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Liggett’s 1984 monograph Interacting Particle Systems was very
influential in introducing to the broad mathematical probability
community a class of models, originating in statistical physics,
exemplified by the Ising model on Z3. Such models are now used, and
often reinvented, in many disciplines outside physics, in particular in the
context of social networks. The physics setting suggests

infinite, highly structured network of sites (Z3)

categorical states (±1)

study phase transitions for the equilibrium distribution

whereas the social networks setting suggests

finite, unstructured network of agents

allow numerical states (R)

study finite-time behavior (cf. “Markov Chains and Mixing Times”).
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In my 2013 survey Interacting Particle Systems as Stochastic Social
Dynamics I formalize this viewpoint as a FMIE process;

n agents; each in some state ∈ S

each pair of agents (i , j) meet at times of a Poisson process of given
rate νij

agents enter such a meeting in states (Xi (t−),Xj(t−)), leave in
states (Xi (t+),Xj(t+)) given by some deterministic or random
update rule F : S × S → S × S .

The update rule specifies the process, e.g. the familiar voter model.

The process makes sense for any “meeting model” specified by the (νij),
best viewed as an arbitrary connected finite edge-weighted graph.

In this talk I briefly discuss a simple example, the averaging process,
before getting to the main topic. In both models, “state” is most
naturally interpreted as money. What follows is work with (or by)
graduate student Dan Lanoue, plus contributions from Justin Salez.
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Model: Averaging Process
When agents i and j meet, they split their combined money

equally, so the values (Xi (t) and Xj(t)) are replaced by the

average (Xi (t) + Xj(t))/2.

The overall average is conserved, and obviously each agent’s fortune
Xi (t) will converge to the overall average. Note a simple relation with
the associated continuous-time Markov chain. Write 1i for the initial
configuration Xj(0) = 1(i=j) and pij(t) for transition probabilities for the
Markov chain.

Lemma

In the averaging process started from 1i we have EXj(t) = pij(t/2).
More generally, from any initial configuration x(0), the vector of
expectations x(t) := EX(t) evolves exactly as the dynamical system

d
dt x(t) = 1

2x(t)N

where N is the generator of the associated MC.

So if x(0) is a probability distribution, then the means evolve as the
distribution of the MC started with x(0) and slowed down by factor 1/2.
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It turns out to be easy to quantify global convergence to the average.

Proposition (Global convergence in the Averaging Process)

From an initial configuration x = (xi ) with average zero and L2 size
||x||2 :=

√
n−1

∑
i x2

i , the time-t configuration X(t) satisfies

E||X(t)||2 ≤ ||x||2 exp(−λt/4), 0 ≤ t <∞ (1)

where λ is the spectral gap of the associated MC.

Results like this have appeared in several contexts, e.g. gossip algorithms.

Here is a more subtle result. Suppose normalized meeting rates:∑
j 6=i

νij = 1 ∀i .

Because an agent interacts with nearby agents, guess that some sort of
“local averaging” occurs independent of the geometry.
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For a “test function” g : Agents→ R write

ḡ = n−1
∑
i

gi

||g ||22 = n−1
∑
i

g2
i

E(g , g) = n−1 1
2

∑
i

∑
j 6=i

νij(gj − gi )
2 (the Dirichlet form).

When ḡ = 0 then ||g ||2 measures “global” variability of g whereas
E(g , g) measures “local” variability relative to the underlying geometry.

Proposition (Local smoothness in the Averaging Process)

For normalized meeting rates associated with a r-regular graph; and
initial x̄ = 0,

E
∫ ∞
0

E(X(t),X(t)) dt = 2||x||22. (2)
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The compulsive gambler process

In the Compulsive Gambler process, agents initially have 1 unit money
(visualize as a 5-pound note) each. When two agents with non-zero
money meet, they instantly play a fair game in which one wins the
other’s money.

This is a “made up” model – invented in preparing lectures for 2012
Cornell summer school. But interesting as pedagogy

4 different techniques are useful for studying this process.

Intriguing analogies with other probability topics.

This loosely fits the theme of the workshop – obvious tree structure of
solvent (non-zero money) agents as time increases.
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Recall the process is parametrized by the meeting rates (νij) – visualize
as finite edge-weighted graph.

First observation: on a complete graph, that is if

ν∗ := min
j 6=i

νij > 0 (∗)

then at some random time T <∞ one agent has all the money.

In general (if (*) fails) then process gets absorbed in some random
configuration where the set of solvent agents is an anti-clique
(independent set).

Methodology 1: Comparison with the Kingman Coalescent chain
(which is the mean-field model νij ≡ 1). By considering number of
agents with non-zero money

2(1− 1
n )/ν∗ ≤ ET ≤ 2(1− 1

n )/ν∗

where ν∗ = maxj 6=i νij .
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Methodology 2. Martingale properties
Write Xi (t) = amount of money for agent i at time t.

Lemma

For any meeting process,
(a) (Xi (t), 0 ≤ t <∞) is a martingale.
(b) For j 6= i , (Xi (t)Xj(t), 0 ≤ t <∞) is a supermartingale.
(c) For f : Agents→ R write Sf (t) = n−1

∑
i f (i)Xi (t).

Then (Sf (t), 0 ≤ t <∞) is a martingale and

ES2
f (t)− S2

f (0) ≤ ν∗t var[f (ξ)]

where ξ is uniform random on Agents.
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A slightly more subtle observation is

Lemma

Let ψ : Agents× Agents→ [0,∞) be such that ψ(i , j) ≡ ψ(j , i) and
ψ(i , i) ≡ 0. Define

Ψ(x) =
∑
{i,j}

xixjψ(i , j), Ψν(x) =
∑
{i,j}

νijxixjψ(i , j).

Then the process

Ψ(X(t)) +

∫ t

0

Ψν(X(s)) ds

is a martingale.

Setting ψ(i , j) = 1/νij and applying OST at the coalescence time T leads
to a modest improvement on the “obvious” lower bound from the
Kingman coalescent, as follows

1

ν∗
≤ 1(

n
2

) ∑
{i,j}

1

νij
≤ ET . (3)
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Methodology 3. Imagine the initial currency notes have IID random
serial numbers. The Compulsive Gambler process has the same
distribution (unconditionally, if you don’t see the serial numbers) as the
process in which the winner of each bet is determined deterministically
as the possessor of the note with the lowest serial number.

(Proof by careful induction).

(Live demo).
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This means we can construct the CG process via the following token
process representation.
Take the array (Tij) of the Exponential(rate νij) first meeting times. Take
a uniform random ordering i1, . . . , in of the n agents, representing the
original possessors of the notes (1), (2), . . . , (n) in increasing order of
serial number.

note (1) stays with agent i1 for ever

note (2) stays with agent i2 until time Ti2i1 , then passes to agent i1

note (3) starts at agent i3; will pass to agent i2 at time Ti3i2 if this
time is smaller than min(Ti3i1 ,Ti2i1), otherwise pass to agent i1 at
time Ti3i1

. . . . . .

. . . . . .

and finally Xi (t) = number of notes agent i has at time t.

Reminiscent of other constructions, e.g. Donnelly-Kurtz “look down” in
math population genetics.
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Methodology 4. Using the token process representation above, given
X(t) – the amount of money each agent has at time t

A B C D E F G H I J

then the allocation of the ordered serial numbers
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = n) is uniform random on the set of compatible
partitions.

This is an exchangeability property, reminiscent of the theory of
exchangeable coalescents (Bertoin et al). But it’s exchangeability of
currency notes, not of Agents.
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What can we learn using these tools? Using either the martingale
property or the token process representation

(if ν∗ > 0) the agent who ultimately acquires all the money is
uniform random over all n agents.

A more subtle fact is that, for arbitrary f : Agents→ R, there is a
formula for the k’th moment

E

(∑
i

f (i)Xi (t)

)k

.

The formula consists of summing, over k-tuples (v1, . . . , vk) of agents, a
function p(v1, . . . , vk ; t) which consists of a sum of Mk terms, each term
being of the form

k∏
i=2

ν(vαi vi )

∫
D

exp

− k∑
i=2

k−1∑
j=1

ν(vβij vi )ti

 dt2dt3 . . . dtk (4)

where αi < i and βij < i are indices and D is a subset of [0, t]k−1,
specified by the particular term.
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To outline the argument, consider k = 10’th moment for large n. We
need to understand where k-tuples of notes are; then by the
exchangeability property we can reduce to a calculation with the k
lowest-ranked notes (1),. . . , (k). Consider a typical possibility

agent a has {1, 2, 3, 4}, agent b has {5, 6, 7, 8}, agent c has {9, 10}.

We can find this probability from the structure of the “serial number”
process.
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(1)
a = a1

t

t4

(4)
a4

t2

(2)
a2

t3

(3)
a3

(5)
b = b1

t

s3

(7)
b3

s4

(8)
b4

s2

(6)
b2

(9)
c = c1

t

(10)

r2

c2
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These are tools – where should we look to find some more substantive
Theorems?

One direction is to consider the “sparse graph limits” setting. Take a
r -regular n-vertex connected graph G ; set meeting rates νe = 1/r for
each edge e. There is some limit density of solvent agents

a(G ) := n−1
∑
i

P(Xi (∞) 6= 0).

Consider limits of graphs as n→∞ with r fixed:

Question; what is the range [a∗(r), a∗(r)] of possible limits of a(G )?

Partial answer; as r →∞,

a∗(r) ∼ 1/r ; a∗(r) ≥ 2− o(1))/r

and we conjecture a∗(r) ∼ 2/r .
The fact a∗(r) ∼ 1/r is easy; the inequality for a∗(r) comes from
considering the r -regular infinite tree Tr as the local limit of suitable
r -regular graphs.
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A conceptually interesting feature of the CG process is that one can
consider both types of n→∞ process; infinite discrete space or a scaling
limit on a continuous space. Regarding infinite discrete space we can
consider:

the r-regular infinite tree Tr with rate-1 meetings across edges.

This can be analyzed by setting up a recursion to obtain an equation for
the generating function φ(z , t) of X (t), the fortune of a typical agent.
We can estimate P(X (∞) > 0) as a function of r well enough to show it
is ∼ 2/r as r →∞.

Cute aside: on the Poisson(c)-Galton-Watson tree Tc one can solve the
recursion to show that

P(X (t) > 0) = 2
2+cs(t) ; s(t) = 1− e−t

the conditional dist. of X (t) given X (t) > 0 is Geometric( 2
2+cs(t) ).

This process is in fact the short-time limit of the Kingman coalescent –
regarding the latter as coalescence of n atoms, then the time-τ/n limit
distribution of typical cluster size is Geometric( 2

2+τ ).
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Another case is Zd with meeting rates are

νij = ||j − i ||−α

for some α > d . Consider the mean density of solvent agents at time t

ρ(t) := P(Xi (t) 6= 0)

and the conditional distribution X ∗(t) of Xi (t) given Xi (t) 6= 0, for which
EX ∗(t) = 1/ρ(t) because EXi (t) ≡ 1. Heuristic arguments, based on
supposing the positions of solvent agents do not become “clustered”,
suggest that

ρ(t) � t−β for β = d
α .

We conjecture that

ρ(t)X ∗(t)→d X ∗, for some X ∗ such that EX ∗ = 1

and then that the process has a scaling limit, the limit being a process
whose states are (locally finite support) measures on Rd .
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Consider the same meeting rates

νij = ||j − i ||−α (5)

but now on the finite discrete torus Zd
m and take meeting rates as at (5).

This process now has qualitatively different behavior in the case α > d
(agents mostly meet nearby agents) and in the case α < d (agents
mostly meet distant agents). Somewhat surprisingly we can establish the
order of magnitude of T in both cases without any detailed analysis: the
“harmonic mean” inequality (3) easily implies that there exist constants
cd,α and Cd,α such that

cd,αmα ≤ ET ≤ Cd,αmα.

Aside. For many years I have suggested studying IPS models with rates
(5); now a detailed study of phase transitions in the first-passage
percolation model with those rates has been given in Chatterjee - Dey
Multiple phase transitions in long-range first-passage percolation on
square lattices.
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The Metric Coalescent
Work by Dan Lanoue – major part of his Ph.D. thesis.

First do a trivial reformulation of the CG process. Rescale so there is unit
money in total; initially distributed arbitrarily amongst the n agents.

Second: instead of visualizing the n agents as vertices of a graph, we
place them at positions s1, . . . , sn in a metric space (S , d). Define
meeting rates as a function of distance

νij = φ(d(si , sj)) > 0

d → φ(d) continuous decreasing; lim
d→∞

φ(d) = 0, lim
d→0

φ(d) =∞.

Can now regard the state space of this CG process as the space Pfs(S) of
probability measures on S with finite support.
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Write P(S) = space of all probability measures on S , with topology of
weak convergence.

Given a general (in particular, a non-atomic) distribution µ ∈ P(S),
choose (si , 1 ≤ i <∞) such that

µ(n)(0) := uniform dist. on (s1, . . . , sn) → µ.

Natural to guess that the CG processes (µ(n)(t), 0 ≤ t <∞) started from
µ(n)(0) converge (as n→∞) to some limit process, which at times t > 0
has locally finite support but which converges to µ as t ↓ 0.
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Theorem

Under suitable regularity conditions on (S , d) and φ:
For each µ(0) ∈ P(S) there exists a unique (in distribution) P(S)-valued
process (µ(t), 0 ≤ t <∞) specified by

(µ(t), t0 ≤ t <∞) evolves as the CG process (each t0 > 0)

µ(t)→ µ(0) a.s. as t ↓ 0.

And the Feller property holds: for fixed t > 0 the map µ(0)→ dist(µ(t))
is continuous.

Formally, this is describing the entrance boundary of the
metric-space-embedded CG. We call the process the metric coalescent.
The current paper proves this under the condition

(S , d) is separable and locally compact.

Proof is technical in detail, but uses in part the methodologies described
earlier.
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’[repeat 2 previous slides]

Methodology 3. Imagine the initial currency notes have IID random
serial numbers. The Compulsive Gambler process has the same
distribution (unconditionally, if you don’t see the serial numbers) as the
process in which the winner of each bet is determined as the possessor of
the note with the lowest serial number.

(Proof by careful induction).

This means we can construct the CG process as follows.
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Take the array (Tij) of the Exponential(rate νij) first meeting times. Take
a uniform random ordering i1, . . . , in of the n agents, representing the
original possessors of the notes (1), (2), . . . , (n) in increasing order of
serial number.

note (1) stays with agent i1 for ever

note (2) stays with agent i2 until time Ti2i1 , then passes to agent i1

note (3) starts at agent i3; will pass to agent i2 at time Ti3i2 if this
time is smaller than min(Ti3i1 ,Ti2i1), otherwise pass to agent i1 at
time Ti3i1

. . . . . .

Now in our metric space setting, do the same construction (with 1 unit
notes) using IID samples s1, s2, . . . from a given µ(0). Then for each n set
µ̄(n)(t) = the configuration of money at t, rescaled so total money = 1.
This provides an “a.s.” construction, in the sense that for fixed t > 0

µ̄(n)(t)→ some µ̄(t) a.s. as n→∞.

Proved by a (slightly subtle) exchangeability argument (then de Finetti).
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[repeat another earlier slide]

A more subtle fact is that, for arbitrary f : Agents→ R, there is a
formula for the k’th moment

E

(∑
i

f (i)Xi (t)

)k

which involves summing, over k-tuples (v1, . . . , vk) of agents, a function
p(v1, . . . , vk ; t) which consists of a sum of Mk terms, each term being of
the form

k∏
i=2

ν(vαi vi )

∫
D

exp

− k∑
i=2

k−1∑
j=1

ν(vβij vi )ti

 dt2dt3 . . . dtk (6)

where αi < i and βij < i are indices and D is a subset of [0, t]k−1,
specified by the particular term.

Key point: the number of terms in (6) depends on k , not on n
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Take bounded continuous f : S → R; we can calculate the moments

E
(∫

f (s) µ(t, ds)

)k

in the metric space embedding as n→∞ limits of the finite-n formula;
because the sum over distinct ordered k-tuples from (s1, . . . , sn)

n−k
∑
v1

. . .
∑
vk

p(v1, . . . , vk ; t)

converges to the limit∫
. . .

∫
p(s1, . . . , sk ; t) µ(ds1) . . . µ(dsk)

for µ = µ(0).
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Setting aside details, we have two separate arguments for existence of a
process (µ(t), 0 < t <∞) associated with given µ(0) ∈ P(S). The
property

µ(t)→ µ(0) a.s. as t ↓ 0.

follows from a martingale argument.
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