1. Local weak convergence of graphs/networks

- Stuff that's obvious when you think about it
- 4 non-obvious examples/results

2. The core idea in our probabilistic reformulation of special cases of the cavity method is: do exact calculation on some infinite random graph (tree-like, in practice). LWC provides link with the finite-n problem. Illustrate with

- mean-field TSP
- flow through a disordered network.

Aldous-Steele survey "The objective method ..." on my home page.

Some math infrastructure

Consider an abstract space S (complete separable metric space) with a notion of convergence $x_{n} \rightarrow x$. There is automatically a notion of convergence of probability measures on S (all reasonable definitions are equivalent).
$\mu_{n} \rightarrow \mu_{\infty}$ iff there exist S-valued random variables X_{n} such that

$$
\operatorname{dist}\left(X_{n}\right)=\mu_{n} ; \quad P\left(X_{n} \rightarrow X_{\infty}\right)=1
$$

This is called weak convergence.

Conceptual point: When you consider some new abstract space S, you don't need to think about what convergence of distributions means.

Most concrete case is $S=R^{1}$, where we have e.g. the central limit theorem

$$
n^{-1 / 2} \sum_{i=1}^{n} \xi_{i} \xrightarrow{d} \operatorname{Normal}(0,1)
$$

for i.i.d. $\left(\xi_{i}\right)$ with $E \xi=0$ and $\operatorname{var} \xi=1$.
Best known abstract case is

$$
S=\{\text { continuous functions }[0,1] \rightarrow R\}
$$

which allows one to formalize "rescaled random walk converges to Brownian motion".

Another abstract case is

$$
S=\left\{\text { locally finite point sets in } R^{2}\right\}
$$

which allows one to formalize " n uniform random points in square of area n converges to the Poisson point process on $R^{2 \prime \prime}$.

A graph has vertices and edges
A network is a graph whose edges have postive real lengths (default length $=1$) and maybe extra structure indicated by numbers/labels on vertices/edges. Write G for a network.

Consider the abstract space

$$
S=\{\text { locally finite rooted networks }\} .
$$

What should convergence $G_{n} \rightarrow G_{\infty}$ mean? Note: interesting case is where G_{n} is finite and G_{∞} is infinite.

Window of radius r in G defines subgraph $G[r]$ of vertices within distance r from root, with edges both of whose endpoints are within window (a convention which turns out convenient).

Definition: $G_{n} \rightarrow G_{\infty}$ means that for each fixed generic $0<r<\infty$, for large n there is graph-isomorphism between $G_{n}[r]$ and $G_{\infty}[r]$ such that edge-lengths of isomorphic edges converge as $n \rightarrow \infty$ (and also other labels converge).

Given n-vertex network (deterministic or random) let U_{n} be uniform random vertex. Write $G_{n}\left[U_{n}\right]$ for G_{n} rooted at U_{n}.

Definition. If $G_{n}\left[U_{n}\right] \xrightarrow{d}$ some G_{∞}, call this local weak convergence (LWC) of G_{n} to G_{∞}.

Formalizes the idea: for large n the local structure of G_{n} near a typical vertex is approximately the local structure of G_{∞} near the root.

Intuition: in models where degree distribution is bounded in probability as $n \rightarrow \infty$ we expect LWC to some limit infinite network.

Obvious examples

1a G_{n} : geometric graph (all edges of length $\leq c$) on n random points in square of area n G_{∞} : geometric graph on Poisson point process (rate 1) on R^{2} with point at origin.

1b As above with complete graphs.
$2 G_{n}$: discrete cube $C_{m}^{d} \subset Z^{d}$ with i.i.d. (independent random) edge-lengths.
G_{∞}; all Z^{d} with i.i.d. edge-lengths.
3a G_{n} : Erdos-Renyi random graph $\mathcal{G}(n, c / n)$
G_{∞} : tree of Galton-Watson branching process with Poisson(c) offspring.

3b G_{n} : random r-regular graph G_{∞} : infinite degree- r tree.

3c G_{n} : random graph model designed as "random subject to degree distribution approximately a prescribed distribution ($p(i), i \geq 0$)
G_{∞} : Galton-Watson tree with offspring distribution $\tilde{p}(i) \propto(i+1) p(i+1)$
$4 G_{n}$: de Bruijn graph on $n=2^{b}$ binary strings G_{∞} : infinite tree with in-degree 2 and outdegree 2.

001100		110010	100100
	011001		100101
101100		110011	100110
			100111

$5 G_{n}$: Simple random walk with n steps G_{∞} : 2-sided infinite simple RW.
(represent as linear graph with edge-marks ± 1).

6a-z: For many models of random n-vertex trees one can explicitly describe G_{∞}. For instance
G_{n} : uniform random tree on n labeled vertices G_{∞} : infinite path from root; i.i.d. "bushes" are Galton-Watson trees with Poisson(1) offspring.

Remark: qualitative behavior similar in most models: semi-infinite path with i.i.d. finite bushes, whose mean size is infinite. Bush at root gives limit of subtree defined by random vertex in original rooted tree.
$7 G_{n}$: complete graph on n vertices; edge-lengths random, independent Exponential(mean n) distribution. G_{∞} : the PWIT (Poisson weighted infinite tree)

Distances $0<\xi_{1}<\xi_{2}<\xi_{3}<\ldots$ from a vertex to its near neighbors (indicated by lines) are successive points of a Poisson (rate 1) process on ($0, \infty$). Continue recursively.

Q: So what's the use of knowing LWC . . . ?

A: not much, but it's a start

Let's mention 4 results/examples not related to cavity method.

Result A: According to the graph-theoretic definition of planar graph, the infinite binary tree is a planar graph. but this seems silly to a probabilist, because probabilistic models (random walk, percolation, interacting particles) behave quite differently on trees than on Z^{2}. The class of random networks defined as
(*)LWC limits of finite random planar graphs provides a more natural formalization of "random infinite planar graphs". Benjamini-Schramm (2001) show that on graphs (*) with bounded degree, RW is recurrent. Suggests many other questions........

Result B: Particular models of random planar n-vertex graphs include

- uniform random triangulations (Angel-Schramm 2003)
- uniform random quadrangulations (ChassaingSchaeffer 2004).

In each case there is a LWC limit which may be called the uniform infinite planar triangulation/quadrangulation.
xxx pictures

Result C: Because of the 'uniform random rooting" in the definition

Definition. If $G_{n}\left[U_{n}\right] \xrightarrow{d}$ some G_{∞}, call this local weak convergence (LWC) of G_{n} to G_{∞}
a random infinite network G_{∞} which is a LWC limit is not entirely arbitrary, but has a property interpretable as "each vertex is equally likely to be the root" (stationary or involution invariant or unimodular).

Not obvious (but true: Aldous-Lyons, in preparation) that any random infinite network with this property really is some LWC limit.
(This is technically useful in extending obvious results in finite setting to the infinite setting)

Result D: A tractable complex network model (Aldous 2003/4) designed to have a LWC limit within which explicit formulas can be calculated (giving $n \rightarrow \infty$ asymptotics for finite- n models).

Q: So what's the use of knowing LWC ...?
One goal is to prove that solution of CO problem on G_{n} converges to solution of CO problem on G_{∞}. Not always true, of course!

Example E: Suppose edge-lengths are distinct. Then G_{n} has a unique MST (minimum spanning tree). Also we can define the (wired) minimum spanning forest (MSF) on an infinite network G_{∞}.

Lemma: If $G_{n} \rightarrow G_{\infty}$ (LWC), if (technical condition on G_{∞}), then

$$
\left(G_{n}, \operatorname{MST}\left(G_{n}\right)\right) \rightarrow\left(G_{\infty}, \operatorname{MSF}\left(G_{\infty}\right)\right)(\operatorname{LWC})
$$

In particular, on the PWIT one can calculate

$$
\begin{gathered}
E(\text { length of MSF per vertex }) \\
=\frac{1}{2} E(\text { length of MSF-edges at root) } \\
=\zeta(3)=\sum_{j=1}^{\infty} j^{-3}
\end{gathered}
$$

and re-derive result of Frieze (1985) that in complete graph with random edge lengths model

$$
n^{-1} E(\text { length of MST }) \rightarrow \zeta(3)
$$

xXx java picture

Example F: (in Aldous-Steele survey). Uniform random tree on n vertices. Put i.i.d. positive weights on edges.
$M_{n}:=$ weight of max-weight partial matching Then $n^{-1} E M_{n} \rightarrow E M_{\infty}$ where

$$
M_{\infty}=\frac{1}{2} \text { (weight of edge at root) }
$$

in max-weight matching on limit infinite tree

Explicitly, for Exponential(1) edge-weights we get $E M_{\infty} \approx 0.2396$ where the limit equals $\int_{0}^{\infty} s e^{-s} d s \int_{0}^{s} c\left(e^{-y}-b e^{-s}\right) \exp \left(-c e^{-y}-c e^{-(s-y)}\right) d y$ where $c \approx 0.7146$ is the strictly positive solution of $c^{2}+e^{-c}=1$ and $b=\frac{c^{2}}{c^{2}+2 c-1} \approx 0.5433$.

LWC and the cavity method

Recall model

G_{n} : complete graph on n vertices; edge-lengths random, independent Exponential(mean n) distribution.

Write L_{n} for length of TSP tour under this model. Mezard-Parisi (1980s) used replica/cavity methods to argue

$$
n^{-1} E L_{n} \rightarrow c \approx 2.04
$$

We have explicit program to make rigorous but can't carry through two of the technical steps.

Here are two relaxations of TSP for n-vertex network.
(M2F): minimum 2-factor. Minimize total length of a 2 -factor, that is an edge-set in which each vertex has degree 2 . That is, a union of cycles which spans all vertices.
(MA2F): minimum almost 2-factor. Minimize total length over edge-sets \mathcal{E}_{n} such that

$$
n^{-1} \mid\{v: \text { degree }(v) \neq 2\} \mid \rightarrow 0 .
$$

Proposition (Frieze 2004) In this model,

$$
n^{-1}\left(E L_{n}-E L_{n}^{\prime}\right) \rightarrow 0
$$

where L_{n} is TSP length and L_{n}^{\prime} is M2F length.
Missing Proposition Want to know

$$
n^{-1}\left(E L_{n}-E L_{n}^{\prime \text { prime }}\right) \rightarrow 0
$$

where L_{n} is TSP length and $L_{n}^{\text {'prime }}$ is MA2F length.

xxx java slide; hand write Zs

Central part of method - which I'll explain only superficially - is to do analysis of TSP on the (infinite) PWIT. each edge e of PWIT splits it into two subtrees. There are random variables $Z^{1}(e), Z^{2}(e)$, measurable functions of the subtrees, such that
$e \in$ TSP-path iff length $(e)<Z^{1}(e)+Z^{2}(e)$
(another "missing proposition" in proving this) from which one can calculate mean length of TSP-path edges.

Q: How do we go back from the PWIT to the finite-n model?

More math infrastructure

A measurable function $f\left(Y_{1}, Y_{2}, \ldots\right)$ of some infinite collection of r.v.'s can be approximated arbitrary closely by continuous functions $f_{k}\left(Y_{1}, \ldots, Y_{k}\right)$ of finitely many of the r.v.'s.

So on the PWIT we can define an edge-set \mathcal{E}_{r} such that
(i) the edges of \mathcal{E}_{r} at a vertex v are determined by the restriction of the PWIT to the window of radius r around v; (ii) $\delta_{r}:=P$ (some edge at $v \in \mathcal{E}_{r} \triangle\{) \rightarrow 0$ as $r \rightarrow \infty$.

Using LWC of the finite- n model to the PWIT, we can apply the same rule to a window of radius r around a vertex v, and define edgesets $\mathcal{E}_{r, n}$ such that
$\limsup _{n} P\left(\right.$ degree (v) in $\left.\mathcal{E}_{r, n} \neq 2\right) \leq 2 \delta_{r}$ xxx and similarly the edge-lengths xxx .

This constructs an almost-2-factor of G_{n} whose cost-per-vertex converges to the c given in the PWIT analysis.

