Flows through random networks

David Aldous – April 2006

Title brings to mind many somewhat-related topics; is there a core theory?

- General setup
- 4 specific models/problems under study

Graph: has vertices and edges **Network**: a graph with some context-dependent extra structure. We consider toy models of networks (**transportation/communication**) whose purpose is to move stuff/information from one place to another.

Assume edges have **lengths** or **costs**. Could take the default "edge-length = 1" but taking generic real lengths is more convenient because it gives **unique shortest paths**.

Study deterministic flows ("fluid", as in the max-flow min-cut theorem) with simultaneous flows between different source-destination pairs (**multicommodity flow**). Take simplest case: constant flow between each source-destination pair.

Given some notion of the **cost** of a flow (e.g. route-length) and some constraints (e.g. edge capacities) we seek the minimum-cost routing.

Deterministic algorithmic problems like this are studied as part of **network algorithms**; as multicommodity flow problems they are NPhard in general. We take **statistical physics viewpoint** of modeling the network (topology, costs, constraints) as random and studying properties of optimal solution. We take transportation measure uniform on all (source, destination) pairs, so there's one parameter

 $\rho = \operatorname{normalized}$ traffic demand

normalized with n so that flow volume across typical edge is order 1.

Seek to study (in different models on *n*-vertex networks) the $n \rightarrow \infty$ limit curves giving some quantitative measure of network performance vs ρ .

1. Optimal flows through the disordered lattice. (Preprint).

Order-of-magnitude calculation on $N \times N$ grid. Send volume ρ_N between each (source, destination) pair. Average flow volume \overline{f} across edges is

$$(N^2 \times N^2) \times \rho_N \times N \approx \overline{f} \times N^2$$

To make \bar{f} be order 1 we take

$$\rho_N = \rho N^{-3}$$

Open Problem. Take i.i.d. capacities (cap(e))with $0 < c_{-} \leq cap(e) \leq c_{+} < \infty$. Obvious: a feasible flow with normalized demand ρ exists for $\rho < \rho_{-}$ and doesn't exist for $\rho > \rho_{+}$. Prove there is a constant ρ_{*} depending on distribution of cap(e) such that as $N \to \infty$

 $P(\exists \text{ feasible flow, norm. demand } \rho) \rightarrow 1 , \rho < \rho_*$ $\rightarrow 0 , \rho > \rho_*.$ Instead of focussing on capacities, let's focus on <u>congestion</u>. In a network without congestion, the cost (to system; all users combined) of a flow of volume f(e) scales linearly with f(e). With congestion, extra users impose extra costs on other users as well as on themselves. So cost scales super-linearly with f(e). **Model:** The cost of a flow $\mathbf{f} = (f(e))$ in an environment $\mathbf{c} = (c(e))$ is

$$\operatorname{cost}_{(N)}(\mathbf{f},\mathbf{c}) = \sum_{e} c(e) f^2(e).$$

Theorem 1. $N \times N$ torus (for simplicity) Large constant bound *B* on edge-capacity (for simplicity)

i.i.d. cost-factors c(e) with

$$0 < c_{-} \leq c(e) \leq c^{+} < \infty.$$

Let Γ_N be minimum cost of flow with normalized intensity $\rho = 1$. Then

 $N^{-2}E\Gamma_N \to \text{constant}(B, \text{dist}(c(e))).$

Comments. Methodology is to compare with flows across (boundary-to-boundary) $M \times M$ squares. Should work to prove existence of limits in other "optimal flows on $N \times N$ grid" models. But details are surprisingly hard to prove.

6

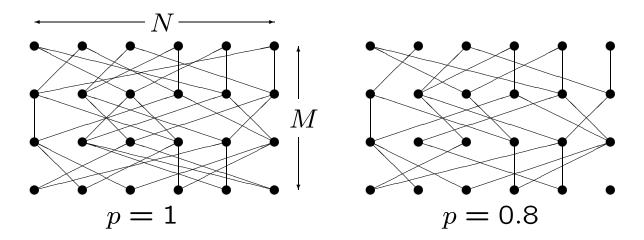
2. Cost-volume relationships for flows through a disordered network. (Preprint).

Consider a network with

- M layers
- N vertices per layer
- directed edges upwards from one layer to next

 edges between successive layers are placed randomly subject to each vertex having in-degree = out-degree = 2.

Within this model we'll consider a "special" and a "general" problem.



Special problem. Suppose

• edges have capacity = 1.

• retain each edge with probability p, delete with probability 1 - p.

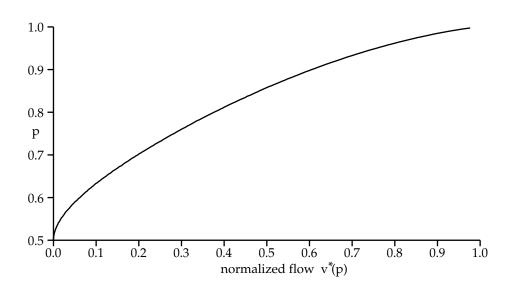
Study maximum flow from bottom to top layers; same as maximum number of edge-disjoint paths from bottom to top layers. Clearly for p = 1 the maximum flow = 2N, so for general p we consider the relative flow

 $F_{N,M}(p) = \frac{1}{2N} \times (\text{max flow through network}).$

We anticipate a limit function

$$EF_{N,N}(p) \rightarrow v^*(p)$$
 as $n \rightarrow \infty$.

Cavity method tells you how to write down an equation whose solution determines $v^*(p)$.



Cavity method from statistical physics provides a heuristic for obtaining solutions of various combinatorial optimization problems over random networks which are **locally tree-like**. This work is first explicit application to flow problems.

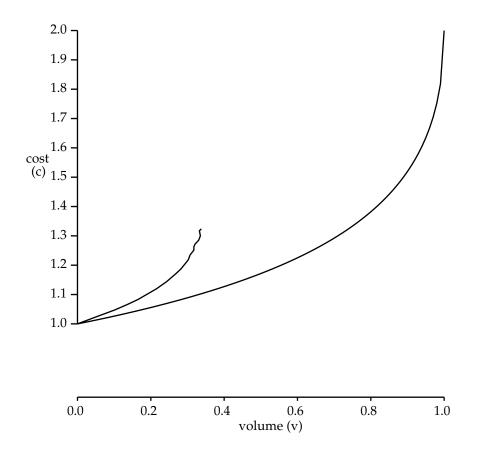
General problem. Same underlying random graph model: in-degree = out-degree = 2.

• On each edge there is a cost-volume function:

 $\phi(v) = \text{cost-per-unit flow when flow volume} = v.$

• The functions ϕ are i.i.d. over edges.

The cavity method lets us calculate (via numerical solution of an equation) the network cost-volume function $\psi(\cdot) =$ normalized total cost of flow when normalized total volume = v.



Here we take a particular form (long curve) for costvolume function on an edge. This arises from a roadtraffic model in which speed is decreasing linear function of density, cost = 1/(speed).

Make maximum volume be i.i.d. Exponential (1) over edges. Short curve shows the network cost-volume function, with maximum volume (congestion) around 0.34.

Models $\mathbf{3}$ and $\mathbf{4}$ are based on

The mean-field model of distance

Take complete graph on n vertices. Let each of the $\binom{n}{2}$ edges (i, j) have random length, independently, with Exponential (mean n) distribution. This model has several names:

- Complete graph with random edge weights
- random link model
- stochastic mean-field model of distance.

Within this model one can study classical combinatorial optimization problems such as TSP and MST. The length L_n of optimal solutions will scale as n.

Here is a systematic way to study many problems within the mean-field model. From a typical vertex, the distances

$$0 < \xi_{n,1} < \xi_{n,2} < \ldots < \xi_{n,n-1}$$

to other vertices, in increasing order, have a $n \to \infty$ limit in distribution

 $0 < \xi_1 < \xi_2 < \xi_3 < \dots$

which is the Poisson process of rate 1 on $(0,\infty)$.

In a certain sense (local weak convergence), the model has a $n \to \infty$ limit which we call the **PWIT** (Poisson weighted infinite tree).

3. Edge-flow distribution uder shortestpath routing. (Aldous - Bhamidi in progress).

In mean-field model of distance, easy to see that distance D(i, j) between specified vertices i, j satisfies

 $D(i,j) = \log n \pm O(1)$ in prob.

Send flow of volume 1/n between each pair (i, j) along shortest path. Each edge e gets some total flow $F_n(e)$. What is the distribution of edge-flows $(F_n(e) : e$ an edge)?

Call edges of length O(1) "short". Easy to see intuitively that short edges should get flow of order log n.

Theorem 1 As $n \to \infty$ for fixed z > 0,

$$\frac{1}{n} \# \{ e : F_n(e) > z \log n \} \to_{L^1}$$

$$G(z) := \int_0^\infty P(W_1 W_2 e^{-u} > z) \, du$$

where W_1 and W_2 are independent Exponential(1). In particular

$$\frac{1}{n}E \# \{e : F_n(e) > z \log n\} \to G(z).$$

Proof is intricate "bare-hands" calculations, exploiting i.i.d. Exponential edge-lengths.

Here is a heuristic argument for why the limit is this particular function G(z).

Background fact: the process N(t) = number of vertices within distance t of a specified vertex

is (exactly) the Yule process in the PWIT, and (approximately) the Yule process in the finite-n model.

Consider a short edge e, and suppose there

are $W'(\tau)$ vertices within a fixed large distance τ of one end of the edge, and $W''(\tau)$ vertices within distance τ of the other end. A shortest-length path between distant vertices which passes through e must enter and exit the region above via some pair of vertices in the sets above, and there are $W'(\tau)W''(\tau)$ such pairs. The dependence on the length L is more subtle. By the Yule process approximation, the number of vertices within distance r of an initial vertex grows as e^r , and it turns out that the flow through e depends on L as $\exp(-L)$ because of the availability of alternate possible shortest paths. So flow through e should be proportional to $W'(\tau)W''(\tau)\exp(-L)$. But (again by the Yule process approximation) for large τ the r.v. $e^{-\tau}W'(\tau)$ has approximately the Exponential(1) distribution W_1 . And as $n \to \infty$ the normalized distribution $n^{-1}\#\{e: L_e \in \cdot\}$ of all edge-lengths converges to the σ -finite distribution of U_{∞} . This is heuristically how the limit distribution $W_1 W_2 \exp(-U_\infty)$ arises.

4. "Price of anarchy" in mean-field model of distance. (back-of-envelope, last week).

In previous model, suppose each edge e has an owner who sets a price-per-unit-volume $\pi(e)$ for using edge e. So from a customer's viewpoint the cost of using edge e is

 $length(e) + \pi(e)$

and customers choose minimum-cost routes. The owners adjust prices to maximize their income

```
\pi(e) \times (\text{volume of flow across } e).
```

Expect equilibrium prices.

Recall in previous setting (no prices) the mean cost of routing (uniform source - destination) is $(1 + o(1)) \log n$. In the current setting we heuristically have a striking result in $n \to \infty$ limit

• for each edge e' we have $\pi(e') \rightarrow e = 2.718...$

• mean cost = $(e + o(1)) \log n$.

Key idea: Difference between cost of minimumcost route and second-minimum-cost route has limit distribution which is robust (up to scaling constants) to imposing random prices.