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I will talk about a few of the 20 open problems posted on my web site at
www.stat.berkeley.edu/∼aldous/Research/OP/index.html.

Random Eulerian circuits.

Topological properties of a random partition of the plane.

The Lake Wobegon process

Compactifications of finite reversible Markov chains.

The first 3 are easy-to-describe models, for whose properties we have
heuristics partly supported by simulation but cannot do rigorous proofs.
The 4th is more abstract – could likely be done by known functional
analysis/metric space theory.
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1. Random Eulerian circuits
A rather obvious observation in introductory graph theory is

Lemma

A finite connected undirected graph has a spanning tree, that is a
connected edge-subgraph which is a tree.

Euler proved what’s often regarded as “the first theorem in graph theory”.

Theorem

A finite, strongly connected, directed graph which is balanced (each
vertex has in-degree = out-degree) has an Eulerian circuit using each
edge exactly once.

.
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The field probabilistic combinatorics studies probability distributions
over combinatorial objects. On the theory side, best known is the
Erdős-Rényi model for random graphs. For instance, on the applied side,
over the last 15 years there has been > 20K papers on (allegedly)
realistic models for random networks.

Fundamental math theory starts by studying the uniform distribution over
a specified set of objects. So there is a well-defined concept of a uniform
random spanning tree and a uniform random Eulerian circuit within a
given graph.
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It turns out that there is a large literature on uniform random spanning
trees, because they relate to many other discrete structures – see Lyons -
Peres monograph Probability on Trees and Networks.

In contrast, very little literature on uniform random Eulerian circuits –
curious because there’s a surprising connection between the two topics.

In a balanced directed graph, take any spanning tree, with directed edges
toward an arbitrary root. From the root do an arbitrary walk, at each
stage choosing an unused edge but saving the spanning-tree-edge until
last. This always gives an Eulerian circuit [easy].

True (but not obvious) that with a uniform random spanning tree and
uniform random walk-step choices we get a uniform random Eulerian
circuit.

David Aldous Some of my favorite open problems



We need two more facts.

Fact 1: Simple random walk on the infinite lattice Zd is recurrent
(always returns sometime to starting point) in d = 1, 2 but not in d ≥ 3.

Fact 2: It is quite easy to simulate a uniform random spanning tree.

Now as a simple example consider the discrete torus Zd
N . Replace each

edge by 2 directed edges. So in-degree = out-degree = 2d. Any Eulerian
circuit consists of 2d “loops” from the origin.

The facts above enable us to simulate a uniform random Eulerian circuit
of this graph – done as a student project. Intuition (from random walk
theory, Fact 1) suggests, and simulation supports, the following.

Open problem. Prove (in fixed d ≥ 3) that of the 2d loops at the origin,
some have length O(1), all others have length of order Nd as N →∞.

Never been studied – no idea how to prove – can’t do theoretical analysis
of algorithm output.
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2. Topological properties of a random partition of the plane.

Choose k ≥ 2 distinct points z1, . . . , zk in the unit square, and assign to point
zi the color i from a palette of k colors. Take i.i.d. uniform random points
Uk+1,Uk+2, . . . in the unit square, and inductively, for j ≥ k + 1,

give point Uj the color of the closest point to Uj amongst
U1, . . . ,Uj−1 where we interpret Ui = zi , 1 ≤ i ≤ k .

Simulations and intuition strongly suggest that there is (in some sense)

convergence to an n→∞ limit which is a random partition of the square into

k colored regions. This “coloring model” was considered independently by

several people over last 10 years.
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At first sight the convergence assertion seems easy.

First consider Voronoi regions. Intuitively, the area of the Voronoi region
of a given color should behave almost as a martingale, because a new
particle near the boundary seems equally likely to make the area larger or
smaller. If one could bound the martingale approximation well enough to
establish a.s. convergence of such areas, the convergence theorem would
follow rather trivially. But doing so seems to require detailed knowledge
of the geometry of the boundary.

So what does the boundary look like?
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Simulations suggest that the boundaries between these limit regions
should be fractal, in some sense.

David Aldous Some of my favorite open problems



Aldous (2018) proves (by different methods) that the limit random
partition exists in a certain weak sense. With Preater (2009) it follows
that the boundaries have zero area.

Open problem. Does the boundary have fractal dimension = 1 or > 1 ?

Why care about this particular “interface” model (intense deep current
study of quite different interface models – SLE and KPZ).

It has a surprising connection to another model, “empires”. Think of the
coloring points arriving infinitely quickly to instantly create the random
partition from given discrete “seeds” (the initial colored points), and
envisage countries with capital cities. Introduce a “time” parameter
−∞ < t <∞ and take the “seeds” at time t as a Poisson point process
(“completely random”) on the infinite plane with mean et seeds per unit
area. We now have a process in which the “countries” split into two
countries (and the new country gets a capital city). This process has no
simple description in “forwards” time, but it does in reversed time.

[show simulation]
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What’s the background story here? Many years ago I tried to study
models of randomly coalescing partitions of the plane, but too difficult to
prove anything. The time-reversed process above evolves according to a
simple rule:

Each country is liable to be absorbed at rate 1 per unit time; if so it is
absorbed by the country whose capital city is closest to its capital city.

From the explicit construction, this process automatically has an exact
self-similarity property (from self-similarity of the space-time Poisson
process).

Open problem. For other models of randomly coalescing partitions of
the plane, we expect either asymptotic self-similarity or appearance of
one infinite country (as in bond percolation theory). Can any other
model be analyzed? [The Math Rule of 3].
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3. The Lake Wobegon process

There are two quite well known models for“sequentially randomly placing
articles into piles” which turn out to be parts of two different larger areas
of probabilistic combinatorics. Both models have their own Wikipedia
page. One is the Chinese restaurant process relating to the
Poisson-Dirichlet distribution, population genetics models and Bayes
priors for categorical data. The other is patience sorting, relating to the
longest increasing subsequence of a random permutation and thence to
Young tableaux.

In patience sorting, we imagine cards with i.i.d. random real values from
a continuous distribution. Piles are labeled 1, 2, . . . left-to-right in order
of creation, and at any time the values on the top card in each pile are in
increasing order. The rule for placing the current card is

place on top of the first (leftmost) pile whose top card has higher value
than the current card

and if there is no such pile then start a new pile at the right end.
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Are there other interesting processes of this type? As rather different
background, recall that in the (fictional) Lake Wobegon

all the women are strong, all the men are good looking, and all
the children are above average.

In a finite list of numbers, we cannot arrange that each item is greater
than the average of the whole list, but we can arrange that each item is
greater than the average of the previous items.

So let us invent the Lake Wobegon process which is a variant of the
patience sorting process. At any time the average of each pile is visible,
and these averages are in increasing order of the piles. So the rule for
placing the current card is

place on top of the first (leftmost) pile whose average value is higher
than the current card

and if there is no such pile then start a new pile at the right end.
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This rule looks pretty arbitrary, but here is a made-up story.

We envisage this process in terms of mathematics journals. Submitted
papers have a quality, uniform random on [0, 1], with 0 the best quality.
Each journal only accepts papers whose quality is greater than the
average of their previous accepted papers So the journals are ranked as
1st, 2nd, 3rd, . . . in decreasing order of prestige; authors then arrange to
publish in the most prestigious journal that will accept.

[show simulation]

Here’s what happens with 12 million papers.
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Xn = journal sizes after n papers.
n = 12 million.

Open problem. Describe the limiting behavior of the distribution of Xn

as n→∞.
Convincing heuristics say EXn grows as log n but it is not apparent how
the variance behaves.
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4. Compactifications of finite reversible Markov chains.

Background. Two metric spaces are isometric if there exists a bijection
which preserves distance (therefore continuous in both directions).
Different-looking metric spaces like R1 and R2 are usually not isometric.

Two probability spaces are isomorphic if there exists a bijection which is
measurable in both directions and preserves the probability measure.
Counter-intuitively, it is roughly true (omitting lots of details in this
section) that all interesting probability spaces are isomorphic to
([0, 1],Leb).

Markov chains. A discrete-time Markov chain on n states {i , j , . . .} is
specified by a transition matrix (pij) and has some time-t distribution

pn(i , j , t) = P(X (t) = j |X (0) = i).

Let’s suppose (pij) is symmetric; then the chain’s stationary distribution
is uniform on the n states.

The n→∞ limit processes we study will typically have continuous state
space and continuous time 0 ≤ t <∞. Working measure-theoretically we
can take state space and stationary distribution to be ([0, 1],Leb).
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A “compactification” result conjectured by me and proved in a weak
form by Henry Towsner (Limits of sequences of Markov chains, Electron.
J. Probab. 2015).

Theorem

An arbitrary sequence of symmetric Markov chains with n→∞ has a
subsequence in which (after time-scaling) the Markov chain either

has the L2 cutoff property

or converges (in a certain subtle sense) to a limit Markov process of
the form described below.
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The form of a limit process

Consider measurable functions p∞(x , y , t) for x , y ∈ [0, 1] and t > 0 such
that

p∞(x , y , t) ≡ p∞(y , x , t).

y → p∞(x , y , t) is a probability density function.

p∞(x , z , t + s) =
∫
p∞(x , y , t)p∞(y , z , s)dy .

(Chapman-Kolmogorov)

some t ↓ 0 pinning.

This specifies the finite-dimensional distributions of a symmetric Markov
process on [0, 1] started at x .
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Our intuition is that any “natural” sequence of Markov chains will have
some “natural” limit process on some nice topological space. To prove
the general theorem we needed a trick to map states to [0, 1] –
informally, to prove convergence of a sequence of objects one needs them
to be the same type of object.

So can we recover this topology from the limit analytic description?
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Conjecture. There is some natural way to define a metric, for instance

d(x1, x2) :=

√∫ ∫
(p∞(x1, y , t)− p∞(x2, y , t))2e−tdydt

which makes [0, 1] into a complete separable metric space and makes the
Markov process have the Feller property.

This sounds, and is, very abstract, but actually has some real world
interest. In some of the 20K papers on random/complex networks, an
“edge” signifies existence of a given relationship. But in most cases it is
not a 0 - 1 relationship but there is a quantitative “strength of
relationship” better modeled as an edge-weighted graph. And an
edge-weighted graph is essentially the same as a symmetric
continuous-time Markov chain. So a “mathematically natural” metric d
above would also serve as a natural distance function on vertices of an
edge-weighted graph.
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