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9 UU
10 nlike most books reviewed in the Mathematical
11 Intelligencer, this is definitely a textbook. It
12 assumes knowledge one might acquire in the first
13 two years of an undergraduate mathematics program—
14 basic mathematical probability, plus linear algebra, a little
15 graph theory, and the infamous concept of ‘‘mathematical
16 maturity.’’ It has the theorem–proof style of pure mathe-
17 matics, but with friendly explanations of intuition and
18 motivation.

19 The Topic
20 The topic is one major aspect of what I like to call ‘‘modern
21 discrete probability,’’ as opposed to balls-in-boxes-style
22 combinatorial probability. Here a Markov chain is best
23 envisaged as a particle jumping between a finite number of
24 states: from state i, it jumps to state j with some specified
25 probability pij—in other words, a random walk on an edge-
26 weighted directed graph. A highlight of classical theory
27 says (omitting some details here and throughout) that
28 provided the graph is strongly connected, the time-t dis-
29 tribution will converge as t ! 1 to a limit distribution, the
30 stationary distribution. Theoretical mathematicians in the
31 1950s and 1960s focused on extending such general theory
32 to countably infinite or continuous state spaces, whereas
33 applied mathematicians at that time studied specific models
34 such as queueing and similar operations-research-style
35 models.
36 A different paradigm for finite-state chains emerged
37 around 1980. Consider a sequence of chains on state spaces
38 with increasing ‘‘size’’ parameter n, take some formaliza-
39 tion of ‘‘close to stationarity,’’ estimate the corresponding
40 ‘‘mixing time’’ sn (at which the time-t distribution is close to
41 stationarity), and study the behavior of sn as n ! 1. In
42 other words, study size asymptotics, not time asymptotics.
43 A very simple example is to take binary strings of length n
44 as states, and from a given state, we ‘‘jump’’ by switching a
45 random coordinate or (with small probability) not moving.
46 More popular examples arise from models of random card
47 shuffling: how many shuffles are needed to make an n-card
48 deck ‘‘well shuffled’’?
49 But it turns out that there is a much wider range of
50 contexts in which mixing times are relevant. The notion of
51 a phase transition in statistical physics models such as the

52Ising model corresponds to whether, in the natural asso-
53ciated Markov chain, sn increases polynomially or
54exponentially in n. In using the Markov chain Monte Carlo
55(MCMC) method to reveal posterior distributions in com-
56plex big-data Bayesian statistics models, guaranteed
57success depends on simulating for a number of steps larger
58than the mixing time, and the mixing time cannot be
59determined by simulation but requires theory. On the
60mathematical side, there is an elegant and intuitively
61helpful connection between electrical networks and
62reversible (the matrix ðpijÞ is symmetrizable) chains,
63described previously in the 1984 undergraduate-level
64monograph Random Walks and Electric Networks, by
65Doyle and Snell.
66As well as applications to these preexisting topics, the
67new topic of approximate counting emerged in the 1980s.
68As a basic example, one can readily use MCMC to
69approximately sample uniformly from the set of colorings
70of a given n-vertex graph (provided the number of avail-
71able colors is large enough), because one can bound the
72relevant mixing time. What is less obvious at first sight
73is that by then estimating probabilities recursively over
74subgraphs of size n # 1;n # 2; . . ., one can count approx-
75imately the number of colorings of the original graph. This
76gives an example of a problem that is easily solved
77approximately via a randomized algorithm but is difficult to
78solve exactly by a deterministic algorithm. In the 2000s, this
79line of enquiry led to a program to show that computa-
80tional complexity of optimization problems over random
81data is related to phase transitions in corresponding statis-
82tical physics models, and this remains an active area of
83mathematically deep research.

84The Book
85This is the expanded second edition (the first edition
86appeared in 2009) of the first and only broad-ranging yet
87carefully written textbook treatment of this topic. It has
88been used in courses in many major universities, and has
89ample exercises for students.
90Part I of the book is ‘‘basics,’’ illustrated by the follow-
91ing. One fundamental measure of ‘‘closeness to
92stationarity’’ uses variation distance, which involves the
93worst-case (over events) additive error in approximating
94the time-t distribution of a chain by the stationary proba-
95bility. Upper-bounding the corresponding mixing time is
96most easily done, where possible, via the coupling tech-
97nique. A conceptually different notion, mathematically
98natural in the reversible case, involves the relaxation time,
99defined as 1 over the spectral gap of the symmetrized
100matrix ðpijÞ. Techniques for upper-bounding this relaxation
101time involve Dirichlet forms and the distinguished path
102method. Also, properties of first hitting times and cover
103times (visiting all states) are non-obviously related to such
104mixing times.
105Part 2 continues to more advanced issues, including
106the motivating contexts alluded to before. Understanding
107mixing times in the Ising model in detail is still an active
108research topic, but Chapter 15 provides basic background.
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110110 Chains that are monotone with respect to a partial order
111 arise quite often and have special properties, described in
112 Chapter 22 (new). Various other special types of pro-
113 cesses, such as lamplighter walks (Chapter 19) and the
114 exclusion process (Chapter 23, new), are treated carefully.
115 Also described are general theoretical developments by
116 Peres and coauthors over the last decade, such as the
117 ‘‘martingales and evolving sets’’ technique (Chapter 17)
118 and the intriguing connections between Cesàro mixing
119 times and hitting times on large subsets (Chapter 24,
120 new).
121 The twenty-six chapters comprising over four hundred
122 pages underline the vast range of contexts and techniques
123 being discussed.

124The Bottom Line
125Taking a recently emerged topic with a massive research lit-
126erature and writing a textbook that can take a student from
127basic undergraduate mathematics to the ability to read current
128research papers is a hugely impressive achievement. This
129book will long remain the definitive required reading for
130anyone wishing to engage the topic more than superficially.
131
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