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1. Exchangeability and de Finetti’s theorem

Theorem (de Finetti)

Each infinite exchangeable sequence of RVs is distributed as a mixture of
IID sequences

For those who don’t work in Probability let me try to explain what this
means.
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99 dart throws, centered on a 2.25” × 3.5” playing card.
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Key point (for this talk): The following two scenarios are different.

Pick random person in audience; ask to throw dart 10 times.

Pick random person in audience; ask to throw dart 1 time. Repeat
10 times (so probably 10 different people).

Model for dart throws:

For each person there is a probability measure µ on R2; the chance
their dart lands in A equals µ(A).

When this person throws repeatedly, the landing points X1,X2, . . .
are independent random variables with distribution µ.

Independence formalized by product rule

P(X1 ∈ A1 and X2 ∈ A2) = µ(A1)× µ(A2)

or equivalently product measure

dist(X1,X2) = µ⊗ µ dist(X1,X2,X3, . . .) = µ⊗∞.
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Back to 3 scenarios.

Pick person with known µ; ask to throw dart for ever.

Pick random person in audience; ask to throw dart 1 time. Repeat
for ever.

Pick random person in audience; ask that person to throw dart for
ever.

The three scenarios give three different distributions for the infinite
sequence (X1,X2, . . .). With a 500-person audience

µ⊗∞

ν⊗∞ where ν(·) = 1
500

∑
k µk(·)

1
500

∑
k µ
⊗∞
k

In the first two cases, different throws are independent, but in the third
they’re not. Jargon: in first two cases the distribution is IID (independent
and identically distributed), third case is mixture of IID.

The third case is central to this talk, but first more conceptual and
mathematical background.
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Conceptual points.

View a probability measure (PM) as like a recipe or a plan – something
you might do – and a random variable (RV) as an instance of actually
doing it – in freshman statistics we say “chance experiment”.

RVs can take values in an (essentially) arbitrary space S .
A S-valued RV X has a distribution dist(X ), the induced PM on S .

Most definitions in Probability Theory are formally about PMs but we
apply them to RVs.

When we talk about symmetry properties we are talking about an
underlying PM not the realizations of RVs.
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Imagine idealized random number generator (RNG) that gives a random
number ξ distributed uniformly on [0, 1]; repeated calls to the RNG give
independent ξ1, ξ2, . . ..

Given an arbitrary (measurable) function f : [0, 1]→ S for a “nice” space
S , we can use f (ξ) as a S-valued RV with some distribution µ. Different
f might give the same µ.

An under-emphasized Theorem in measure theory says that every µ arises
as dist(f (ξ)) for some f .

Any time we do a computer simulation of a probability model we are
implicitly using the latter fact!
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Summary so far: an IID S-valued sequence arises as (f1(ξ1), f1(ξ2), . . .)
where the (ξ1, ξ2, . . .) – view as calls to a RNG – are IID uniform[0, 1],
and where f1 : [0, 1]→ S is some function.

Definition of “mixture of IID sequences” is a PM on S∞ of form∫
µ⊗∞ Ψ(dµ), some PM Ψ on P(S) := {PMs on S}

and as Corollary, any such PM has a representation as the distribution of

f2(α, ξ1), f2(α, ξ2), f2(α, ξ3), . . . (1)

for some function f2 : [0, 1]× [0, 1]→ S . Here α is one more independent
uniform [0, 1] RV.

(This relies on “measure theory magic” – the action of picking a PM at
random is implemented as a function of α).
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A finite permutation π of {1, 2, 3, . . .} induces a map π̃ : S∞ → S∞,
mapping (si ) to (sπ(i)).

Definition

A PM on S∞ is exchangeable if it is invariant under the action of each
π̃.

Intuitively “order of RVs does not matter”. This is a strong symmetry
condition.
Obvious that any (finite or infinite length) mixture of IID sequences is
exchangeable.

Theorem (de Finetti)

Each infinite exchangeable sequence is distributed as a mixture of IID
sequences

and so has a representation in form (1)

f2(α, ξ1), f2(α, ξ2), f2(α, ξ3), . . . (1)
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de Finetti’s Theorem appears in some first-year-grad probability
textbooks, and plays a conceptually fundamental role in Bayesian
Statistics, which I won’t explain in this talk.

The next material is somewhat deeper, and goes back to Hoover (1979,
unpublished) and Aldous (1981), then developed more systematically by
Kallenberg (1989+) culminating in his 2005 monograph Probabilistic
Symmetries and Invariance Principles.

The motivation was in part “mathematically natural conjectures”, in part
Bayesian statistics. I won’t explain the original motivation in this talk,
because more recent uses are more interesting.
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2. Structure theory for partially exchangeable arrays

Write N := {1, 2, 3, . . .} and write N(2) for the set of unordered pairs
{i , j} ⊂ N. Consider a random array

X = (X{i,j}, {i , j} ∈ N(2)).

(Essentially a random infinite symmetric matrix). We want to study the
the partially exchangeable property

X
d
= (X{π(i),π(j)}, {i , j} ∈ N(2)) for each finite permutation π. (2)

Because not every permutation of N(2) is of the form
{i , j} → {π(i), π(j)}, this is a weaker property than exchangeability of
the countable family X.
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X
d
= (X{π(i),π(j)}, {i , j} ∈ N(2)) for each permutation π

We can create such a partially exchangeable array by starting with our
IID uniform[0, 1] RVs (ξ1, ξ2, . . .) and applying a function g2 : [0, 1]2 → R
which is symmetric in the sense g2(x , y) = g2(y , x), to get

X{i,j} = g2(ξi , ξj).

This is the “interesting” construction of an array with the partially
exchangeable property. But also there are the arrays

with IID entries

where all entries are the same RV.

We can combine these ideas as follows.
Take a function f : [0, 1]4 → S such that f (u, u1, u2, u12) is symmetric in
(u1, u2), and then define

X{i,j} := f (U,Ui ,Uj ,U{i,j}) (3)

where all the r.v.’s in the families U, (Ui , i ∈ N), (U{i,j}, {i , j} ∈ N(2))
are IID Uniform(0, 1). The array X = (X{i,j}) is partially exchangeable.
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Structure theory developed (1980s) by Hoover - Aldous - Kallenberg
covers many variants of the following result, detailed in Kallenberg
(2005).

Theorem (Partially Exchangeable Representation Theorem)

An array X which is partially exchangeable, in the sense (2), has a
representation in the form (3).

X
d
= (X{π(i),π(j)}, {i , j} ∈ N(2)) for each finite permutation π. (2)

X{i,j} := f (U,Ui ,Uj ,U{i,j}) (3).

There is a (technically complicated) uniqueness property - f is unique up
to measure-preserving transformations of the U’s.
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3. Continuum limits of discrete random structures

This is a “general program”, where “general” 6= “always works” but
instead means “works in various settings that otherwise look different”.

Rather obvious idea:

One way of examining a complex mathematical structure with a
PM is to sample IID random points and look at some form of
induced substructure relating the random points

which assumes we are given the complex structure.

Less obvious idea:

We can often use exchangeability in the construction of
complex random structures as the n→∞ limits of random
finite n-element structures G(n).

What’s the point? Use when there’s no natural way to think of each
G(n), as n varies, as taking values in the same space.
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To expand the idea:

Within the n-element structure G(n) pick k IID random
elements, look at an induced substructure on these k elements
– call this S(n, k) – taking values in some space S(k) that
depends on k but not n. Take a limit (in distribution) as
n→∞ for fixed k, any necessary rescaling having been already
done in the definition of S(n, k) – call this limit Sk . Within the
limit random structures (Sk , 2 ≤ k <∞), the k elements are
exchangeable, and the distributions are consistent as k increases
and therefore can be used to define an infinite structure S∞.

Where one can implement this program, the random structure S∞ will
for many purposes serve as a n→∞ limit of the original n-element
structures. Note that S∞ makes sense as a rather abstract object, via
the Kolmogorov extension theorem, but in concrete cases one tries

to identify S∞ with some more concrete construction

to characterize all possible limits of a given class of finite structures.
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Trees fit nicely into the “substructure” framework. Vertices
v(1), . . . , v(k) of a tree define a spanning (sub)tree. Take each maximal
path (w0,w1, . . . ,w`) in the spanning tree whose intermediate vertices
have degree 2, and contract to a single edge of length `. Applying this to
k independent uniform random vertices from a n-vertex tree Tn, then
rescaling edge-lengths by the factor n−1/2, gives a tree we’ll call S(n, k).
We visualize such trees as below, vertex v(i) having been relabeled as i .

3

6

2

1

7

5

4

Trees are “abstract”, not embedded in R2.
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For suitable models of random n-vertex tree Tn, there is a limit

S(n, k)
d→ S(k) as n→∞ with fixed k.

(i) The state space is the space of trees with k leaves labeled 1, 2, . . . , k
and with unlabeled degree-3 internal vertices, and where the 2k − 3
edge-lengths are positive real numbers.
(ii) For each possible topological shape, the chance that
the tree has that particular shape and that the vector of edge-lengths
(L1, . . . , L2k−3) is in ([li , li + dli ], 1 ≤ i ≤ 2k − 3)

equals s exp(−s2/2)dl1 . . . dl2k−3, where s =
∑

i li .
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From the “sampling” construction (recall the general program) the
distributions of the S(k) must be consistent as k varies, and indeed there
is a simple rule for how to add a new edge to S(k) to get S(k + 1).
Using this rule we can build a random tree with a countable infinite
number of leaves k = 1, 2, 3, . . .. Finally take a closure to get what is
now called the (Brownian) continuum random tree (CRT).
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There’s a more concrete way to construct such real (continuum) trees,
observed by Aldous (1991) and Le Gall (1991) .

Consider a continuous excursion-type function f : [0, 1]→ [0,∞) with
f (0) = f (1) = 0 and f (x) > 0 elsewhere. Use f to define a continuum
tree as follows. Define a pseudo-metric on [0, 1] by:

d(x , y) = f (x) + f (y)− 2 min(f (u) : x ≤ u ≤ y), x ≤ y .

The continuum tree is the associated metric space. Using this
construction with standard Brownian excursion (scaled by a factor 2)
gives the Brownian CRT.
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174 Jim Pitman

(a) (b)

(c) (d)

Figure 7.4: Construction of tree from a tame function, with a finite number of
local extrema. The whole tree is evidently isometric to a finite plane tree with
edge-lengths, as in the bottom right panel. Note from Definition 7.6 that the
root of this tree is its left-most extremity, not the node corresponding to the
minimal point. The angle between the two branches meeting at this node could
be straightened out, and this node disregarded as a vertex, to make an isometric
representation by a reduced plane tree.
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To summarize: the Portmanteau Theorem gives 4 constructions of the
CRT.

1. Sequence of spanning subtrees (S(k)) has prescribed law.
2. A certain line-breaking construction gives the sequence in 1
3. Construction from Brownian excursion and the general
function ↔ tree map.
4. Rescaled weak limit of various families of n-vertex random trees.

Our focus in this talk was on 1 – get a limit object via induced
substructures on sampled vertices – but the CRT illustrates general goal
of identifying such limit objects with more concrete representations.
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3 novel pure math developments

Over 2004-8 there were 3 independent rediscoveries of the basic structure
theory, motivated by “pure math” questions in different fields and leading
in novel directions.

I’ll say (only) a few words about each.
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(i) Isometries of metric spaces with probability measures

Question: Can we characterize a “metric space with probability
measure” up to measure-preserving isometry? That is, can we tell
whether two such spaces (S1, d1, µ1) and (S2, d2, µ2) have a MPI?

The analog is difficult for “metric space” but easy for “metric space with
probability measure”. Given (S , d , µ), take i.i.d.(µ) random elements
(ξi , 1 ≤ i <∞) of S , form the array

X{i,j} = d(ξi , ξj); {i , j} ∈ N(2)

and let Ψ be the distribution of the infinite random array. It is obvious
that, for two isometric “metric spaces with probability measure”, we get
the same Ψ, and the converse is a simple albeit technical consequence of
the uniqueness part of structure theory, implying:

Theorem (Vershik (2004))

“Metric spaces with probability measure” are characterized up to
isometry by the distribution Ψ.
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(ii) Limits of dense graphs

Being a probabilist, I visualize the underlying “size n structures as being
random, but one can actually apply our “general scheme” to some
settings where they are deterministic. (Recall we introduce randomness
via random sampling).

Here’s the simplest interesting case.
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Suppose that for each n there is a graph Gn on n vertices.
But we don’t see the edges of Gn.
Instead we can sample k random vertices and see the induced subgraph
on the sampled vertices.

not square grid!
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Induced subgraph S(n, k) on k of the n vertices of Gn.

3

4

1

5

2

One sense of “convergence” of graphs Gn is that for each fixed k the
random subgraphs S(n, k) converge in distribution to some limit S(∞, k).

This fits our setup, as follows . . . . . .
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Suppose that for each n we have a graph Gn on n vertices.
For each n let (Un,i , i ≥ 1) be i.i.d. uniform on vertex-set of Gn. Consider
the infinite {0, 1}-valued matrix Xn:

X n
i,j = 1((Un,i ,Un,j) is an edge of Gn).

When n� k2 the k sampled vertices (Un,1, . . . ,Un,k) of Gn will be
distinct and the k × k restriction of Xn is the incidence matrix of the
induced subgraph S(n, k) on these k vertices. Suppose there is a limit
random matrix X:

Xn d→ X as n→∞ (4)

in the usual product topology, that is

(X n
i,j , 1 ≤ i , j ≤ k)

d→ (Xi,j , 1 ≤ i , j ≤ k) for each k.

By compactness there is always a subsequence in which such
convergence holds.

For a non-trivial limit we need the dense case where
(number of edges of Gn)/

(
n
2

)
→ p ∈ (0, 1).
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Now each Xn has the partially exchangeable property (2), and the limit X
inherits this property, so we can apply the representation theorem to
describe the possible limits. In the {0, 1}-valued case we can simplify the
representation. First consider a representing function of form (3) but not
depending on the first coordinate – that is, a function f (ui , uj , u{i,j}).
Write

q(ui , uj) = P(f (ui , uj , u{i,j}) = 1).

The distribution of a {0, 1}-valued partially exchangeable array of the
special form f (Ui ,Uj ,U{i,j}) is determined by the symmetric function
q(·, ·), and so for the general form (3) the distribution is specified by a
probability distribution over such symmetric functions.

David Aldous Exchangeability and continuum limits of discrete random structures



Exchangeability and de Finetti’s theorem
Structure theory for partially exchangeable arrays

3 novel pure math developments
Continuum spatial random networks

Isometry classes of . . . . . .
Limits of dense graphs
Further uses in finitary combinatorics

This all fits our “general program”. From an arbitrary sequence of finite
deterministic graphs we can (via passing to a subsequence if necessary)
extract a “limit infinite random graph” S∞ on vertices 1, 2, . . ., defined
by its incidence matrix X in the limit (4), and we can characterize the
possible limits.

What is the relation between S∞ and the finite graphs (Gn)? In
probability language it’s just

the restriction Sk of S∞ to vertices 1, . . . , k is distributed as
the n→∞ limit of the induced subgraph of Gn on k random
vertices.

A recent line of work in graph theory, initiated by Lovász - Szegedy
(2006), started by defining convergence in a more combinatorial way
(counting number of subgraphs of Gn homomorphic to fixed graphs)
which is equivalent (see Diaconis-Janson (2008)) to our notion of Gn

converging to S∞. They rediscovered the structure theorem, and have
used it to develop new and interesting results in graph theory.
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(iii) Further uses in finitary combinatorics

The remarkable recent survey by Austin (2008) gives a more
sophisticated treatment of the theory of representations of jointly
exchangeable arrays, with the goal of clarifying connections between that
theory and topics involving limits in finitary combinatorics.

In particular, Austin (2008) describes connections with the “hypergraph
regularity lemmas” featuring in combinatorial proofs of Szemerédi’s
Theorem, and with the structure theory within ergodic theory that
Furstenberg developed for his proof of Szemerédi’s Theorem.

Subsequently Austin - Tao (2010) apply such methods to the topic of
hereditary properties of graphs or hypergraphs being testable with
one-sided error; informally, this means that if a graph or hypergraph
satisfies that property “locally” with sufficiently high probability, then it
can be modified into a graph or hypergraph which satisfies that property
“globally”.
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Continuum spatial random networks

Take two addresses in U.S. and ask e.g. Google maps

for a route between them.
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Recall rather obvious idea:

One way of examining a complex mathematical structure with a
PM is to sample IID random points and look at some form of
induced substructure relating the random points

Instead of a real-world road network let’s imagine a mathematical model
for a random network with routes between (almost) all pairs of points in
the plane. We can then pick k random points and look at the induced
sub-network.

[Work in progress with Wilfrid Kendall]
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Model; for each pair of points (z , z ′) in the plane, there is a random
route R(z , z ′) = R(z ′, z) between z and z ′.

The process distribution (FDDs only) has
(i) translation and rotation invariance
(ii) scale invariance.

Scale invariance implies that the route-length Dr between points at

distance r apart must scale as Dr
d
= rD1, where of course 1 ≤ D1 ≤ ∞.

The statistic ED1 indicates how effective the network is in providing short
routes. We are interested in the case

ED1 <∞.

There are two other statistics we want to be finite.
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Question: How can we study “normalized length” for such a network?
Answer: We explore the network via the subnetwork on a Poisson
process of points.

Write S(λ) for the subnetwork on a Poisson (rate λ per unit area) point
process. Then scale-invariance gives a distributional relationship
between S(λ) and S(1).

Define normalized length L as mean length-per-unit-area of S(1).

We are interested in the case

L <∞.
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Define p(λ, r) as length-per-unit-area of segments in S(λ) which are on
route between some two points at distance r from the segment.
Set p(r) := limλ↑∞ p(λ, r). Scale-invariance implies p(r) = p(1)/r .
We are interested in the case (underlying idea illustrated in picture)

p(1) <∞.

rr

Question: do there exist networks with

1 < ED1 <∞; L <∞; p(1) <∞.

Answer: Yes, but we don’t know any that is tractable enough to do
concrete calculations. I’ll outline one construction and mention a second.
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0

0

Start with square grid of roads, but impose “binary hierarchy of speeds”:
a road meeting an axis at (2i + 1)2s has speed limit γs for a parameter
1 < γ < 2. Use “shortest-time” routes.

(weird – axes have infinite speed limits! )
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“Soft” arguments extend this construction to a scale-invariant network
on the plane.

Consistent under binary refinement of lattice, so defines routes
between points in R2.

Force translation invariance by large-spread random translation.

Force rotation invariance by randomization.

Invariant under scaling by 2; scaling randomization gives full scaling
invariance.

Need calculations (bounds) to show finiteness of the parameters.

Topic interesting as “symmetry-breaking”; Euclidean-invariant problem
on R2 but any feasible solution must break symmetry to have freeways.
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