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Average Escaping Time Estimation

Considering the following situation, a microcell within a given domain can not move by itself, it can
only moving follow the flows of the domain, suppose the region is two-dimensional and given motion of this
movement follows from normal distribution, then we immediately see the movement of the cell follows a
Brownian Motion trajectory as we discuss before. But the questions is when will it escape from our given
domain, or it is same to say when will it reach the boundary point of our domain?

I will demonstrate first attempt to model this kind of problems by simuate a path follows stochastic
process. We define our boundary as a circle plot the move and along with the boundary and let’s take our

trajectory to be a Brownian Motion for simplicity.
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The number of hit (change of trajectory) before the particle reach the boundary is 27. If we assume that
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the number of hit is given by a certain distribution then this is actually represent the time the particle reach
the boundary.

The above two plots are taken when we define our boundary circle have radius of 100 and 6400 respective.
The resulting number of counts are 27 and 5050 respectively (The first plot is just the result of running our
code in the previous page). Notice here we take our domain to be a circle in order to simplify our code and
assumptions.

As you can check if we enlarge the radius of the circle, the number of count is going to become larger.
The problem is how large? My intuition suggests that the number should be proportion to the area of the
circle, however, the real situation is much more complicated to verify since the margin of error is too large
due to the randomness of the movement, I can not give a precise conclusion without spending a lot of time
dealng with that, since our primary interest is in simulation and application. The result will be leave for
interested readers.

Mutiple Particles Collision

In this situation, let’s put several different particles in a given domain, each follows a Brownian motion
trajctory and test what is our expected time before any two of those particles hit each other. For simplicity
let’s assume that each of those particles has certian small volume with circluar shape in two-dimension. And
when any two of those particle hit each other we stop the process and record the steps (time) from the
beginning.

The trick here is that since we simplify our balls to have same volumes as a circular shape, we only need
to record the distance between any two of our object to see whether any of those distance are less than two
times the radius of our ball for each time.

It is significant easy to write the code in an object-oriented programming language, especailly considering
the multiple particle collsion case. However, consider the context of our research is under statistical category,
I will write the code in R, which is somehow complicate than it should be. For simplicity I will restrict my
case to two particles within a square bounded domain. The code I write is given below (where we take the
radius of each ball to be 2, and the boundary is between -40 to 40 for both x and y coordinates) :

As you can try for your own, the number of steps for each times varies a lot, sometimes it reaches max
time of steps (N= 5000 in our case). Even we expected that two particle eventually collsion with each other,
however there is not a theortically upper bound for time, that is this process would last forever. And due
to the randomness of the trajectories, it is complicated to give an estimated expectation time (steps), and I
will leave that for interested readers.

The resulting graph of two particle trajectories before they finally collsion is given by following, where
the light color and dark color lines are respresenting two particle’s trjectories respectively, for simplicity of
the code and graph, we only produce this two particle collsion simulation using Brownian motion trajctory.
If you are interested, you can modify the code above to produce a multiple particle collsion simulation in
any given region.
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The above two graphes represent when we taken boundary to be (-40,40) and (-20,20) for both x and y
axis respectively, the first graph has step counts as 2707, the second graph has step counts as 684.

Appendix: Code 1.Escaping Time Codiligrary(plotriz)
N = 1000;
xzdis = rnorm(N, 0 ,1); ydis = rnorm(N, 0, 1);
zdis1 = rep(0,N); ydisl = rep (0,N);



Escaping Time and Partical Collision Modelling and Simulation  Zhijun Yang 4

count = 0;

for(i in 1:N){

if((xdis1[ij+xdis[i + 1])* + (ydis1[i]+ydis]i + 1])? j 100){
count = count + 1;

xdisl[i+1] = zdisl[i]+zdisfi+1];
ydislfi+1] = ydisl[i]+ydisfi+1];

telse]

count = count + 1;

xdisl[i+1] = zdisl[i]+xdisfi+1];
ydis1[i+1] = ydisl[i]+ydis[i+1];

break;

1

xdis = rep(0,count); ydis = rep(0,count);
for(i in 1:count){

xdisfi] = xdis1fif;

ydisfi] = ydis1fif;

}

plot(xdis, ydis, type=
12,12),ylim=c(-12,12))
draw.circle(0,0,radius=10,border="blue”,lty=2,lwd=2)

1”7 main="Escaping Time Application”, zlab="z-displacement” ylab="y-displacement” xlim=c(-

count;
this return 27, this means it requires 27 moves before our particle leaving our given domain.

2. Particle Collision Cddle= 5000;
radius = 2;
ub = 40; Ib = -40;
azdis = rnorm(N, 0 ,1); aydis = rnorm(N, 0, 1);
bxdis = rnorm(N, 0, 1); bydis = rnorm(N, 0 ,1);
axdisl = rep(0,N); aydisl = rep(0,N);
brdis1 = rep(0,N); bydis1 = rep(0,N);
azxdis1[1] = 30; aydis[1] = 0;
brdis1[1] = -30; bydis[1] = 0;
xdisl = array(0,dim=c(2,N)); zdis = array(0,dim=c(2,N));
ydis1 = array(0,dim=c(2,N)); ydis = array(0,dim=c(2,N));
for(iin 1:N){
zdisl[1,i] = axdislfi] ; xdis1[2,i] = bxdisl[i];
xdis[1,i] = axdisfi] ; xdis[2,i] = bxdis/i];
ydis1[1,i] = aydis1[i] ; ydis1[2,i] = bydis1[i];
ydis[1,i] = aydisfi] ; ydis[2,i] = bydis[i;}

for(iin 1:N)X
for (jin 1:2){
if(xdis1[j,i] + xdisfj,i+1] & ub){
zdisl[j,i+1] = ub;
ydis1[j,i+1] = ydis1[j,i] + ydis[j,i+1]/2;
Yelse{
if(xdis1[j,i] + xdisfj,i+1] j 1b){
zdislfj,i+1] = Ib;
ydis1[j,i+1] = ydisl[j,i] + ydisfj,i+1]/2;
Yelse{
if( ydis1[j,i] + ydisfj,i+1] ; ub){
ydis1[j,i+1] = ub;
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zdislfji+1] = xdisl[j,i] + xdisfj,i+1]/2;

}oelse{if(ydis1[j,i] + ydis[j,i+1] j 1b){

ydis1[j,i+1] = Ib;

xdis1[j,i+1] =xdis1[j,i] + xdis[j,i+1]/2;

Yelse{

zdislfji+1] = zdis1[ji] + zdisfj,i+1];

ydisfj,i+1] = ydisl[j,i] + ydisfj,i+1];

133333

count = 0;

for(iin 1:N){

if((zdis1[1,i] — xdis1[2,i])? + (ydisl[1,i] — ydis1[2,i])? <= 2*radius){
break; }

count = count + 1;}

x1= rep(0,count); x2 = rep(0,count); yl1=rep(0,count); y2 = rep(0,count);
for(i in 1:count){

xlfi]=xdis1[1,i]; x2[i]= xdis1[2,i];

yl[i]=ydis1[1,i]; y2[i]= ydis1[2,i];}

plot(z1, yl1, type="1",main="trajectory of two praticle before collsion”, xlab="r-displacement” ylab="y-
displacement”, col="green”)

lines(x2, y2, col ="blue”)

count; this returns 2707 which gives number of steps before two particle fianlly hit each other in this domain
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In a physical explosion situation, the particles ”emiited” from a compact box into a larger space. Each
individual particles are forced to move outward direction and possibly hitting each other in their path. In
the real situation, the exact trajctory of each particles in explosion is too complicated to describle due to the
complexity of explosion and vast amount of particles react with each other. So here, we give a probabilistic
method to approximate the expected final position after some time interval of the explosion.

To simplify our model, let consider that all of our particles have initial position at the origin and all of
them are massless. And let’s consider our situation in a space without any other physical interaction. we
expect that the distribution of displacement position of our each partivles roughly follows a normal distri-
bution. Thus after a certian time steps N, our individual particles follows from a Brownian Motion Path.

Note here is that those assumpition only hold true at a very short time interval after explosion, since in
this time, the particles are very dense at a small ball around the orignal, so each particles react with each
other constantly like the situation from our previous cases. But soon after a certian time, the distance of
individual particles are large enough that they are not intereact with each other that often so the model are
not accurate in taht case.

A Simple Example of Explosion Simulation
In this simulation, we assume our space in two dimension, and with all the assumption we developed in
our discusssion above. and let’s consider the case that the time steps are 500, and number of particles are

relatively small, let’s say 5000. And after running the code, the graph is produced as following..

A Simple Simulation of Explosion
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And we do the simulation again with a much larger number of particles, let’s taken the number to be
50000 instead of 5000, and the graph is given by the following.
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A Simple Simulation of Explosion
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I found it pretty interesting that those graph not only looks like the explosion in the initial state but also
looks like the distribution of possible position of an electron with an atom. However, due to the complexity
I am not discuss about simulation of quantum particles in our simulation case, but leave this for interested
readers.

Another Example of Explosion Simulation

Now let’s consider the case where the explosion takes place in ground, that is any particles hitted the
ground (y-position = 0) will be stayed at that level, only able to move in the x-direction, since the external
force will still push it outward and sometimes inward. We will ignore the gravitation force at this time, since
it largely increase the complexity of our code. And we take our time steps to be less N = 50 for quickly
generating the simulation plot due to large number of calcaulation. Interested readers can modify the code
to write a much effcient simulation.

And let’s plot the graph as before using plot function recursively, and we obtain the following And the
black dots lies on the x-axis are are particles which reach the ground at this stage of the time.

A Simple Simulation of Explosion
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Explosion Simulation with Gravity

Now let’s consider a model silimar as the examples before but with additional gravitation take place
in our simulation. The gravity acts on each particle by changing its moving direction towards the ground.
And once the particle hitted the ground, it no longer moving for the rest of the time. Again to simplfy this
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situation, let’s introduce the gravitaion displacement, which acts on quantities of displacement of y axis of
each particles constantly. We expected eventually most particles hit the ground..

After ploting the graph after a time interval N = 200, we see from the graph that some of the particles
are stayed at the ground, and leaving some particles away from the origin. Such situation is quiet realistic

indeed for this time stage.

Simulation Time = 15
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Now giving those seems simply but actually powerful code, we are able to examine for each time stage,
the position of all exploded particles, and view this process a whole. The following pieces graph examines
this explosion simulation at different time stages, where we take our number of particles P = 200 and time
steps to be 5, 10, 20, 30, 50, 90, 130, 200 respectively. For quickly simulation of the graph, we take our
number of particles to be 200 (reatively small number) for each graph.
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A Simple Example of Explosion Simulation in Three Dimesnsion

Like what we have done before, let’s generalize the case into three dimension. We first consider the simple
case corresponding to what we done in the first example of two dimensional case.

3D Simple Explosion Simulation
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Another Example of Explosion Simulation in 3D

Now, we adjust the case to explosion on the ground as before, that is, after any particles the hited the
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ground, it remains there for the rest of the time.

And the graph produced is given as following, we see it is a very realistic simulation of the explosion.
Where I take the amount of particles to be 5000 and 50000 to produce the following two graphs.
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Example of Explosion Simulation with Gravity in 3D

Now we continue our modification of simulation as before, where we take the gravitation into account.
Again we introduce our gravitation displacement constant G = -9.8%0.01 into our code and modify the part
it affects on.
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As we can see from the graph comparing to our correponding one (N = 5000) before, there are evidently
less particles flowing over the air. This consistent with our intuition that graviaty does acts on those particles
and eventually pull all of them on the ground. (Ignoring air resistency in all our case).

Example of Explosion Simulation in a Corner with Gravity in 3D

Note the code I produce is easy to modify to produce different effect of explosion situation, for example
if I modify my code as following, we are able to produce an effect of explosion in a corner.

And the graph produced is given as following. It is a very nice simulation of explosion effect that takes
place in a corner after some time interval. There are many other situation you can simulate by modify the
code a little bit, but I am not to examine those situation for now.
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Example of Explosion Simulation in Each Stage with Gravity in 3D

For our final part of this section, like in the two-dimensional case, I am going to examine the simula-
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tion effect in a sequence of time interval, that is for each time stage, we are going to plot the positions of
all exploded particles, and view this process a whole. The following pieces graph examines this explosion
simulation at different time stages, where we take our number of particles P = 3000 and time steps to be
2, 5, 10, 20, 30, 50, 90, 150 respectively. Together, these following graphs give us a general idea of how the

explosion evolves in each time stage.
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1. Simple Explosition Code
N = 500; NUMBER OF TIME STEPS
P = 5000; NUMBER OF PARTICLES

zrnorm = matriz(nrow = P, ncol = N);
yrnorm = matriz(nrow = P, ncol = N);
for(i in 1:P){

xrnormfi,] = cumsum(rnorm(N,0,1));
yrnormfi,] = cumsum(rnorm(N,0,1));

}
plot(zrnorm(1,N],yrnorm[1,N],zlim = ¢(-100,100), ylim = ¢(-100,100),cex=0.1)

for(i in 2:P){
points(zrnormfi, NJ,yrnorm/[i,N],cex=0.1)

}

2. Explostion Simulation on Ground
N = 50; NUMBER OF TIME STEPS
P = 5000; NUMBER OF PARTICLES

zrnorm = matriz(nrow = P, ncol = N);
yrnorm = matriz(nrow = P, ncol = N);
for(iin 1:P){

arnormfi,] = cumsum(rnorm(N,0,1));
yrnormfi,] = cumsum(rnorm(N,0,1));
for(j in 1:N){

ifyrnormij] = 0)f

for(k in j:N){

yrnormfi,j] = 0;

1

3. Explosition Simulation on Gound 2
N = 15; NUMBER OF TIME STEPS
P = 5000; NUMBER OF PARTICLES
g = -9.8%0.01*1 GRIVATIONAL DISPACEMENT ON PARTICLES

zrnorm = matriz(nrow = P, ncol = N);
yrnorm = matriz(nrow = P, ncol = N);
for(i in 1:P){

zrnormfi,] = cumsum(rnorm(N,0,1));
yrnormfi,] = cumsum(rnorm(N,0,1) - g);
for(j in 1:N){

ifyrnormij] = 0)f

for(k in j:N){

xrnorm[i,k] = xrnormfi,j;

yrnormfi,k] = 0;

1

plot(zrnorm(1,N],yrnorm[1,N],zlim = ¢(-20,20), ylim = c(-2,25),cex=0.1,zlab="1 dispacement”, ylab="y
diplacement”, main="Simulation Time = 15”)

for(i in 2:P){
points(zrnormfi,NJ,yrnorm[i,N],cex=0.1)
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4. Explostion Simulation on 3 Dimension
N = 50;
P = 5000;

xnorm = 1:P;
ynorm = 1:P;
znorm = 1:P;

for(i in 1:P){

znormfi] = (cumsum(rnorm(N,0,1)))[N];
ynormfi] = (cumsum(rnorm(N,0,1)))[N];
;norm[i] = (cumsum(rnorm(N,0,1)))[N];

library(scatterplot3d)
par(cex = 0.3)
scatterplot3d(xnorm,ynorm,znorm,type="p” main="3D Simple Explosion Simulation”)

5. Explostion Simulation on 3 Dimension 2
for(i in 1:P){
aznormfi] = (cumsum(rnorm(N,0,1)))[N];
ynormfi] = (cumsum(rnorm(N,0,1)))[N];
ztraj = cumsum(rnorm(N,0,1) + G) HERE WE INTRODUCE THE GRAVITATION CONSTANT G
for(j in 1:N){
if(etrajfj] = OX
znormfi] = 0;
{elsef
znormfi] = ztraj[NJ;
133

6. Explostion Simulation on 3 Dimension on Corner
for(i in 1:P){
atraj = cumsum(rnorm(N,0,1))
for(j in 1:N){
if(stragfi] 1= 0){
znormfi] = 0;
telse{
aznormfi] = ztraj[N];

ytraj = cumsum(rnorm(N,0,1))
for(j in 1:N){

if(yiraifi] = O)

ynormfi] = 0;

Yelsef

%lorm[i] = ytraj[/N];

ztraj = cumsum(rnorm(N,0,1) + G)
for(j in 1:N){

if(ztrafj] 1= O)

znormfi] = 0;

Yelse{

znormfi] = ztraj/NJ;
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