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My theme phrase is hide in plain sight.

Two 1970s results, not-quite-obviously related, in a deterministic
setting.

Not at all di�cult – one page proofs – so people moved on.

From the proofs one can extract a “key observation” that is useful in
the random setting,

The content in this talk is mostly quite elementary, but it suggests
intriguing questions in the random setting that no-one seems to
have considered before.
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Consider a connected undirected graph G on n vertices, where the edges
e have positive real lengths `(e). Imagine a robot that can move at
speed 1 along edges. We need a rule for how the robot chooses which
edge to take after reaching a vertex. Most familiar is the “random walk”
rule, choose edge e with probability proportional to `(e) or 1/`(e). One
well-studied aspect of the random walk is the cover time, the time until
every vertex has been visited.

Instead of the usual random walk model, let us consider the nearest

unvisited vertex (NUV) walk

after arriving at a vertex, next move at speed 1 along the path

to the closest unvisited vertex

and continue until every vertex has been visited. Note this is
deterministic and has some length (= time) LNUV (G , v0).
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Of course distance d(v , v 0) is shortest path length. In informal discussion
we imagine lengths are scaled so that distance to closest neighbor is order
1, so LNUV must be at least order n.

Natural first question: when is it O(n) rather than larger order?

The old algorithms literature discussed the NUV walk as heuristics for
TSP or robot algorithms, but then quickly moved on to better algorithms,
and the key starting math observation below is rather obscured.

My preprint on arXiv gives citations.
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Consider ball-covering: for r > 0 define N(r) = N(G , r) to be the
minimal size of a set S of vertices such that every vertex is within
distance r from some element of S . In other words, such that the union
over s 2 S of Ball(s, r) covers the entire graph.

Proposition

(i) N(r)  1 + LNUV /r , 0 < r < 1.

(ii) LNUV  2
R �/2
0 N(r) dr where � = maxv ,w d(v ,w) is the diameter of

the graph.

Note that for continuous spaces, metric entropy implies a notion of
dimension via N(r) ⇡ r

�dim as r # 0. In our discrete context, if we have
dimension in the sense

N(r) ⇡ nr
�dim, 1 ⌧ r ⌧ �

then the Proposition has informal interpretation that LNUV is always
O(n) when dim > 1.

David Aldous The Nearest Unvisited Vertex Walk on Random Graphs



Proposition

(i) N(r)  1 + LNUV /r , 0 < r < 1.

(ii) LNUV  2
R �/2
0 N(r) dr where � = maxv ,w d(v ,w) is the diameter of

the graph.

Part (i) actually holds for the length L of any walk that visits every
vertex. Just pick vertices s0, s1, s2, . . . such that si+1 is the first vertex
visited at time later than r after the visit to si .

Part (ii) has a proof by picture. What does the NUV walk look like inside
a ball?
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Figure 1: Illustration of Lemma 2. The left panel shows the subgraph within
a radius-r ball. The NUV walk must consist of one or several excursions
within the ball. These excursions depend on the configuration outside the
ball, and the right side shows one possibility. The first excursion enters via
edge a and exits via edge b. The second excursion enters via edge c and exits
via edge d, en route backtracking across one edge. The third excursion enters
via edge e and proceeds to vertex f ; at that time only vertices g, h within
the ball are unvisited, and the next step of the walk is a path going via three
previously-visited vertices to reach g and then h. The next step from h, not
shown, might be very long, depending on whether nearby vertices outside
the ball have all been visited.

Proof. When the NUV walk first visits vi 2 B(v�, r) with vi 6= v̄, there
is then some first unvisited vertex ṽ on the minimum-length path from vi to
v̄, and so

D(vi)  d(vi, ṽ)  d(vi, v̄)  2r

the final inequality using the triangle inequality via v�.
Now by considering the set, say S(r), containing N(r) vertices, such

that every vertex is within distance r from some element of S(r), Lemma 2
implies

the number of vertices w with D(w) > 2r is at most N(r). (1)

4
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The picture shows

Lemma

Fix a vertex v
⇤
and a real r > 0. For all v 2 Ball(v⇤, r) except perhaps

the last-visited, the NUV step away from the first visit to v has length

 2r .

So the number of steps of length � 2r is at most N(r), and the bound
(ii) easily follows:

LNUV  2

Z �/2

0
N(r) dr .
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The two “classical” results about NUV walks are simple Corollaries of the
Proposition. First, the argument for (i) shows

N(r)  1 + LTSP/r , 0 < r < 1

where LTSP is length of shortest covering walk. So do the integral in (ii)

LNUV  2

Z �/2

0
N(r) dr

and note N(r)  n and �  LTSP .

Corollary

Let a(n) be the maximum, over all connected n-vertex graphs with edge

lengths and all initial vertices, of the ratio LNUV /LTSP . Then
a(n) = O(log n).

Several authors have given examples where ratio is order log n, but very
artificial.
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Here is the second classical result.

Corollary

There is a constant A such that, for the complete graph on n arbitrary

points in the area-n square, with Euclidean lengths,

LNUV  An.

Note this implies the well known corresponding result LTSP  An .

Proof. By continuum ball-covering there is a numerical constant C such
that N(r)  Cn/r2, and so (ii) gives

LNUV  2

Z p
n/2

0
min(n,Cn/r2) dr  4C 1/2

n.
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NUV walk on 800 random points in the square.
Simulation by Yechen Wang.
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I have told you everything that’s known in the deterministic setting.
Here’s an open problem.

Is maxv LNUV (G ,v)
minv LNUV (G ,v) bounded over all finite graphs G?
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So why did I myself get interested in this model, recently?
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The ball-covering relation is not helpful from the algorithms viewpoint.
But it is useful for some random graph models. In particular, in a model
where we take a unweighted graph and then assign random edge-lengths,
understanding “balls” is precisely the basic issue in first passage

percolation.

Consider the random graph Gm that is the m ⇥ m grid, that is the
subgraph of the Euclidean lattice Z2, assigned i.i.d. edge-lengths
`(e) > 0. Because the shortest edge-length at a given vertex is ⌦(1),
clearly LNUV is ⌦(m2).

Corollary

For the 2-dimensional grid model Gm above, the sequence

(m�2
LNUV (Gm), m � 2) is tight.

We strongly believe that in fact m�2
LNUV (Gm) converges in probability

to a constant, but we do not see any simple argument.
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Outline proof.

For a vertex v of Gm write B(v , r) for the random set of vertices v 0 with
graph distance d(v , v 0)  r , and write D(v , r) for the non-random set of
vertices v 0 with Euclidean distance ||v � v

0||  r . Standard results for
FPP on Z2 imply that there exist constants c1, c2, c3 (depending on the
distribution of `(e)) such that

P(D(v , r) 6✓ B(v , c1r))  c2 exp(�c3r), 0 < r < 1.

Now we simply use Euclidean ball-covering.
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The mean-field model of distance

Take the complete graph on n vertices and assign to edges i.i.d. random
weights with Exponential (mean n) lengths. This “mean-field model of
distance” Gn turns out to be surprisingly tractable, because the smallest
edge-lengths at a given vertex are distributed (in the n ! 1 limit) as the
points of a rate-1 Poisson point process on (0, 1), and as regards short
edges the graph is locally tree-like. A now classical result of Frieze proves
that the length of the MST is asymptotically ⇣(3)n, and a remarkable
result of Wästlund formalizing ideas of Mézard - Parisi shows that the
length of the TSP path is asymptotically cn for an explicit constant
c = 2.04.....

Might it be possible to get a similar explicit result for the NUV length?
We get the correct order of magnitude by essentially the same method as
above.

Corollary

For the mean-field model of distance Gn , the sequence

(n�1
LNUV (Gn), n � 2) is tight.
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Figure: Mean-field model: vertices and edges within a ball of radius 4 in a
realization, illustrating the local tree-like property. Edges to vertices outside the
ball not shown.
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Outline proof.

In this model the n ! 1 limit of the sizes of balls, that is for fixed v the
process

(|Bn(v , r)|, 0 < r < 1)

is the Yule process, and for r < 1
2 log n this size distribution is

approximately Exponential, mean e
r (birthday problem). So we can cover

the graph using around ne
�r balls (centered randomly).
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Summary

We have merely observed that one can apply the key Proposition to
get the correct ⇥(n) order of magnitude of LNUV in familiar models
of random connected graphs.

A natural next question: under what conditions can one show that
the variance is also ⇥(n)?

One “structural” property of the NUV walk is that, if two vertices
are each other’s nearest neighbor, then every (over starting vertex)
NUV walk uses the linking edge. This suggests a very general ⌦(n)
lower bound for variance, from randomness of such edge-lengths.
But our small-scale simulations suggest slightly sub-linear.

In other contexts the “locally tree-like” property of models like the
mean-field model of distance allows calculations, but not so clear for
NUV walks.
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