
1. Local weak convergence of graphs/networks

• Stuff that’s obvious when you think about it

• 4 non-obvious examples/results

2. The core idea in our probabilistic refor-

mulation of special cases of the cavity method is:

do exact calculation on some infinite random

graph (tree-like, in practice). LWC provides

link with the finite-n problem. Illustrate with

• mean-field TSP

• flow through a disordered network.

Aldous-Steele survey “The objective method

. . . ” on my home page.
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Some math infrastructure

Consider an abstract space S (complete separable

metric space) with a notion of convergence xn → x.

There is automatically a notion of convergence

of probability measures on S (all reasonable

definitions are equivalent).

µn → µ∞ iff there exist S-valued random vari-

ables Xn such that

dist(Xn) = µn; P (Xn → X∞) = 1.

This is called weak convergence.

Conceptual point: When you consider some

new abstract space S, you don’t need to think

about what convergence of distributions means.
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Most concrete case is S = R1, where we have
e.g. the central limit theorem

n−1/2
n∑

i=1

ξi
d→ Normal(0,1)

for i.i.d. (ξi) with Eξ = 0 and var ξ = 1.

Best known abstract case is

S = {continuous functions [0,1] → R}

which allows one to formalize “rescaled ran-
dom walk converges to Brownian motion”.

n

n1/2

1

1
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Another abstract case is

S = {locally finite point sets in R2}

which allows one to formalize “n uniform ran-

dom points in square of area n converges to

the Poisson point process on R2”.
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A graph has vertices and edges
A network is a graph whose edges have postive
real lengths (default length = 1) and maybe extra

structure indicated by numbers/labels on vertices/edges. Write
G for a network.

Consider the abstract space

S = {locally finite rooted networks}.
What should convergence Gn → G∞ mean?
Note: interesting case is where Gn is finite and
G∞ is infinite.

Window of radius r in G defines subgraph G[r]
of vertices within distance r from root, with
edges both of whose endpoints are within win-
dow (a convention which turns out convenient).

Definition: Gn → G∞ means that for each
fixed generic 0 < r < ∞, for large n there is
graph-isomorphism between Gn[r] and G∞[r]
such that edge-lengths of isomorphic edges con-
verge as n →∞ (and also other labels converge).
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Given n-vertex network (deterministic or ran-

dom) let Un be uniform random vertex. Write

Gn[Un] for Gn rooted at Un.

Definition. If Gn[Un]
d→ some G∞, call this

local weak convergence (LWC) of Gn to

G∞.

Formalizes the idea: for large n the local struc-

ture of Gn near a typical vertex is approxi-

mately the local structure of G∞ near the root.

Intuition: in models where degree distribution

is bounded in probability as n → ∞ we expect

LWC to some limit infinite network.
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Obvious examples

1a Gn: geometric graph (all edges of length
≤ c) on n random points in square of area n

G∞: geometric graph on Poisson point pro-
cess (rate 1) on R2 with point at origin.

1b As above with complete graphs.

2 Gn: discrete cube Cd
m ⊂ Zd with i.i.d. (inde-

pendent random) edge-lengths.
G∞; all Zd with i.i.d. edge-lengths.

3a Gn: Erdos-Renyi random graph G(n, c/n)
G∞: tree of Galton-Watson branching pro-

cess with Poisson(c) offspring.

3b Gn: random r-regular graph
G∞: infinite degree-r tree.

3c Gn: random graph model designed as “ran-
dom subject to degree distribution approximately
a prescribed distribution (p(i), i ≥ 0)

G∞: Galton-Watson tree with offspring dis-
tribution p̃(i) ∝ (i + 1)p(i + 1)
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4 Gn: de Bruijn graph on n = 2b binary strings

G∞: infinite tree with in-degree 2 and out-

degree 2.

100100
001100 110010

100101
011001

100110
101100 110011

100111

5 Gn: Simple random walk with n steps

G∞: 2-sided infinite simple RW.

(represent as linear graph with edge-marks ±1).
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6a-z: For many models of random n-vertex

trees one can explicitly describe G∞. For in-

stance

Gn: uniform random tree on n labeled vertices

G∞: infinite path from root; i.i.d. “bushes”

are Galton-Watson trees with Poisson(1) off-

spring.
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Remark: qualitative behavior similar in most models:

semi-infinite path with i.i.d. finite bushes, whose mean

size is infinite. Bush at root gives limit of subtree de-

fined by random vertex in original rooted tree.
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7 Gn: complete graph on n vertices; edge-lengths ran-

dom, independent Exponential(mean n) distribution.

G∞: the PWIT (Poisson weighted infinite tree)
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Distances 0 < ξ1 < ξ2 < ξ3 < . . . from a vertex to its near

neighbors (indicated by lines) are successive points of

a Poisson (rate 1) process on (0,∞). Continue recur-

sively.
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Q: So what’s the use of knowing LWC . . . ?

A: not much, but it’s a start . . . . . . .

Let’s mention 4 results/examples not related

to cavity method.

Result A: According to the graph-theoretic

definition of planar graph, the infinite binary

tree is a planar graph. but this seems silly to a

probabilist, because probabilistic models (ran-

dom walk, percolation, interacting particles)

behave quite differently on trees than on Z2.

The class of random networks defined as

(∗)LWC limits of finite random planar graphs

provides a more natural formalization of “ran-

dom infinite planar graphs”. Benjamini-Schramm

(2001) show that on graphs (*) with bounded

degree, RW is recurrent. Suggests many other

questions . . . . . . .
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Result B: Particular models of random planar

n-vertex graphs include

• uniform random triangulations (Angel-Schramm

2003)

• uniform random quadrangulations (Chassaing-

Schaeffer 2004).

In each case there is a LWC limit which may

be called the uniform infinite planar trian-

gulation/quadrangulation.

xxx pictures
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Result C: Because of the ‘uniform random

rooting” in the definition

Definition. If Gn[Un]
d→ some G∞, call this

local weak convergence (LWC) of Gn to G∞

a random infinite network G∞ which is a LWC

limit is not entirely arbitrary, but has a property

interpretable as “each vertex is equally likely to

be the root” (stationary or involution invari-

ant or unimodular).

Not obvious (but true: Aldous-Lyons, in prepa-

ration) that any random infinite network with

this property really is some LWC limit.

(This is technically useful in extending obvious

results in finite setting to the infinite setting)
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Result D: A tractable complex network model

(Aldous 2003/4) designed to have a LWC limit

within which explicit formulas can be calcu-

lated (giving n → ∞ asymptotics for finite-n

models).
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Q: So what’s the use of knowing LWC . . . ?
One goal is to prove that solution of CO problem on
Gn converges to solution of CO problem on G∞. Not
always true, of course!

Example E: Suppose edge-lengths are distinct. Then
Gn has a unique MST (minimum spanning tree). Also
we can define the (wired) minimum spanning forest
(MSF) on an infinite network G∞.

Lemma: If Gn → G∞ (LWC), if (technical condition on G∞),
then

(Gn,MST(Gn)) → (G∞,MSF(G∞)) (LWC) .

In particular, on the PWIT one can calculate

E(length of MSF per vertex)

= 1
2
E(length of MSF-edges at root)

= ζ(3) =
∞∑

j=1

j−3

and re-derive result of Frieze (1985) that in complete
graph with random edge lengths model

n−1E(length of MST) → ζ(3).
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xxx java picture
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Example F: (in Aldous-Steele survey). Uni-

form random tree on n vertices. Put i.i.d. pos-

itive weights on edges.

Mn := weight of max-weight partial matching

Then n−1EMn → EM∞ where

M∞ = 1
2(weight of edge at root)

in max-weight matching on limit infinite tree
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Explicitly, for Exponential(1) edge-weights we

get EM∞ ≈ 0.2396 where the limit equals∫ ∞

0
se−sds

∫ s

0
c(e−y−be−s) exp(−ce−y−ce−(s−y)) dy

where c ≈ 0.7146 is the strictly positive solu-

tion of c2 + e−c = 1 and b = c2

c2+2c−1
≈ 0.5433.
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LWC and the cavity method

Recall model

Gn: complete graph on n vertices; edge-lengths random,

independent Exponential(mean n) distribution.

Write Ln for length of TSP tour under this

model. Mezard-Parisi (1980s) used replica/cavity

methods to argue

n−1ELn → c ≈ 2.04.

We have explicit program to make rigorous –

but can’t carry through two of the technical

steps.
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Here are two relaxations of TSP for n-vertex

network.

(M2F): minimum 2-factor. Minimize total

length of a 2-factor, that is an edge-set in

which each vertex has degree 2. That is, a

union of cycles which spans all vertices.

(MA2F): minimum almost 2-factor. Mini-

mize total length over edge-sets En such that

n−1|{v : degree(v) 6= 2}| → 0.

Proposition (Frieze 2004) In this model,

n−1(ELn − EL′n) → 0

where Ln is TSP length and L′n is M2F length.

Missing Proposition Want to know

n−1(ELn − EL′prime
n ) → 0

where Ln is TSP length and L
′prime
n is MA2F

length.
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xxx java slide; hand write Zs
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Central part of method – which I’ll explain only

superficially – is to do analysis of TSP on the

(infinite) PWIT. each edge e of PWIT splits

it into two subtrees. There are random vari-

ables Z1(e), Z2(e), measurable functions of the

subtrees, such that

e ∈ TSP-path iff length(e) < Z1(e) + Z2(e)

(another “missing proposition” in proving this)

from which one can calculate mean length of

TSP-path edges.

Q: How do we go back from the PWIT to the

finite-n model?

More math infrastructure

A measurable function f(Y1, Y2, . . .) of some in-

finite collection of r.v.’s can be approximated

arbitrary closely by continuous functions fk(Y1, . . . , Yk)

of finitely many of the r.v.’s.
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So on the PWIT we can define an edge-set Er

such that

(i) the edges of Er at a vertex v are determined

by the restriction of the PWIT to the window

of radius r around v; (ii) δr := P ( some edge

at v ∈ Er4{) → 0 as r →∞.

Using LWC of the finite-n model to the PWIT,

we can apply the same rule to a window of

radius r around a vertex v, and define edge-

sets Er,n such that

lim sup
n

P (degree(v) in Er,n 6= 2) ≤ 2δr

xxx and similarly the edge-lengths xxx.

This constructs an almost-2-factor of Gn whose

cost-per-vertex converges to the c given in the

PWIT analysis.
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