. e−τW ′(τ) has approximately the

Exponential(1) distribution W1. And as n→ ∞

the normalized distribution n−1#{e : Le ∈ ·} of

all edge-lengths converges to the σ-finite dis-

tribution of U∞. This is heuristically how the

limit distribution W1W2 exp(−U∞) arises.
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This model and Model 1 (special case)

illustrate boundary between our current rigorous/non-

rigorous knowledge.

Re Wanted: the right toy model, in the

mean-field model we could add

edge-capacity = z0 logn

where G(z0) is small, so that nG(z0) edges

would exceed capacity using shortest-distance

routes. Intuition says:

can re-route around congested edges with small

extra cost (= distance), so E(cost) ∼ H(z0) logn

and this is a typical problem which could be

done via (non-rigorous) cavity method to get

numerical values of H(·). But not nearly as

simple as M/M/1 queue!
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Model 3 (Lenderman, in progress).

Oriented 2-dimensional lattice.

Retain each edge with probability p.

Maximum flow volume = maximum number of

edge-disjoint oriented paths across n×n square

∼ v(p)n as n→ ∞

(by subadditivity) for some deterministic func-

tion v(p). And

v(p) = 0; p < pc

v(p) > 0; p > pc

where pc is critical value for oriented percola-

tion. Seems hopeless to seek formula for v(p):

here is curve from simulation/algorithm.

Statistical physics suggests look for scaling ex-

ponent near critical value:

v(p) ≈ (p− pc)
β ???

Too difficult for us. Instead we study p ↑ 1

limits (because we can . . . . . . ).
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Consider dual problem: take small q = 1 − p,

suppose each edge contains a prize with prob-

ability q.

Imagine Pacman-type game: oriented walkers

need to collect all prizes on n× n square.

Minimum number of walkers required ∼ v̄(q)n.

As q ↓ 0 we can rescale lattice so that prize-

edges converge to Poisson point process. Cor-

responding problem for Poisson process was

known to be equivalent to “longest increasing

subsequence of a random permutation” prob-

lem via Hammersley’s process. That solution

suggests p ↑ 1 asymptotics for v(p).

[But subtle to justify hidden interchange-of-

limits].
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Miscellaneous problems

Sequence of n-vertex networks;

shortest-path flows between each vertex-pair

scale volume so that O(1) flow across typical

edge

So total cost (route length) = cn say.

Now give edges random capacities, say i.i.d.

Exponential(λ).

Problem. Under what assumptions do we have

cost ∼ ψ(λ)cn as n→ ∞

ψ(λ) ↓ 0 as λ ↓ 0.

• lattice Zd: true by percolation-type argu-

ments.

• mean-field model: could be verified numeri-

cally via cavity method.

Presumably for general graphs this relates to

some form of “well-connectedness”.
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Designing a network to foil an adversary.

Easy to design a bounded-degree network with

diameter O(logn) (e.g. de Bruijn graph).

Rephrase: takes time 1 for a packet to cross

an edge. At each time step, for each pair (i, j),
a new packet is created at i and needs to be

sent to j. So without constraints, packets are

delivered in time O(logn).

Imagine an adversary who can choose a time

interval t0 and a probability distribution on edge-

subsets, constrained by P (e ∈ A) ≤ 1/100 ∀e
where A is random edge-set. [random bomb-

ing]

At time 0 a random set A of edges is chosen.

These edges are blocked until time t0, at which

time they are repaired and a new random set

A′ of edges are blocked. And so on . . . . . . .

Problem. Can we design a network for which,

in the face of such an adversary, packets can

still be delivered in mean time O(logn)?
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