
Text Classification
Nura Kawa

December 8, 2016

Introduction

This is an independent research project, supervised by Professor David Aldous. My goal is to learn basic
concepts of Natural Language Processing and the role that probability plays in language modeling. All code,
images, and data for this project can be downloaded online at github.com/nurakawa/text-classification .

Project Description

This project involves five steps:

1. Data Pre-Processing
2. Language Modeling
3. Classification
4. Visualization
5. Evaluation of Results

Data Pre-Processing

Downloading Data

I use the open-source BBC Dataset, available here: http://mlg.ucd.ie/datasets/bbc.html.

The dataset contains 2,225 articles from the BBC news Ibsite corresponding to stories in five topical areas
from years 2004-2005. Each article is labeled with one of the following five classes: business, entertainment,
politics, sport, and tech.

I downloaded the dataset and wrote the script import-data.R to output the data as a two-column data
frame, with one row per article. The first column contained the document text, while the second column
contained the class labels.

Splitting into Training and Testing

Next, I split the data frame into training and testing sets, randomly assigning 70% of the data to a “training”
set and leaving the remaining 30% for “testing”. The purpose of this step is for classification. Classification
models are fit to training data, which represents past observations, in order to predict the testing data, which
would represent new observations. It is important to perform this step before creating a language model in
order to avoid the mistake of training our model on data that is supposed to be unseen. Thus, I create two
copies for each language model: one with 70% of the dataset, and another with only 30%.

1

http://mlg.ucd.ie/datasets/bbc.html

Language Modeling

The goal of language modeling is to extract information from a corpus, or set of documents. One can engineer
a variety of features from text, such as word length, or frequency of punctuation. The most descriptive and
useful is term frequency, or the distribution of counts per word in each document.

Next, I discuss two language models that I used to fit my corpus: “Bag-of-Words” and “N-Gram”. Because
my corpus is quite large, I demonstrate each method with a toy example.

Bag-of-Words Model

The “Bag-of-Words” model treats a corpus as, quite literally, a “bag” of words. Each word in the document
is treated as a term whose probability of occuring is independent of preceding or proceeding terms. To fit
this model, one splits a corpus into a list of its words and counts the frequency of each term per document.

This is quite doable for large sets of documents using the R packages {tm} and {stringr}. I demonstrate
this below with a quick example from a small portion of The Tale of Two Cities by Charles Dickens:

[1] "It was the best of times, it was the worst of times, it was the age of wisdom,"

[1] "it was the age of foolishness, it was the epoch of belief,"

Here, our corpus is the book. Our “bag of words” becomes a list of all terms:

[1] "it" "was" "the" "best" "of"
[6] "times" "worst" "age" "wisdom" "foolishness"
[11] "epoch" "belief" "incredulity" "season" "light"
[16] "darkness" "spring" "hope" "winter" "despair"
[21] "we" "had" "everything" "before" "us"
[26] "nothing" "were" "all" "going" "direct"

To numerically express this bag-of-words, I simply calculate term frequency for each sentence.

2

th
e of

w
as it a in

w
er

e
an

d
ha

d to fo
r

th
at w
e

w
ith its on

pe
rio

d
ag

e al
l

an
y as at

be
fo

re
co

ck
la

ne
di

re
ct

en
gl

an
d

ep
oc

h
fa

ce
go

in
g

ja
w

Term Frequency

0

5

10

15

20

25

Notice that many of the most frequent words are “stop-words”, or commonly-used words that give no
additional meaning to our work. These include articles, pronouns, and conjuctions, such as “the, to, for, he,
and”. Removing these stop-words gives more information about the content of the document that you are
breaking down. I perform this step when fitting the bag-of-words model to the training and testing data.

N-gram Model

An N-gram is a phrase of word length N. Parsing our toy example into N-grams reveals the following terms:

For N=2, the top 15 terms:

[1] "it was" "was the" "with a" "in the" "of the"
[6] "to the" "a king" "a large" "a queen" "age of"
[11] "all going" "and a" "before us" "epoch of" "face on"

For N=3, the top 15 terms:

[1] "it was the" "a king with" "a large jaw"
[4] "a queen with" "all going direct" "and a queen"
[7] "before us we" "face on the" "jaw and a"
[10] "king with a" "large jaw and" "of times it"
[13] "on the throne" "queen with a" "the age of"

The N-gram model uses conditional probability to model a language or document. A term’s probability of
occurance in a document is conditioned on the preceding N-1 words.

For example, the probability of seeing the tri-gram “american presidential election” is:

P(“american”)P(“presidential|american”)P(election|american presidential)

3

In our example document, the bi-gram “of times” exists twice in the first sentence: “It was the best of times,
it was the worst of times.” In the bag-of-words model, the words “of” and “times” would be counted as
occuring twice; yet, their functionality as a bi-gram gives a different meaning to the writing style of Charles
Dickens. More relavant examples are N-grams seen in our data, such as “stock exchange”, “labour party”,
and “french open championship”, reveal a different meaning than from each word on its own.

In fact, one can derive easily that the Bag-of-Words model is equivalently the N-gram model with N=1.

Term Stemming

While not itself a model, it is important to mention the concept of term-stemming, where endings are removed
from words to avoid highly-correlated columns and retain information. An example of stemming is shown
below using a basic function that I wrote called “stem_word”:
stem_word("stationary")

[1] "station"

stem_word("player")

[1] "play"

stem_word("played")

[1] "play"

stem_word("running")

[1] "runn"

The example of “player” and “played” shows that stemming can reduce the number of terms in our language
model and eliminate the problem of high correlation. However, stemming causes the problem of loss of
information. For example, the words “stationary” and “station” have different meanings, but stemming
reduces them to the same term.

Classification

After fitting a language model to the training and testing sets, I fit a multi-nomial classificaiton model.
Classification is the process of assigning a class to new data given a set of past entries. Our goal is to be able
to read in a new document and, using a classification algorithm, predict what type of article the document is
(business, sports, etc.). There are two methods: one is unsupervised, where prior class labels are not used,
and the other is supervised, where class labels of known cases are used in validating the model.

Unsupervised: K-Nearest Neighbor Classification

I ran KNN classification testing various K, from 1 to 20. I found no success in this method. K-Nearest
Neighbor looks to the “nearest neighbors”, or most similar documents, of a new document, and classifies the
new document based on those most similar to it. This method has the possibility of working well if the term
frequencies are unique enough such that clusters are clearly found within the corpus. Running clustering
algorithms to check, I found many individual clusters appeared, with high within-cluster variances. This
shows that the algorithm found several classes within the documents, splitting them beyond simply five
categories. Perhaps withing “business” there are distinctions betIen articles written about the stock market
and articles written about start-up companies; perhaps “sports” reveals quite a distinction betIen football
and rugby. More exploration is necessary to see if this hypothesis is true; regardless, a high variance in the

4

information and a large number of terms makes K-nearest neighbor an unsuitable classificaiton method for
our purposes.

Supervised

Next I discuss supervised learning, using two highly successful models: Logistic Regression and Support-Vector
Machines

Logistic Regression with {glmnet}

I fit a penalized multinomial logisitc regression model using the L-1 penalty (this is the same penalty used in
the LASSO algorithm). I played with Stemming (mentioned above) and tested for a change in results.

Logsitic Regression model fits a regression line to data with categorical response (in our case, type of article)
from binary predictors (in our case, a term-frequency matrix). The L-1 penalty is added as a constraint to
optimization in order to shrink non-important coefficients (predictors) to 0.

Support-Vector Machines

A support vector machine for multiple classes fits several hyperplanes in a high-dimensional space to separate
data points and assigns classes to each area of the plane. Thus, no “regression line” is built - rather, this
model separates data points with highest margins.

This model worked nearly equally well as logistic regression.

Results

The table below shows the prediction accuracy of each language/classification model attempted. I do not
include KNN classification due to its extremely poor performance (less than 50% accuracy).

GLMNET GLMNET with Stemming SVM SVM with Stemming
95.51 95.21 95.96 95.21
88.17 91.47
70.36 72.01
43.86 36.23

Table 1: Results

Notice that N-gram models perform poorly for N=3 and N=4. It is important to note that the higher the N
value, the more data is needed to train a model. That is because the longer the sequence of words, the less
likely I are to see it our data. It is therefore easy to see why I get such poor results fitting models with N=3
and N=4 - I would need a much larger corpus of documents to increase prediction accuracy.

Conclusion

I concluded that, with a 95.96% accuracy, the best way to classify the BBC dataset is to model it with
bag-of-words, stem the terms, and fit a Support Vector Machine. Logistic Regression performs nearly equally
well. Interestingly, a Support Vector Machine improves the fit for an N-gram of N=2 model by over 3%.
Thus, we see that a Natural Langauge Processing for classification can be improved with fitting different
machine-learning algorithms, but that simply using an algorithm without paying attention to the quality of
the language model proves futile.

5

Further Exploration

Given more time, I would test different algorithms and play with more NLP methods to ensure a higher-quality
data set. I would also repeat this project with different data sets (including some of larger dimesion) and see
if my findings are reproducible.

Appendix: Word Clouds

6

last
market

new

company
ho

w
ev

er

firm

gr
ow

th

two

years

chief

now
expected

one
may

since

analysts

government

bu
si

ne
ss economy

world

financial
three

time

economic

months

companies

month
firstbank

to
ld

december

still

biggest

group

rise

shares

state

according

added

high

many

back

executive
much

strong
demand

m
ad

e

country

prices

fir
m

s

ne
w

s

next

in
te

re
st

in
ve

st
m

en
t

Figure 1: Wordcloud: bag-of-words model of ‘business’

7

bbc radio
gordon brown

liberal democrats
lib dems

liberal democrat

leader michael

tory leader
labour party

sp
ok

es
m

an
 s

ai
d

bbc news
home secretary

today programme

lib dem

el
ec

tio
n

ca
m

pa
ig

n

blair said

charles kennedy

the government

human rights

last week

downing street

last year

iraq war

foreign secretary
next general

public services

al
an

 m
ilb

ur
n

w
ill

 a
ls

o

home office

howard said
leader charles

next election
blair told said this

house lords

labour government

said character

affairs spokesman

also said

england wales

m
in

is
te

r
to

ny

conservative leader

david blunkett

david davis

next year
third term

charles clarke

conservative party
jack straw

minister said

new labour

oliver letwin

pe
op

le
 w

ill

spokesman mark

year old

Figure 2: Wordcloud: bi-gram model of ‘politics’

8

first grand slam
rbs six nations

radio five live
two years ago

coach mike ruddock

kenteris katerina thanou

told bbc radio

tour new zealand

bbc radio five
eu

ro
pe

an
 in

do
or

 c
ha

m
pi

on
sh

ip
s

international rugby board

m
ar

k
le

w
is

 fr
an

ci
s

boss jose mourinho
coach bernard laporte
court arbitration sport

french open champion
coach christos tzekos

cross country championships

kostas kenteris katerina

six nations championship

tel aviv chicago

tests tel aviv

anti doping agency

fir
st

 ti
m

e
si

nc
e

grand prix birmingham

re
fe

re
e

jo
na

th
an

 k
ap

la
n

rugby football union

world cross country

coach matt williams

international olympic committee

said year old

si
x

na
tio

ns
 c

la
sh

three years ago

two year ban

drugs tests athens
first away win

five years ago

france coach bernard

greek athletics federation

half charlie hodgson

january transfer window

long range effort

new york marathon

ruling body iaaf

will take place

win six nations
world record holder

athletics ruling body

boss sir alex

european cross country

ev
e

op
en

in
g

ce
re

m
on

y
failed drugs test

faking motorcycle accident

first six nations

Figure 3: Wordcloud: tri-gram model of ‘sports’

9

	Introduction
	Project Description
	Data Pre-Processing
	Downloading Data
	Splitting into Training and Testing

	Language Modeling
	Bag-of-Words Model
	N-gram Model
	Term Stemming

	Classification
	Unsupervised: K-Nearest Neighbor Classification
	Supervised
	Logistic Regression with {glmnet}
	Support-Vector Machines

	Results
	Conclusion
	Further Exploration
	Appendix: Word Clouds

