
Note: a conjectured compactification of some finite reversible MCs

There are two established theories which concern different aspects of
the behavior of finite state Markov chains as the size of the state space
increases. One is weak convergence. Here prototype results concern con-
vergence of birth-and-death processes to one-dimensional diffusions, and the
d-dimensional analogs [9]. More generally, for any continuous time and space
Markov process which seems mathematically natural, one could seek neces-
sary and sufficient conditions for a sequence of discrete chains to converge to
that limit. The second theory concerns mixing times [7, 1]. At one level this
concerns definitions of various “mixing times” and estimation of their orders
of magnitude in general examples. At another level, for more specific exam-
ples there has been extensive study of the “cutoff” phenomenon for distance
to stationarity, mostly in the context of variation distance [4] but also for L2

distance [3] which will be more relevant to this note.
This note describes a conjecture which says, roughly, that these are the

only two possibilities, at least for reversible chains. In a little more detail,
the conjecture is

Given a sequence of n-state reversible chains which does not have
the L2 cutoff property, there is a subsequence in which, after re-
labeling states, the transition densities converge to those of some
limit general-state-space reversible Markov process.

We emphasize that the n-state chains are arbitrary in the sense that we do
not assume any connection between the chains as n varies. The conjectured
behavior is a compactness assertion, in the spirit of recent work on dense
graph limits [8, 5].

The rest of this note states the conjecture more precisely and outlines
how one might try to start a proof. For simplicity we work with uniform
stationary distributions, but we anticipate that the general reversible case
will be similar.
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0.1 Setup

Consider an n-state irreducible continuous-time Markov chain with symmet-
ric transition rate matrix – in other words, reversible with uniform station-
ary distribution. Write p(i, j; t) for the transition probabilities P(X(t) =
j|X(0) = i). Consider the function

G(t) :=
∑
i

p(i, i; t).

The basic convergence theorem implies G(t)→ 1 as t→∞, and the spectral
representation gives the more detailed result

G(t) = 1 +
n∑
u=2

e−λut (1)

where 0 = λ1 < λ2 ≤ . . . ≤ λn are the eigenvalues associated with the
transition rate matrix. Note the probabilistic interpretation

G(t) =
P(X(t) = X(0))

1
n

where X(0) has uniform dist.

One can regard the time τ at which G(τ) = 2 as one of many possible notions
of “mixing time”. Rescaling time by this τ , we can standardize according to
the convention

G(1) = 2.

The notion of L2 cutoff studied in detail in [3] is, in our context, the property
that a sequence of time-standarized chains has

G(n)(t)→∞, t < 1; G(n)(t)→ 1, t > 1. (2)

Now imagine a continuous-space analog. That is, a probability measure
π on a space S and an S-valued Markov process X∗(t) such that for t > 0
there exist transition densities

p∗(x, ·; t) = density of P(X∗(t) ∈ ·|X∗(0) = x) w.r.t. π

which are symmetric: p∗(x, y; t) = p∗(y, x; t). The analog of G(t) is

G∗(t) :=

∫
S

p∗(x, x; t) π(dx).

2



Assume G∗(t) <∞ for t > 0. Then we expect (see remark below) the analog
of (1)

G∗(t) = 1 +
∞∑
u=2

e−λ
∗
ut (3)

where 0 = λ∗1 < λ∗2 ≤ λ∗3 ≤ . . . are the eigenvalues associated with the
appropriate generator. And we can standardize to make G∗(2) = 1.

Now consider a sequence of chains with n → ∞, where n is the number
of states, but without assuming any relation between the chains as n varies,
except for the assumption

sup
n
Gn(t) <∞ ∀0 < t < 1. (4)

As a standard analytic fact, because each G(n) is of form (1) there is a
subsequence in which Gn(·) → G∗(·) for some limit function of form (3).
This starts to hint at what is going on; the conjectured limit continuous-
space process will be one with this function G∗(·).

Remark. Perhaps the simplest example is continuous-time random walk
on the n-cycle, which has eigenvalues

λ(n)u = 1− cos(2π(u− 1)/n), u = 1, . . . , n

and mixing time ∼ cn2. After time-standardizing, the n → ∞ limit is (for
some constant c)

G∗(t) = 1 +
∑
u≥1

exp(−2π2c(u− 1)2t)

which is (as it should be) the density p(0, 0; t) for time-standardized Brownian
motion on the unit circle. This illustrates why we anticipate limits G∗·)
having the form (3) rather than a general spectral measure

∫∞
0
e−λt Ψ(dλ).
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0.2 An analogy

Here is an analogy for what we shall do in the next section.
Question: Can we characterize a “metric space with probability mea-

sure” up to measure-preserving isometry? That is, can we tell whether two
such spaces (S1, d1, µ1) and (S1, d1, µ1) have a MPI?

Answer: Yes. Given (S, d, µ), take i.i.d.(µ) random elements (ξi, 1 ≤ i <
∞) of S, form the array

Xi,j = d(ξi, ξj); i, j ≥ 1

and let Ψ be the distribution of this infinite random array. It is obvious
that, for two isometric “metric spaces with probability measure”, we get
the same Ψ. The converse – that Ψ determines the space up to MPI –
is not obvious but is true; it was first stated explicitly by Vershik (2004)
but in fact is a simple albeit technical consequence of the “structure theory
for partially exchangeable arrays” developed by Hoover-Aldous-Kallenberg
(1978-1985) and treated in detail in [6]. See [2] for my own recent account of
its uses in the broad field of representing continuous limits of discrete random
structures. The conjectures we state in this note are a novel instance of this
methodology.

0.3 Isomorphic processes

Consider a Markov process on a measurable space S with stationary dis-
tribution π, which we will view naively as a family of symmetric densities
p∗(·, ·; t) satisfying the Chapman-Kolmogorov relations, with a UTC1 on the
t ↓ 0 behavior. Analogous to the previous section, define an infinite partially
exchangeable random array whose entries are functions of t by

take i.i.d.(π) random elements (ξi, 1 ≤ i <∞) of S

set X∗ij = p∗(ξi, ξj; t), i, j ≥ 1. (5)

As in the previous section, this array has some distribution Ψ. There is a
natural notion of “isomorphism” between two stationary Markov processes
X1 and X2 on different spaces S1 and S2 – a bijection φ that preserves joint
distributions

(φ(X1
0 ), φ(X1

t )) =d (X2
0 , X

2
t )

1unspecified technical condition
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and hence transition densities. And as before it is obvious that, for two
isomorphic processes, we get the same Ψ.

Conjecture 1. If two symmetric Markov processes have the same Ψ then
they are isomorphic.

See discussion later.

0.4 Convergence of processes

We can do exactly the same array construction for chains on finite sets Sn:
take i.i.d. uniform random elements (ξi, 1 ≤ i <∞) of Sn

set Xn
ij = pn(ξi, ξj; t), i, j ≥ 1.

Time-standardize, and consider the property discussed earlier:

Gn(t)→ G∗(t) as n→∞ (6)

for some limit function with 1 < G∗(t) < ∞ for 0 < t < ∞. This is just
saying that EXn

11 → G∗(·). Now an easy argument gives EX12 ≤ EX11, and
so we can take a subsequence in which

(Xn
ij, i, j ≥ 1)→d (X∗ij, i, j ≥ 1) as n→∞ (7)

(in the usual sense of convergence of finite sub-arrays) for some limit random
function-valued array.

Conjecture 2. For any array (X∗ij, i, j ≥ 1) that arises as a limit (7) from
finite chains, there exists a general-space chain with some transition densities
p∗ such that the representation (5) holds.

0.5 Summary

We can now fill in some details of our original conjecture, as follows.

Given a sequence of n-state reversible chains which does not have
the L2 cutoff property, we can pass to a subsequence satisfying
(4) and then to a further subsequence satisfying (7); Conjecture
2 (if true) will identify the limit with some general-space process,
which Conjecture 1 (if true) says is unique up to isomorphism.
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We presented Conjecture 2 in “convergence” format, but there is a more “in-
trinsic” way to look at what’s going on, analogous to the basic representation
theorem for partially exchangeable arrays [6, 2]. We want to abstract a list
of properties that an array (X∗ij) arising as (5) must “obviously” have:
(i) partial exchangeability
(ii) Chapman-Kolmogorov
(iii) The UTC from section 0.3
(iv) . . . . . .

The more definitive underlying Conjecture is that an array with a certain
list of such properties has a representation in form (5). Such a result, with
properties preserved under convergence in distribution, would of course imply
Conjecture 2.
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[8] László Lovász and Balázs Szegedy. Limits of dense graph sequences. J.
Combin. Theory Ser. B, 96(6):933–957, 2006.

[9] Daniel W. Stroock and S. R. Srinivasa Varadhan. Multidimen-
sional diffusion processes, volume 233 of Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1979.

7


