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Abstract

We give a mathematician’s view of evolutionary biology literature
concerning stochastic models for phylogenetic trees. We spotlight a
model for the tree on n extant species that would be observed if
macroevolution were purely random. The model can be extended in
two ways – to time series of observed taxa in a fossil record, and to
different levels of the taxonomic hierarchy – and provides a logically
consistent (“coherent”) framework for simultaneous study thereof. We
illustrate with a variety of theoretical calculations and simulations, and
propose a variety of real-data projects suggested by our analysis.

xxx This is a draft summarizing current state of an ongoing research

project, not intended for publication in this form.
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1 Introduction

There is a substantial literature on comparing data on different aspects of
biodiversity or macroevolution – the evolutionary history of speciations and
extinctions – with the predictions of simple “pure chance” stochastic mod-
els. Available data includes
(a) fossil time series – fluctuations in number of taxa over time;
(b) shapes of phylogenetic trees on extant species (Mooers and Heard [27]
provide an extensive survey);
(c) the distribution of number of species per genus.
The fit of simple models, and of more elaborate models incorporating con-
jectured biological process, have been studied in these contexts. While
data-motivated models are scientifically natural, a mathematical aesthetic
suggests a somewhat different approach: start with a “pure chance” model
which encompasses simultaneously all the kinds of data that one might hope
to find. Here are two instances of what one would like such a coherent model
to provide.
(i) Joint description of the phylogenetic tree on an extant clade of species,
its extension to the tree on an observed small proportion of extinct species,
and the (unobserved) entire tree on all extinct species.
(ii) Joint description of fossil time series at different levels of the taxonomic
hierarchy.
We emphasize (ii) because paleontology literature tends to assume that a
model can be applied at any level, without enquiring whether this assump-
tion is logically self-consistent.

Our purpose is to present what is arguably the mathematically funda-
mental such model. The underlying model is simple – a critical branching
process conditioned to have n lineages at the present time. The model ex-
tends to higher-order taxa by assuming each new species has some probabil-
ity of founding a new higher-order taxon; we consider several more detailed
classification schemes emphasizing desiderata such as monophyletic groups.
Model fossil species by assuming each extinct species has some probability
of being seen in the fossil record. Though hardly new in concept, our focus
on conditioning to have n lineages (for comparison with real clades on n
extant taxa) makes our results somewhat new in detail.

Conceptually, this is a neutral model which does not incorporate con-
jectured biological process such as intrinsic tendency for species numbers to
increase, differential speciation or extinction rates, or ecological constraints
on numbers of species. For well-understood mathematical reasons (see end
of Section 1.2) neutral models like our are implausible for large clades. In
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a sense, the model seems most appropriate as a “null hypothesis” for small
clades, at the recent fringe of the Tree of Life, or for a geological period free
of mass extinctions and their aftermath.

The recent paper of Tavaré et al [49] is an exemplar of how to study a
particular clade (primates) by combining different sources of data – phyloge-
netic trees on extant species, fossil record – with macroevolutionary models.
Our model is not intended to be realistic enough for such applications, but
rather, as a logical starting platform for building more realistic models.

1.1 Plan of paper

Section 2 reviews standard models, and Section 3 reviews the various biolog-
ical uses of such models. Section 4 describes our basic model at the species
level, and Section 5 presents its mathematical properties, encompassing both
analytic formulas (some developed in detail elsewhere) and simulation re-
sults. Section 6 describes how our model is extended to model higher-order
taxa. Section 7 (xxx under construction!) presents mathematical prop-
erties of the model for higher level taxa.

This paper has two different sets of conclusions. First, we obtain a suite
of mathematical results within our model – Section 1.2 provides an overview.
As mathematicians we are reticent to claim that simplistic mathematical
models lead to biological insight. But we do think that our broader-ranging
approach provides a somewhat different conceptual framework for asking
questions about quantitative aspects of biodiversity, which could be stud-
ied by evolutionary biologists looking at real data. We outline five such
questions in Section 1.3.

1.2 Overview of mathematical results for our model

1.2.1 Orders of magnitude

We draw attention to the following order1 results for a clade with n extant
species.

• The n2 law : that the number of extinct species is order n2 (Section
5.5).

• The n law : that the time since clade origin or since last common
ancestor is order n times the mean species lifetime (Section 5.4).

1order means order of magnitude: 1

2
n2 and 2n2 are both order n2
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• The 1/r law : that with probability 1/r there was some past time at
which the number of species was at least r times the present number
(Section 5.5).

• The (log n)/n law : that the probability a given extinct species is
ancestor to some extant species is order (log n)/n (Section 5.6).

• The constant law : that the probability that a given extant species is
descendant of some other extant species has non-zero limit as n → ∞
(Section 5.3).

1.2.2 Formulas

Within our model for a clade on n extant species we develop fomulas for
various quantities; these are derived as n → ∞ limits, but one can check via
simulation that they are usually reasonably accurate for moderate values of
n.

• A “local” description of the probability structure of lineages, which
permits easy calculations (Section 5.1).

• A “loss of evolutionary history under random extinctions” calculation
(Section 5.2).

• A formula for the joint distribution of time back to origin of clade;
time back to last common ancestor; number of species at that time
(Section 5.4).

• Number of extinct species (Section 5.5).

• Chance that a fossil is ancestral to some extant species (Section 5.6).

1.2.3 Properties of the model for higher level taxa

xxx This is work in progress. Section 7.1 outlines what we hope

to do.

In this version we present only the following fragments. Throughout the
paper we write “genus” for an arbitrary higher level taxon.

• Shape of phylogenetic tree on extant genera (Section 7.2).

• Fluctuation rates for time series of number of genera (Section 7.3).

• Number of species per genus (Section 7.4).
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1.2.4 Comments

Our fundamental purpose in this project is to illustrate the wide range of
calculations possible within a coherent model. We re-emphasize that we are
using a model which deliberately lacks biologically-motivated assumptions;
but there would be no difficulty in principle in repeating calculations within
models claimed to be more biologically realistic.

Note that the n law (Section 1.2.1) makes our model unrealistic for large
extant clades: with the usual “a few million years” estimate for mean species
lifetime [39], a 200-species clade originating less than 30 Myr ago would be
implausible within the model.

Finally, we record a simulation study (section 5.7) of estimates of past
within-clade speciation and extinction rates based only on the phylogenetic
tree of lineages of extant species; our study casts doubts on the ability of
such data to provide even crude estimates reliably.

1.3 Specific projects in quantitative macroevolution

Here are five specific questions suggested by our work, which we would like
to draw to the attention of experts.

1.3.1 Fluctuations at different hierarchical levels

Sepkoski’s compendia [43] (see also Benton [7]) are justly celebrated for
providing raw data for the statistical study of long-term evolutionary history.
Because of the difficulty of resolving fossils to the species level, this data
is typically presented as time series for numbers of genera and families.
Consider summary statistics
µg[µf ] = mean lifetime of a genus [family]
varg[varf ] = fluctuation rate for genera [families]
G = mean number of genera per family.
Within any probability model there will be theoretical relationships between
these quantities.

Project. Compare the relationships between these quantities observed
in data with the predictions of a probability model.

Of course, such questions have previously been studied (see section 7.5 and
the quote in section 3.2), in part because deviations from randomness may
be relevant to issues such as competitive or expansive? (Section 3.3). How-
ever, the mathematical models previously used seem rather haphazard; our
model provides a more coherent framework for making predictions. Some
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preliminary results are given in Section 7.3. We study a notion of normalized
fluctuation rate for a given taxonomic level, where the normalization is such
that the rate would equal 1 if we were modeling that level directly as a “pure
chance” process. Thus in our model the normalized rate for species equals 1
because we do model species fluctuations as being pure chance. For higher
taxa the rate is not 1 because fluctuations in taxons of species numbers
are derived from fluctuation numbers via a scheme for assigning species to
(say) genera. Table 5 shows that, under one plausible classification scheme
for fossil taxa, the normalized fluctuation rates for taxa of average size 10
species drops to 0.68. Conceptually, the point is that such reduced fluctu-
ation rates are predicted as an artifact of hierarchical classification rather
than as a consequence of some biological effect.

1.3.2 Phylogenetic tree shape and hierarchical level

It is a longstanding puzzle [27] that real phylogenetic trees seem more “im-
balanced” than predicted by a natural Markov model, though more balanced
than a (less natural) uniform or PDA (proportional to distinguishable ar-
rangements) model. Many possible biological explanations for imbalance
have been proposed, including “artifact of higher-level classification”. Our
model provides a framework for studying such questions, coherently with
study of fluctuations described above.

Two studies [17, 26] of published small trees discussed in [27] conclude
there is no such hierarchical trend in imbalance, but do indicate that more
complete trees tend to be more balanced than less complete trees. These,
and most other, studies used a summary statistic to measure imbalance of
each tree. A different method, used in [4] on a few large trees, seems less
arbitrary and more powerful. Each branchpoint of a binary tree splits a
clade of size m (say) into subclades of sizes a and m − a, where we take
a ≤ m/2 as the size of the smaller daughter clade. Given a collection of
trees, take all the splits in all the trees, and then calculate the function

a(m) = median size of smaller daughter clade in split of size-m clade.

This function provides a measure of “balance” in a collection of trees which
has three advantages over using summary statistics (uses more within-tree
structure; avoids arbitrary choice of summary statistic; avoids issues of nor-
malization required to compare different size trees). As an illustration of
what can be done within our model, in section 7.2 we study the shape of
the phylogenetic tree on extant genera arising from a plausible classification
scheme for extant species. Table 4 indicates that imbalance (as measured by
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a(m)) does increase with average number of species per genus, though this
increased imbalance is more prominent within smaller clades. This analysis
suggests that observed imbalance in trees on higher level taxa may be an
artifact of classification.

Project. Use published data to compare the functions a(m) for com-
plete trees on species, on genera, on families, etc.

1.3.3 Extant ancestral species

Our model predicts (6) that for about 63% of extant species, some ancestral
species should be extant. While this numerical value depends on rather
arbitrary details of the model, general mathematical principles show that for
any model incorporating extinctions and speciations which are not “tightly
coupled” in some way (see example below), the model will predict that some
constant percentage (not close to 0%) will have extant ancestors.

Project. Find data to estimate, within well-studied extant clades, the
proportion α of extant species with some extant ancestor.

Anecdotally, biologists regard α as small, though we have been unable to
find useful data, perhaps in part because cladistics dogma discourages asking
this question. Models like ours assume a species is a well-defined entity
with a time of origin and a time of extinction (this idea is cladogenesis),
in contrast to anagenesis, meaning change along an unbranching lineage.
If data indeed confirms that α is small, then it is evidence in favor of at
least moderate prevalence of anagenesis. Moreover, any kind of statistical
study of question such as “what was the speciation rate of this particular
clade during its radiation” implicitly depends on models of the type which
predict non-small α, and so all such work would appear less convincing if
data reveals α to be small.

To make a cladogenesis model with small α, one needs a model such as
the following. Take a small parameter θ < 1

2 , Suppose that for each species,
the following events occur with relative chances

extinction θ
speciation θ

replacement by a daughter species 1 − 2θ.

Such models will give a small value of α (specifically α = (1 − e−2θ)2θ),
precisely because they are effectively interpolating between cladogenesis and
anagenesis (smaller θ giving a larger contribution of anagenesis).
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1.3.4 Past fluctuations in sizes of extant clades

There is an intuitively appealing biological explanation of readily-identifiable
clades. A successful clade begins with a key innovation in one species, fol-
lowed by a rapid adaptive radiation of species sharing that innovation; clade
size increases until a level set by ecological constraints, and stays at roughly
this maximum level (while individual species arise and disappear) until some
extrinsic factor upsets the equilibrium. Notwithstanding textbook examples
of clades (horse, rhinoceros) which were much larger in the past, some ver-
sion of this “logistic” picture is often taken to be self-evident, as the following
quote (our emphasis added) indicates.

[We study] theoretical clades that have either been growing ex-
ponentially throughout their history or have been of constant
size, such that each time a new lineage has appeared by specia-
tion another lineage has gone extinct. These extremes bracket the
plausible dynamical histories of real clades. . . . . Logistic growth,
in which diversity rises to some maximum, is a convenient model
for macroevolutionary clade expansion . . . . In this framework,
exponential growth is the early phase of logistic growth, and
the constant size model describes a clade that has been at its
maximum size for some time. (Nee and May [30])

This may be a perfectly reasonable view of large clades (flowering plants,
birds, mammals), but what about small clades? A particular way to think
about past fluctuations of clade size is to consider the quantity

R =
max number of species at any past time

current number of species
.

Here R ≥ 1 because we include “current time” in “any past time”. The
standard view, as quoted above, is that typically R will be close to 1. In
contrast, our model predicts (11) the 1/r law:

P (R ≥ r) = 1/r

so that R would vary widely between clades, with a median value of 2. This
prediction may seem unrealistic to biologists, but is it less realistic than
predicting R = 1?

Project. Look at small extant clades (size 5 − 40, say) with extensive
fossil records, and attempt to estimate the distribution of R from the fossil
record.

The next project addresses a similar issue in a different way.
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1.3.5 Variability of realizations, and conservative analysis of bi-
ological significance

Though the intrinsic variability of realizations of stochastic models of macroevo-
lution has often been noted, the classical statistical practice of comparing
averages of quantities derived from data with averages predicted by models
often makes it hard to keep variability in mind. Figure 5 later provides a
dramatic illustration. That figure shows three quantities associated with our
model (time of clade origin; time of last common ancestor of extant species;
number of species at time of last common ancestor) and shows 10 realiza-
tions; each of these quantities varies by a factor of 10 over the realizations.

Space constraints of print journals used to make it impractical to show
pictures of multiple realization of stochastic models, but the Web has no
constraint, and authors of new models should routinely post simulations.
Our site [1] shows, for a selection of values of n, 10 realizations of the
phylogenetic tree on n extant species derived from our model. Figure 3
later shows three out of 10 realizations for n = 20. If we saw three real trees
with such radically different radiation patterns and times, then we would
surely be inclined to attribute biological significance to the differences. But
for our model, no one of the three trees is particularly unlikely. Our model,
with its intrinsic greater variability, therefore provides a more conservative
approach to assessing significance of observed features of phylogenetic trees.

More concretely, consider the problem of estimating past speciation and
extinction rates within a clade using only the phylogentic tree on extant
species. Our simulation study (section 5.7) shows that, if our model were
the true underlying model, then estimating parameters in a standard birth-
and-death model would give wildly variable and unreliable estimates. This
casts doubt on the whole prospect of estimating rates from such data, in the
context of a single clade. But in contrast, one can hope that a statistical
study of many clades would provide some insight into typical patterns of
macroevolution.

Project. Assemble a database of phylogenetic trees (with relative time
scale) on extant species, for statistical study of macroevolutionary process
(as a complement to the fossil compendia [7, 43]).

Existing databases such as TreeBASE [50] record cladograms, but these
are far less useful for the studies we envisage, such as

Project. Use such a database for a careful study of whether, in the
context of extant small clades, stochastic models designed to exhibit logis-
tic/exponential growth provide a better fit than alternate models with the
same number of parameters.
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2 Standard stochastic models

2.1 The basic picture

Our conceptual “basic picture” for macroevolution is that different species
are different entities; each species originates at some time as a “daughter”
of an existing species; each species survives until some extinction time (or
the present time). See figure 1; each species is represented as a vertical
line running downwards from time of origin to time of extinction, with the
parent-daughter relation indicated by a horizontal line. This basic picture
can of course be criticized in many ways (over details of speciation, since it
assumes speciation is relatively rapid; and for ignoring anagenesis, that is
change along an unbranching lineage) but as a reasonable conceptual sim-
plification it is uncontroversial. We study probability models imposed on
this basic picture. Our viewpoint is that anything one does involving phy-
logenetic trees and probability models (trees on higher-level taxa; inference
in the context of unseen extinct species) should be consistent with the basic
picture. This should also be uncontroversial, though is rarely emphasized in
the literature.

2.2 The Yule model

Yule [53] proposed the basic model for speciations without extinctions. Ini-
tially there is one species; in a time interval [t, t+dt] each species has chance
dt to give rise to a daughter species. In this model the number of species
grows exponentially with time. So for given n one can get a model for an
n-species tree by taking the present as a random time at which the number
of species equals n.

Though this species model is familiar nowadays, the main point of Yule’s
work is invariably overlooked. He superimposed a model of genera by sup-
posing that, from within each existing genus, a new species of new genus
arises at some constant stochastic rate λ. This leads to a one-parameter
family of long-tailed distributions for number of species per genus (see [4]
for brief description). Yule’s model perhaps foreshadows “hierarchical selec-
tion above the species level” [15]; in contrast, our model for higher-level taxa
(Section 6) doesn’t involve separate genus-level biological effect, but rather
combines species-level novelty with conventions about how systematicians
construct genera.

10



2.3 The Moran/coalescent model

These models, developed and extensively used in population genetics, can
also be applied to macroevolution (see e.g. [19]). In the Moran model ([12]
sec. 3.3) the number of coexisting species is fixed at n. At successive discrete
times, one randomly-chosen species goes extinct and another randomly cho-
sen one speciates. Implicit in this model (run from the indefinite past until
the present) is a model for the phylogenetic tree on the n extant species;
for large n, with suitable rescaling of the time unit, the phylogenetic tree
approximates the continuous-time coalescent model. To describe the coales-
cent model, we run time backwards from the present, starting with n “lines
of descent”; in a time interval dt, each pair of lines of descent has chance dt
to merge (“coalesce”) into one line, and we continue until reaching a single
last common ancestor. See [25] for a recent survey.

2.4 Conventions: trees, time units, parameters

In the paper we use the term phylogenetic tree, or just tree, to mean a tree
with a time scale; speciations and extinctions occur at definite times. Pub-
lished data on extant species typically just shows the topology of such a tree,
without times at which lineages diverged. We use the term cladogram for
such trees – it seems helpful to emphasize the distinction. We are concerned
with models for phylogenetic trees, but of course such a model automatically
induces a model on cladograms.

To compare different models, one needs a convention which relates the
time unit within the model to real-world time. A natural convention is to
take an “evolutionary time unit” (ETU) to be the mean lifetime of a species
until extinction. With this convention, the discrete steps in the Moran model
take 1

n ETU, and the time unit in the coalescent model is 1 ETU. We will use
this convention (for the Yule model, without extinctions, one has to fudge,
but this is not important).

The models above are zero-parameter models2.

2.5 Critical branching process

Raup et al. [16, 40] proposed a model for extinct clades which is essentially
what mathematicians call the continuous time critical binary branching pro-
cess (CBP). In this model, each lineage becomes extinct at constant rate λ

2More precisely, the real-world parameter “mean species lifetime” is absorbed into the
ETU. In physicists jargon, there are zero dimensionless parameters.
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(that is, with chance λ dt in each interval of length dt), and also gives rise to
daughter species at the same rate λ. So λ = 1 per ETU. Starting with a sin-
gle lineage, the clade is likely to become extinct quickly, but one can study
the large clades which sometimes arise by chance. When the number of
lineages n is large, the CBP behaves over short times like the Moran model,
though of course the difference is that in the CBP the number of lineages
fluctuates randomly with time. Note that CBP is also a zero-parameter
model.

2.6 Birth-and-death models

What mathematicians call birth-and-death models are conceptually natural
for modeling the fluctuations of number of lineages with time. The general
(infinite-parameter) such model has parameters (λi, µi, i ≥ 1). When the
total number of lineages is i, then at rate λi some lineage splits, and at
rate µi some lineage dies; to model a tree, in each case we choose the lineage
uniformly at random. Thus the Yule model has λi = ci, µi = 0 and the CBP
has λi = ci, µi = ci. The linear birth-and-death model has λi = λi, µi = µi.
This model (with λ > µ > 0) is often used to model growing clades, though
its mathematical property of either rapid extinction or ultimate exponential
growth is of course unrealistic. Note that µ = 1 per ETU, so this is a
one-parameter model.

Many variants of birth-death models have been proposed, though ironi-
cally the key debate between logistic and exponential growth (Section 3.3)
has been generally discussed via deterministic models (Sepkoski [46]) rather
than stochastic ones.

2.7 Cladogram shape

If we use any of these models to produce a tree on n extant species, and then
reduce to the cladogram linking these n species, the probability model on n-
species cladograms is the same Markov model regardless of the original model
on trees.3 Essentially, starting with one species one can let the number of
species fluctuate with time in an arbitrary deterministic or random way to
end with n species; as long as the model has the exchangeability property

3Using the CBP model of a large extinct clade, and then randomly sampling a relatively
small number n of species and looking at the cladogram on sampled species, gives a
different distribution on cladograms: the uniform distribution. This fact, and a related
simple description of the phylogenetic tree on the sampled species, play a central role in
recent mathematical study [3] of random trees outside the context of biological evolution.
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when some species goes extinct, it is a uniform random species;
when some species speciates, it is a uniform random species.

we get the Markov model on cladograms. See [4] for recent discussion.

2.8 Other models

We have listed above only the mathematically simplest models; one can
invent an unlimited number of further models incorporating conjectured
biological process. One can think of speciation and extinction rates as being
time-dependent rather than size (of clade)-dependent. Or these rates could
be variable and partially inherited down lineages [18].

There is a rather disjoint literature by statistical physicists (e.g. [32]),
designing models of macroevolution to exhibit behavior (scaling laws, self-
organized criticality) found in other physical settings.

3 Biological use of stochastic models of macroevo-
lution

The uses to which these stochastic models have been put are surprisingly
varied, but can roughly be fitted into three categories.

(a) Inference about macroevolutionary process. When we see some no-
table feature in the evolutionary record of speciations and extinctions, we are
inclined to assume it must have some biological significance. But if the same
feature would likely be observed in a hypothetical model of “purely random”
macroevolution, then the evidence for biological significance is weak.

(b) A convenient way of doing speculative calculations. What proportion
of identified extinct species might be direct ancestors of extant species?
What effect would extinction of some proportion of extant species have on
the overall diversity of extant species?

(c) As a component in algorithms for reconstructing trees from data us-
ing statistical methods. Practical tree reconstruction is a huge discipline
[33, 42]. In brief, parsimony methods pay no attention to any probability
model for trees; maximum likelihood methods implicitly assume (from a
Bayesian viewpoint) that all possible trees are a priori equally likely; and
Bayesian methods use an explicit prior distribution on trees. See [20] for
recent discussion of the Bayesian methodology.

While (c) is an important area it is remote from our concern in this
paper; we are envisaging that the literature shows “true trees” with which
to compare the predictions of models. What we are actually doing in this
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paper is (b), as summarized in Section 1.2. But our underlying motivation
comes from (a), and so we will briefly recount some of the issues for which
our simple models, or more realistic modifications thereof, might provide
insight.

3.1 Assessing goodness of fit of stochastic models

To what extent stochastic models fit real data is of course the $64,000 ques-
tion. We do not attempt to answer it here, or survey the literature thor-
oughly, but confine ourselves to brief remarks. To fit time-series data from a
particular clade (whether total number of taxa in an extinct clade, or number
of lineages of an extant clade) to one of these birth-and-death type models by
estimating parameters is a well-understood aspect of inference for stochastic
processes [6]; for representative biological literature see e.g. [29, 34, 48] and
see [28] for further citations. A statistical test of significance is a tool for
answering a very particular question: does data provide strong evidence to
overturn an artificial presumption that a null chance model is precisely true?
While tests of significance have often been done in the context of diversity
models ([22, 52] and many others), we regard them as a misplaced emphasis.
For biodiversity, all we should expect is that a model might be a crudely
accurate representation for some clades while being grossly inaccurate for
others, and formal tests of significance are simply not designed to compare
qualitative “goodness of fit”. To argue convincingly that (say) the logistic
model is the best explanation of clades of a particular size or duration, one
should compare that model with another model with the same number of
parameters representing some biological alternative explanation, and this
apparently has never been done.

3.2 Long term macroevolutionary process

Jablonski [21] gives a concise account of paleontologists’ views of the resolved
and unresolved issues in long-term macroevolutionary process. Many of
these issues (major mass extinctions; the apparently non-random origin in
time and location of major evolutionary innovations) are not amenable to
simple stochastic modeling of the kind we consider, though our kind of
model, maybe realistic for shorter periods, seems relevant to certain aspects:

The complex trajectory of taxonomic diversity through [600 Myr]
has proved robust to continued sampling and, as shown by sim-
ulations, to very different phylogenetic approaches to grouping
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species into higher taxa. But diversity time series become in-
creasingly jagged and disparate at lower taxonomic levels and
on regional scales, both because sampling is less complete and
because lower-diversity lineages really are almost inevitably more
volatile. [21] (our emphasis added).

Note that, despite obvious possible sources of bias in the fossil record (older
groups may be less frequently preserved; taxonomic boundaries may be
drawn more broadly for ancient groups than for recent groups), paleon-
tologists are adamant (e.g. quote above and [10, 44]) that the large-scale
pattern of diversity through time provided by the fossil record is generally
accurate.

Kirchner and Weil [5] unearthed the surprising result that fossil data
shows that the cross-correlation between the time series of extinctions and
originations is maximized at a time lag of of about 10 Myr (originations later
than extinctions), whether the “Big Five” mass extinctions are included or
excluded.

3.3 Logistic versus exponential growth

An ongoing debate, nicely summarized in Benton [8], concerns whether
a typical radiation of a group is primarily competitive (replacing existing
groups) or expansive (occupying new niches). The former suggests a logistic-
type curve for species diversity as time increases, whereas the latter suggests
an exponential-type curve. To quote [8]

It is hard to provide a clear test of which of these kinds of curves
fits the [very long-term] data best. In all cases, investigators
accept that the curve fits are not perfect, since the patterns of
generally increasing diversity are offset by many drops in diver-
sity, some associated with major mass extinctions, others with
extinction events of more local scale, or affecting only certain
taxa. When such perturbations are excluded, proponents of the
exponential and logistic models claim to have found curves that
fir the empirical data well . . . . . . Large-scale plots of the diver-
sification of life seemingly cannot yet distinguish between pat-
terns of unfettered expansion (exponential curves) and those of
long-term steady-state conditions (logistic curves). This is an
important problem to resolve, because it goes to the heart of
our understanding of evolution: do species evolve within a tight
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straightjacket imposed by their interactions with other organ-
isms (the equilibrium view), or has much of evolution been lim-
ited only by the capacity of organisms to enter new ecospace (the
expansionist view)?

3.4 Short term macroevolutionary process

An elegant use of shorter term stochastic models has been made by McKee
[23, 24]. The fossil record of large mammals in southern and eastern Africa
over the last 3 My shows apparent “pulses” of extinctions and speciations.
Is this real, or could it be an artifact arising from the limited number of
different dates of sites yielding the fossils? McKee studies this by comparing
data with simulations from a Moran-type model (as a null hypothesis) and
with simulations from a variant assuming pulses.

4 The model: species level

Here are three different trees one can associate with an extant clade. Call
the tree linking all extant and all extinct species the complete tree. Call
the subtree recording only the extant species and their ancestor species the
ancestral tree. Call the tree showing divergence times of extant species,
without identifying linages at past times with particular extinct species, the
lineage tree.

We now propose coherent models for such trees with a given number n of
extant species. We will take for the underlying model is the critical binary
branching process (CBP), from Section 2.5 : each species becomes extinct
at rate 1 and produces daughter species at rate 1. We will measure time
t > 0 backwards from the present time t = 0 : “t decreases” is equivalent to
“time runs forwards”.

4.1 The model for clades on n extant species: definition and
simulations

We define the model as follows.
(a) The clade originates with one species at a random time in the past,
whose prior distribution is uniform on (0,∞).
(b) As time runs forward, each species becomes extinct or speciates at rate
1, as in the CBP model.
(c) Condition on the number of species at the present time t = 0 being
exactly equal to n.
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The “posterior distribution” on the evolution of lineages given this con-
ditioning is then a mathematically completely defined random tree on n
extant species, which we write as c − TREEn (here c is mnemonic for com-
plete) 4. A realization of this tree then also determines a realization of the
ancestral tree on extant species, which we write as a − TREEn (where a
is mnemonic for ancestral), and a realization of the lineage tree on extant
species, which we write as l − TREEn (where l is mnemonic for lineage),

Associated with these random trees are a variety of numerical-valued
random quantities, in particular:

Cn(t) = total number of species at time t

An(t) = number of species at time t in the ancestral tree

(equivalently: within the lineage tree)

T origin
n = time of origin of clade

T lca
n = time of last common ancestor of extant species.

Figure 1 shows a realization of the complete tree c−TREEn for n = 20,
together with the quantities defined above. Figure 2 shows the restriction
of that realization to the ancestral tree a−TREE20. (These trees are drawn
in a particular objective way described in the legend; usual ways of drawing
large trees with a time scale, as opposed to cladograms, seem to involve
more arbitrary layout decisions to ensure that small subclades are drawn
near their parents. Repeats of Figures 1, 2 and 7 with different realizations
can be found on the web site [1].)

The underlying idea of the model – critical branching, which is equal-
rates speciation and extinction – has of course been used before. Raup
et al ([40] and subsequent papers) explored such models for extinct clades
via simulation. Basic mathematical analysis of models for extant clades has
been done in Hey [19], Nee et al. [31] and subsequent papers. Our particular
c − TREEn model has been considered via simulation in Wollenberg et al
[52], though we regard their work as somewhat flawed in detail for reasons
explained in Section 8.2.

4In (a) we use an improper [total probability is infinite] prior distribution, but after
conditioning the posterior distribution of c − TREEn is proper [total probability is 1].
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Figure 1. A realization of c−TREE20, a complete clade on 20 extant species.

The figure is drawn so that each species occupies a vertical line (from time of origin

to time of extinction (or present)), different species evenly spaced left-to-right (so

that each subclade is a consecutive series), using the convention: daughters are to

right of parents, earlier daughters rightmost. On the left is a time series of numbers

of species: the outer line is total number of species, the inner line is number of

ancestors of extant species. The
⊙

are marks used later to construct genera. In

this realization there were a total number 142 of extinct species, with a maximum

of 38 species at one time; T lca = 9.05 and Torigin = 12.75.
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Figure 2. The realization of a−TREE20 derived from figure 1, showing only

extant species and their ancestors. There were 38 extinct ancestral species.
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4.2 The lineage tree on extant species

The trees above distinguish different ancestral species and their lifetimes; in
the lineage tree we just record lineages of extant species. This is the familiar
phylogenetic tree obtained from molecular data on extant species.

In Figure 1 we deliberately chose a realization which was “typical”, in
that various quantities of interest are close to their median values. But
part of our general message is that there is no such thing as a “typical”
realization, because realizations vary dramatically. Our web site [1] shows
10 realizations of the lineage tree on n species, for each of n = 8, 12, 20.
Figure 3 shows three of the n = 20 realizations.

Figure 3. Three realizations of the lineage tree in our model, with n = 20.

These are realizations 1, 5, 6 from [1].
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5 Mathematical properties: species level

Our methodology will be to write down approximate formulas, derived from
n → ∞ asymptotic results. Of course such “large n” results may seem
inappropriate, since as mentioned in the introduction we are envisaging our
model as realistic only for comparatively small clades. But they do serve to
give qualitative insight about a wide range of features; and for small n one
could give numerical calculations or simulations for any particular features
of biological interest.

5.1 Local structure of l − TREEn

A rigorous mathematical result (see Theorem 5 of [36]) shows that the “pos-
terior distribution” of our model has an asymptotic stochastic limit as the
number of extant species increases. This result implies a simple approxi-
mate description of the local5 structure of the lineage tree on extant species6

l − TREEn, for “large n”. One can also think of this result as the exact
description of the local structure of the lineage tree of a hypothetical infinite
clade l − TREE∞.

Construction of l − TREE∞ [36]. First put the extant species at po-
sitions . . . ,−2,−1, 0, 1, 2, 3, . . . on the horizontal axis. At each midpoint
. . . ,−1.5,−0.5, 0.5, 1.5, 2.5, 3.5, . . . we put a branchpoint × at a random
height, these heights being independent with probability density function

f(t) = (1 + t)−2, t > 0.

These branchpoints determine the phylogenetic tree; one recipe is that the
lineages between species i and species i+1 diverge at the time of the branch-
point above position i + 1

2 . Figure 4 shows an example of 20 species in a
realization of l − TREE∞; the species are labeled {−9, . . . , 10}.

Elementary calculations. While some calculations within l − TREE∞

are implicitly done in the existing literature as asymptotics within other
models, our construction makes many calculations quite easy. Here are
some examples.

5Local is math jargon for “within order 1 ETU time of the present”. Similarly global

means “over time-scale of order n”, i.e. back to the origin of the clade, and intermediate

means intermediate between these time scales.
6The same process l−TREE∞ arises as the limit in the Moran model; this is a reflection

of the fact that the Moran model and CBP are similar over short and intermediate time
periods.
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Figure 4. A realization of part of l − TREE∞, approximating the local

structure of l − TREEn for large n. The 2 visible ancestral lineages diverged at

around 16 ETU.

(a) The density of lineages (number of lineages relative to number of
extant species) at time t is just the density of branchpoints at height greater
than t, that is

G(t) =

∫ ∞

t
f(s)ds = (1 + t)−1.

The size of (that is, number of extant species descended from) a typical
lineage at time t has geometric( 1

1+t) distribution

pt(i) =
(

1
1+t

)(

t
1+t

)i−1
, i ≥ 1 (1)

because this is the distribution of distances between branchpoints at heights
greater that t.

(b) As t increases (time runs backwards) a lineage merges with some
other lineage at stochastic rate

merge − rate(t) = 2 f(t)
G(t) = 2

1+t

because such a merger occurs in [t, t+ dt] when one of the two branchpoints
separating the given lineage from its neighboring lineages, which must be
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at height ≥ t, occurs during [t, t + dt], and this has chance f(t)dt/G(t) for
each branchpoint. Moroever, if a lineage merges at t then (independent of
the size of the first lineage) the size of the second lineage has the geometric
distribution pt(·) at (1).

(c) As t decreases (time runs forwards) a lineage of size m at time t
splits at rate

split − ratem(t) =
m − 1

t(1 + t)
(2)

and the size of the left subclade has

uniform distribution on {1, 2, . . . ,m − 1}. (3)

To verify this, note that the unconditional rate of mergers of clades of sizes
m1,m2 at time t (per unit time, relative to number of species) equals

G(t)(1 − G(t))m1−1f(t)(1 − G(t))m2−1G(t)

by considering the required heights of branchpoints for this event to occur.
Similarly the number of size m1 + m2 lineages at time t, relative to number
of species, equals

G(t)(1 − G(t))m1+m2−1G(t).

Thus the rate of splitting of a size-m1 + m2 lineage into subclades of sizes
m1,m2 equals

G(t)(1 − G(t))m1−1f(t)(1 − G(t))m2−1G(t)

G(t)(1 − G(t))m1+m2−1G(t)
=

1

t(1 + t)

implying (2,3).

5.2 Loss of evolutionary history

Nee and May [30] interpret total edge-length of a phylogenetic tree as an
indicator of “total evolutionary history” of a clade. One can then ask what
proportion of total evolutionary history (call this proportion LEH(ρ), say)
would be lost if a proportion ρ of extant species are suddenly made extinct.
We complement calculations of [30] by giving an exact calculation within
l − TREE∞, as an approximation to l − TREEn for large n. In this setting
the proportionate loss LEH(T, ρ) depends on the duration of time T over
which we track evolutionary history. Assume the species to be made extinct
are chosen randomly. The formula is

LEH(T, ρ) = 1 − log(1 + (1 − ρ)T )

log(1 + T )
. (4)
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As the table indicates, this is broadly in line with the conclusion of [30] that
“about half the history is preserved by saving 20% of species7”.

ρ
0.5 0.8 0.9

10 0.25 0.54 0.71
T 30 0.19 0.43 0.60

100 0.15 0.34 0.48

Table 1. Proportion of edge-length (“evolutionary history over time duration

T”) lost in l − TREE∞ when proportion ρ of species go extinct.

Derivation of formula (4). Because the number of lineages (relative to num-
ber of extant species) at time t is G(t) = 1/(1 + t), we see

LEH(T, ρ) =

∫ T
0 G(t)q(t, ρ) dt
∫ T
0 G(t) dt

where q(t, ρ) is the chance that, in a lineage at time t, all the extant species
are chosen (by the random choices) to go extinct. Using (1) and a standard
calculation,

q(t, ρ) =
∞
∑

i=1

pt(i)ρ
i =

ρ

1 + t − ρt

and a routine integration exercise gives (4).

5.3 Local structure of c − TREEn

Parallel to the discussion (Section 5.1) of l − TREE∞ as an approximation
to the local structure of l − TREEn for large n, there is an infinite tree
c−TREE∞ which is the n → ∞ limit of the local structure of the complete
tree c − TREEn. Such limits arise for different models of random trees
in different applications of probability; see [2] for a survey. We first give
a mathematical description of the limit object, and then describe in what
sense it is a limit.

Construction of c−TREE∞: similar to [2]. The construction is specified
relative to a reference species v∗ and a reference time t∗; think of t∗ as a long

7Since T lca
n

is order n (see Section 5.4), to apply our calculation roughly to l−TREEn

we set T ≈ n and our formula (4) is consistent with equation (1) of [30] in the Moran
model.
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time ago, and v∗ as an extinct species. Write v1, v2, v3, . . . for the ancestors
of v∗, and declare that the lengths of time backwards from t∗ to the origin
of v1, from that time until the origin of v2, and so on, are independent
exponential(1) random times. For each vertex vj , its lifetime extends beyond
the origin of vj−1 for an independent exponential(1) random time; during its
lifetime it has other daughter species at random times at stochastic rate 1;
in turn these daughter species behave as in the CBP process of rate λ = 1.
And for the reference species v∗ itself, its lifetime extends beyong t∗ for an
independent exponential(1) random time; and its daughter species behave
as above.

The limit procedure. In the context of the finite model c−TREEn, pick at
random8 a pair (v∗, t∗) where t∗ is a past time and v∗ is a species existing at
time t∗. Consider c−TREEn relative to (v∗, t∗); that is, consider the portion
of c−TREEn within a “window” of some arbitrary extent t0, a vertex being
within this window if the path linking it to v∗ stays within the time interval
t∗ ± t0. Then the sense in which c − TREEn converges to c − TREE∞ is
that the part of c−TREEn within an arbitrary fixed size window relative to
the randomly-chosen reference (v∗, t∗) converges in distribution to the part
of c − TREE∞ within the same sized window relative to its reference point
(v∗, t∗).

Convergence relative to an extant species. The discussion above relates
to a reference species chosen at random from c−TREEn, which (with prob-
ability → 1 as n → ∞) is an extinct species. There is a parallel result for a
randomly-chosen extant species. In this setting the limit is simply the part
of c − TREE∞ at times before t∗, where t∗ is now the present time 0.

Elementary calculations. The above construction makes it easy to do
n → ∞ limit calculations for c−TREEn by doing exact calculations within
c − TREE∞. For instance, for a random extant species,

P (parent is extant) = 1/2 (5)

P (some ancestor is extant) = 1 − e−1 = 0.63... (6)

Indeed, the probability in (5) is P (ξ1 < ξ2), where ξ1 is the time since origin
of v∗, and ξ2 is the subsequent lifetime of its parent v1; because ξ1 and ξ2

are independent exponential(1) random times, the probability equals 1/2
by symmetry. For (6), the times at which some ancestor originates form a
Poisson process of rate 1, and an ancestor originating at time t before present
has chance e−t to be extant, so the random number of extant ancestors has

8Precisely, we pick (v∗, t∗) uniformly from the set of possible (v, t) pairs.
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Poisson distribution with mean
∫∞
0 e−t × 1 dt = 1, and thus takes value 0

with probability e−1.

5.4 Times of origin and last common ancestor, and number
of contemporaneous species

In Section 4.1 we defined, in terms of our model c − TREEn,

T origin
n = time of origin of clade

T lca
n = time of last common ancestor of extant species

and we can also consider

Cn(T lca
n ) = number of species at time T lca

n .

All three quantities scale linearly with n, and there is a limit rescaled joint
distribution; that is, we may write

1
n(T origin

n , T lca
n , Cn(T lca

n )) ≈ (T∗, S∗, R∗) for large n. (7)

The limit distribution is specified (see (2.16) of [37], p.22) by the joint prob-
ability density function

fT∗,S∗,R∗
(t, s, r) = s−4(t − s)−2 exp

(

−1

s
− tr

s(t − s)

)

, 0 < s < t, 0 < r.

(8)
Figure 5 illustrates this distribution via a scatter diagram. One can make
the mathematical structure of this distribution more interpretable as follows.
The joint density of (T∗, S∗) is

fT∗,S∗
(t, s) = s−2t−2 exp(−1

s ), 0 < s < t. (9)

The joint density (9) coincides with the joint density obtained using two
independent exponential(1) variables ξ1, ξ2 via

(T∗, S∗)
d
= ( 1

ξ1
, 1

ξ1+ξ2
).

The marginal densities of T∗ and S∗ are

fT∗
(t) = t−2 exp(−1

t ), 0 < t,

fS∗
(s) = s−3 exp(−1

s ), 0 < s.
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The conditional distribution of T∗ given S∗ is

P (T∗ > us|S∗ = s) = 1/u, u ≥ 1. (10)

Now given (T∗ = t, S∗ = s) , the conditional distribution of R∗ is

fR∗|t,s(r) = λ2(s, t)r exp(−rλ(s, t)), 0 < r; for λ(s, t) = t
s(t−s) .

This is the Gamma(2, λ(s, t)) density. Integrating (8) out over (s, t) gives
the marginal density of R∗ to be

fR∗
(r) = 2(1 + r)−3, 0 < r.

In particular, note that R∗ has mean value E(R∗) = 1 but its variance is
var(R∗) = ∞. The cumulative density of R∗ is given simply by

P (R∗ > r) = (1 + r)−2, 0 < r

so that numerically its 10th percentile is 0.054 and its 90th percentile is 2.16.
Note R∗ is very variable.
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Figure 5. Scatter diagram of 10 realizations of the standardized joint distri-

bution (T∗, S∗, R∗). Points × give the (t, s)-values, and the height of line segment is

the r-value. The time unit equals n ETU, in the approximation (7) for c−TREEn.

Note the extreme variability of R∗; the smallest value was 0.03 and the largest was

1.56.
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5.5 Numbers of extinct species

The underlying CBP model with time run forwards is the birth-and-death
process (Section 2.6) with birth rate λi = i and death rate µi = i. A simple
consequence of our Bayesian construction of c− TREEn is that the process

(Cn(t), 0 ≤ t ≤ T
origin
n ) giving the total number of species existing at time

t as t increases (time runs backwards), is distributionally the same CBP,

started with n species and continued until the first time T
origin
n it reaches

0 (see Theorem 1 for the proof). This observation has several simple con-
sequences. First, classical results on hitting probabilities for simple random
walk (or “the martingale property”) imply

P (max
t

Cn(t) ≥ c) = n
c , c = n, n + 1, n + 2, . . . (11)

which we can rephrase as the 1/r rule mentioned in Section 1.2: The chance
that at some past time the number of coexisting species was at least r times
the current number, equals 1/r.

A second consequence is that we can obtain large-n approximations for
the total number (Gn, say) of species in c − TREEn. This number scales as
n2 and we have

Gn ≈ n2G∗

where the limit G∗ has probability density function

(4πg3)−1/2 exp(− 1
4g ), 0 < g < ∞.

Theorem 3 gives details and proof.

5.6 The chance that a fossil species is ancestral

Textbooks (e.g. [33] page 24) often say

the probability that a given fossil is actually part of an ancestral
lineage [of some extant species] is actually rather remote.

Various calculations relevant to this issue can be done within our model.
(a). Consider a species that originated at time t (t ETU before present).

Then the chance that some descendant species (or the species itself) is extant
at present equals (in the n → ∞ limit)

1/(1 + t). (12)

This formula comes from the construction of the tree c − TREE∞ which
gives the local description of the structure of the complete tree c−TREEn.
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As stated in Section 5.3 the descendants of a species v evolve, as time runs
forwards, as in an ordinary CBP process. If v originates at time t before the
present, then the chance that some descendant of v (or v itself) is extant at
present equals the chance of the survival of a CBP for t or more time. For a
CBP the population size at any time τ has a shifted geometric distribution

P (N(τ) = 0) =
τ

1 + τ
; P (N(τ) = k) =

τ

(1 + τ)k+1
, k ≥ 1,

and since the survival of CBP for time t or more is the complement of the
event that the population size of CBP at t is equal to 0, the chance of some
extant descendant is precisely 1 − t/(1 + t).

(b). Within our model c−TREEn of clades with n extant species, let N̂anc
n

and Nanc
n be the numbers of extinct species ancestral to the extant species,

during the time since the last common ancestor of the extant species (for
N̂anc

n ) or the time since origin of clade (for N anc
n ). It can be shown9 that in

the n → ∞ limit both N̂anc
n and Nanc

n are approximately n log n. Precisely,

P ((1 − ε)n log n ≤ N̂anc
n ≤ Nanc

n ≤ (1 + ε)n log n) → 1, any ε > 0. (13)

Note that in contrast to most quantities we study, these quantities are
asymptotically non-random to first order. However, as the numerical results
in Table 2 show, for small and moderate values of n there is considerable
variability in these quantities. Numerically we see a good fit to

median(N̂anc
n ) ≈ n(log n − 1.4). (14)

percentiles of N̂anc
n approx percentiles of p̂anc

n approx
n 25th 50th 75th (14) 25th 50th 75th (16)

10 4 9 19 9.0 0.093 0.151 0.212 0.147
20 18 32 55 31.9 0.095 0.147 0.204 0.146
40 59 91 143 91.6 0.064 0.110 0.164 0.110

Table 2. The distribution of N̂anc

n
= number of extinct ancestral speecies,

and the distribution of p̂anc

n
= proportion of ancestral species amongst all extinct

species (both during the time since last common ancestor); and the approximations

(14,16) to the medians. “Log” is natural logarithm.

9Here is a rough order-of-magnitude calculation. In our model, such a clade has existed
for time of order n, and during most of that time there have been order n species existing.
So the number of extinct species with extant descendants is, using (12), ≈

∫

n

0
n(1 +

t)−1dt ≈ n log n.
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(c). Returning to the original question – what is the chance that a
random extinct species is ancestral to some extant species – there are some
subtleties involved in choosing how to formulate this as a precise mathemat-
ical question. Here is one approach. Within our model c−TREEn of clades
with n extant species, we have the “numbers of extinct ancestral species”
quantities N̂anc

n , Nanc
n above. We also have the corresponding total numbers

of extinct species, say Ĝn−n and Gn−n (where the −n terms remove extant
species, for consistency with Gn in section 5.5). Thus within a clade we can
consider proportions of extinct species which are ancestral

p̂anc
n =

N̂anc
n

Ĝn − n
; panc

n =
Nanc

n

Gn − n
(15)

where the former considers time since last common ancestor and the latter
considers time since origin of clade. We saw in section 5.5 that Gn ≈ n2G∗

for a random limit G∗; similarly Ĝn ≈ n2Ĝ∗ for a different random limit Ĝ∗.
It follows from this and (13) that both p̂anc

n and panc
n grow as n−1 log n with

random limits:

p̂anc
n ≈ n−1 log n × 1/Ĝ∗; panc

n ≈ n−1 log n × 1/G∗.

Table 2 illustrates the distribution of p̂anc
n and shows a reasonable fit, for

small and moderate n, to an approximation

median(panc
n ) ≈ 2.1(log n − 1.6)

n
. (16)

5.7 Estimating rates in birth-and-death processes: a simula-
tion study

The linear birth-and-death process (section 2.6) is a standard model which
can be used to try to estimate past speciation and extinction rates within a
clade. Consider the setting where the only data we have is the lineage tree
for the n extant species (as usual we are supposing we know the true lineage
tree; we are seeking to study aspects of unobserved extinct species). We
regard the linear birth-and-death model as having 3 parameters (t∗, λ, µ),
where

t∗ = time before present of clade origin

λi = total speciation rate, when i species

µi = total extinction rate, when i species.
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It is routine10 to calculate numerically maximum likelihood estimates (MLEs)
of the parameters, based on a lineage tree as data.

We studied what happens if one applies this procedure – estimating
parameters assuming the underlying model of species diversity is a linear
birth-and-death process – to simulated data from our c − TREEn model.
Table 3 shows the MLEs derived from 10 typical realizations (pictured at
[1]) with n = 8. Of course, in our model we really have λ = µ = 1 in each

realization, and realization-dependent values of T lca and T origin.

realization 1 2 3 4 5 6 7 8 9 10
MLE of λ 0.4 0.6 1.3 1.5 0.6 1.3 0.3 0.3 0.9 1.2
MLE of µ 0.1 0.4 0.2 1.0 0.3 0.3 0.2 0.1 0.4 0.2
MLE of t∗ 9.1 6.5 1.7 3.1 4.7 2.5 11.4 13.8 4.2 1.5

T lca 8.4 6.0 1.5 2.8 4.3 2.4 11.3 13.3 3.9 1.4

T origin 37.1 13.3 1.7 8.2 8.9 11.9 36.2 154.7 21.8 1.7

Table 3. MLE estimates of linear birth-death parameters based on
realizations from our model (n = 8).

So in this setting the estimated values of λ and µ in the linear model are
very misleading. Not only does “the pull of the recent” make the estimated
λ larger than the estimated µ, but also the estimated values are varying
widely between realizations11. As a secondary point, observe that in most
realizations the estimated time of clade origin is about 10% greater than
the observed time of last common ancestor of extant species, regardless of
further information about the shape of the lineage tree; under our model
the true time of clade origin varies greatly.

As mentioned in Section 1.3.5, there has apparently been no large-scale
statistical study of extant clades to determine which stochastic models are
realistic; our model, with its intrinsic variability, provides a conservative
approach to inference questions. So, while our results are not directly com-
parable with those in existing literature (Nee et al [31, 29, 28], Paradis
[34, 35]) they do cast serious doubt on the ability to reconstruct at any level
of detail the history of a clade from the phylogeny of extant species.

10The only subtle issue is that one should compute the likelihood without conditioning
on n. To see why, note that when µ/λ is large the process is a priori unlikely to reach n
species; this is a real effect which would incorrectly be factored out by conditioning.

11The variability is not a “small n” effect: as emphasized throught the paper, variability
in our model persists in the n → ∞ limit.
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6 The model for higher-order taxa

6.1 Thinking about higher-order taxa

The tree-based classification of species emphasized in cladistics is widely rec-
ognized as the logically desirable classification scheme, while the traditional
Linnean hierarchy is useful in practice for human-interpretable discussions
of different clades, and for classifying fossil species where there is too lit-
tle information for reliable tree-classification. The difficulties of reconciling
tree-based classifications with the Linnean hierarchy are well recognized in
the systematics literature, though how this issue interacts with stochastic
modeling has not been investigated so thoroughly. In particular, the in-
evitable subjectivity of a hierarchical scheme – how widely to cast the net
of a single genus or family – and the fact that fossil time series are typically
presented at the genus or family level [43] have led to concerns [47] that
such time series may give a biased picture of species diversity. These con-
cerns have been discussed via data and model simulations using hierarchical
schemes defined in a somewhat ad-hoc manner ([45], [41]: see Section 7.5) ;
we seek to give a more detailed analysis within our stochastic model.

Our goal is to make a model of phylogenetic trees of genera (we write
genus for concreteness, to represent an arbitrary higher-order level) which
is coherent with an underlying model for species. This involves two issues.
One issue, not involving randomness, is how one reconciles a phylogenetic
tree on species with the Linnean hierarchy in such a way that one can define
a phylogenetic tree of genera. The second issue is how to make a probability
model of this “novel genera” process which reflects “pure chance” rather
than some particular conjectured biological mechanism. We address these
issues separately in the next two sections.

6.2 Defining genera in terms of “new types” of species

Suppose we have a complete tree on a clade of species, and suppose certain
species are distinguished as “new type” due to some characteristic judged
biologically significant which is expected to persist in descendant species. A
scheme for using such “new types” to define genera should, as a minimum
requirement, have the following property.

A genus cannot contain both a species which is a descendant of
some “new type” species s and a species which is not a descen-
dant of s

or in other words
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A “new type” species and its descendants comprise one or more
genera.

To a mathematician, there are three reasonable ways to define genera satis-
fying this requirement, which we call the coarse, medium and fine schemes,
because they produce successive smaller genera. Discussions of schemes
broadly like these can be found in the systematics literature, but strike
mathematicians as somewhat ad-hoc and imprecise.

Before giving detailed definitions, let us emphasize a conceptual point.
Given a complete tree on the species in a clade, and given a subset of these
species which are “new type”, choose one of the three schemes below to define
genera. Each genus has an extinction time (or is extant), an origination time,
and (if not the originating genus of the clade) is a daughter of some other
genus. Thus one can draw (Figure 6) a tree on genera in the same style as
the tree on species; this is part of coherence.
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The coarse scheme. Here we imagine that each “new type” species s
creates a genus, consisting of itself and all descendants which are not de-
scendants of (or identical to) some other “new type” descendant of s. Equiv-
alently, we have the following rule :

two species are in the same coarse genus provided the path be-
tween them involves no “new type” species (except perhaps their
last common ancestor).

If we declare that the originating species of the entire clade is “new type”,
then the number of coarse genera is just the number of “new type” species.
In this and the other schemes, each genus has a founder (chronologically
first) species, and here we have :

the founder species of the coarse genera are precisely (only) the
“new type” species.

In Figure 6 (which has two “new types” in addition to the originating
species) we get three genera: {i}, {stuv}, and the remaining species.

An unsatisfactory feature of the coarse scheme can be seen in Figure 6 :
species h, r are put in the same genus even though h is more closely related
to i (in a different genus) that to r, while r is more closely related to s (in
a different genus) than to h. To remedy this we may consider the following
requirement :

If α, β are in the same genus and γ in a different genus, then α
cannot be strictly closer related to γ than to β; that is, the last
common ancestor of {α, γ} cannot be a strict descendant of the
last common ancestor of {α, β}.

The fine scheme. With this scheme we construct genera which satisfy
the above requirement by using the following rule:

two species are in the same genus provided the path between
them involves no species (except perhaps their last common an-
cestor) which is of “new type” or has a descendant of “new type”.

In contrast to the coarse scheme in this scheme we have many more founders
of new genera, namely :

the founder species of the fine genera are precisely the “new
type” species and all of their ancestors.
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In Figure 6, we obtain eight fine genera ({abcdk}, {ef}, {ghj}, {i}, {l},
{mn}, {opqr}, and {stuv}).

The fine scheme has its own drawback, again as seen in Figure 6 : it
creates {ef} and {ghj} as distinct genera, as well as {l} and {mn} as distinct
genera, even though it might be difficult to make the distinction from a fossil
record. Here is a different property one might desire.

Taking a representative species from each genus and drawing the
cladogram on these species gives the same cladogram regardless
of the choices of species.

The medium scheme. The idea for this scheme is to find the coarsest
scheme that will satisfy the above property. We construct such genera by
using the rule:

two species are in the same genus provided no species on the
path between them (except perhaps their last common ances-
tor) is a “new type” species, and provided no species on the
path between them (including their last common ancestor) is an
“essential branchpoint” species.

Here an essential branchpoint species is one which is the last common an-
cestor of some two “new type” species. Here is the description of founder
species.

The founder species of the medium genera are precisely the “new
type” species, the essential branchpoint species, and the daugh-
ters of branchpoint species which are ancestors of new types.

For mathematical justification of the criteria for building the schemes
given their desired properties see Section 9.3.

Monophyletic groups It is generally regarded as desirable that groups
such as genera be monophyletic, that is consist of some founder species
and all its descendants. Whether this desideratum should be regarded as
essential is controversial: see e.g. Benton [9]. Within our underlying detailed
picture of macroevolution at the level of species, it is impossible to define
genera usefully so that this constraint is literally satisfied. For instance,
if in Figure 6 we declare {stuv} to be a genus, then the parent species
o needs to be put into some genus, which is therefore not monophyletic.
However, modifying the definition of monophyletic to allow all descendants
of some daughters of the founder to be excluded, the fine genera do satisfy
the modified definition.
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6.3 The probability model for higher-order taxa

Reconsider our model (Section 4.1) for the complete tree c − TREEn on a
clade with n extant species. Introduce a parameter 0 < θ < 1, and suppose
that each species (extinct or extant) has chance θ to be a new type. Then
any of the three schemes from the previous section can be used to define
an induced tree on genera, which we shall call (n, θ) − fineGENERA etc.
Figure 7 shows a realization derived from the 162-species clade in Figure
1. Decreasing the parameter θ will increase the average number of species
per genus: alternatively, regard decreasing θ as moving up the taxonomic
hierarchy.

This stochastic model differs from that in Yule (as already mentioned in
Section 2.2) and from that in Gould et al [16] who specify higher-level groups
using size constraints. The model is intended to capture the “neutral” idea
that a clade is defined by a heritable character but that this character has
no “selective advantage”, i.e. that the species in the clade have unchanged
speciation and extinction rates.

Note that conceptually it is simple to model simultaneously two or more
higher levels such as {genus, family} by using two probabilities θfamily <
θgenus.
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7 Mathematical properties: higher order taxa

7.1 Overview

We now turn to properties of our model involving higher level taxa, as usual
writing “genera” for concreteness. Recall that the conceptual point is that
our model for (for instance) the phylogenetic tree on genera is derived from
the underlying model for species and from the schemes for defining genera
in terms of “new type” species (section 6.2). The theoretical parameter θ
(probability that a new species is a “new type”) determines average number
of species per genus (see formulas (20,23)) which can be regarded as a data-
derived parameter.

We seek to study the following kind of quantities.

• Number of species per (extinct) genus

• Number of species per (extant) genus

• Lifetime of extinct genera

• Lifetime (until present) of extant genera

• Fluctuation rates for number of genera

• Shape of the tree on extinct genera

• Shape of the tree on extant genera.

We need to distinguish the extinct and extant cases because, of course, by
virtue of being extant a genus is likely to be larger and longer-lived than a
typical extinct genus.

The seven quantities above, and the three schemes for genera, make
twenty-one problems, some of which are amenable to theoretical calculation
and others seeming to require simulation.

xxx Work in progress! This version gives just a brief snapshot.

7.2 Shape of tree on extant fine genera

The setting is an extant clade, where we use the “fine” scheme for defining
genera in terms of “new type” species, but where we only have data from
extant species so that we notice only the “new type” species that are ances-
tral to extant species. We seek to study the shape of the tree on genera. As
described in section 1.3.2, we measure “shape” in terms of splits of a parent
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clade (being a set of genera here) into daughter clades. For an n-genus par-
ent clade, the smaller daughter clade may consist of 1 or 2 or 3 or . . .n/2
genera, and we summarize this distribution by recording
(a) the chance that smaller daughter clade is size 1;
(b) the median size of smaller daughter clade.
Table 4 shows numerical values for several choices of average number of
species per genus, and several values of parent clade size. The first row
gives this data for species, where our model coincides with the usual Markov
model and predicts uniformly distributed splits.

mean number parent clade size θ
species per genus 5 10 15

p(1) med p(1) med p(1) med

1 0.50 1.5 0.22 2.8 0.14 4.0 1
5 0.73 1.2 0.32 2.6 0.21 3.8 0.047
10 0.79 1.1 0.44 1.9 0.25 3.7 0.0145
20 0.85 1.1 0.54 1.4 0.34 3.5 0.0045

Table 4. Shape of tree on extant fine genera. For the given size

(number of genera) in a parent clade, the table shows the probability p(1) that

smaller daughter clade size equals 1, and the median size med of smaller daughter

clade. Results from Monte Carlo simulations of model with 400 extant species.

Increased imbalance is indicated by the first probability increasing and by
the second median decreasing. The table indicates
(i) imbalance increases with size of genus, i.e. as we go up the taxonomic
hierarchy,
(ii) measured by median, the increase in imbalance is more prominent within
smaller clades than within larger clades. Measured by p(1) there seems little
clade-size dependence.

7.3 Standardized fluctuation rates

Within our basic CBP model, write N(t) for number of species at time
t and G(t) for number of genera at time t, using one of our schemes for
defining genera. Here we are imagining t as a typical time in the past, so we
are considering extinct species. A basic mathematical property of the CBP
model is that the stochastic fluctuations, measured by variance of changes
in the time series, have a simple form over times t of order 1 ETU. Given
N(0) = n(0) we have

var(N(t) − n(0)) ≈ 2n(0)t.
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In other words the ratio
var(N(t)) − n(0)

2n(0)t
(17)

is approximately 1 regardless of the value of n(0) (assumed not too small) or
the value of t (assumed of order 1 ETU). This motivates studying fluctua-
tions in number of genera in the same way. Given G(0) = g(0) we anticipate
that the ratio

var(G(t)) − g(0)

2g(0)t

should not depend much on g(0) or t. Now the ratio in (17) is really
1/(mean species lifetime), becoming 1 ETU by definition. Similarly, if one
were to model genera directly as a CBP, then the ratio above would be
1/(mean genus lifetime). Thus we finally come to define normalized fluctu-
ation rate as

(mean genus lifetime)× G(t) − g(0)

2g(0)t
. (18)

Note this could be estimated from data in the natural way, by averaging
(G(ti+1) − G(ti))

2/G(ti) over intervals [ti, ti+1] of length t.
Rephrasing the discussion above, the interpretation of normalized fluctu-

ation rate is as the ratio of actual observed fluctuation rate to what the rate
would be if genera themselves behaved as a CBP. Within our model, where
species behave as a CBP and genera are defined by one of our schemes and
random “new types”, we get theoretical predictions for normalized fluctua-
tion rates. Table 5 gives numerical values in one case.

mean number species per genus 1 5 10 20 40
normalized fluctuation rate 1.00 0.84 0.68 0.57 0.45

Table 5. Normalized fluctuation rates for coarse genera. Results from

Monte Carlo simulations of model started with 400 species. Ratio (18) estimated

with t = mean genus lifetime.

7.4 Number of species per extinct genus

xxx Paragraph below to be polished later.

As stated at the start of Section 5, our methodology for analytic results
is derive approximations by appealing to exact formulas in the n → ∞ limit.
Such arguments depend on the “local weak convergence” ideas of section 5.3.
That is, relative to a typical (= extinct) species the future process is just
CBP; so we can argue “forwards in time”. A typical extinct genus comprises
some descendants of a species conditioned on that species being a founder;
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can do calculations without needing to look backwards in time. Calculations
are harder with extant genera because we need to argue backwards in time.

Note that in the extinct case, there is a general relation, for any definition
of genus along with founder species:

E (number of species in genus) = 1/P (typical species is a founder species).
(19)

Of course various details of the underlying model are arbitrary, e.g.
species lifetime assumed Exponential so s.d. equals mean. But qualitative
features hopefully are robust.

7.4.1 Number of species per extinct coarse genus

It turns out to be easy to find the distribution of the number G of species
in a typical coarse genus.

(mean) EG = θ−1 (20)

(variance) varG = θ−1 − 3θ−2 + 2θ−3 (21)

(generating function) E(zG) =
1

2
+

1 −
√

(2 − θ)2 − 4(1 − θ)z

2(1 − θ)
. (22)

xxx Lea: give exact formula also! Certainly known, e.g. from lengths of
excursions of biased RW.

Recall that for coarse genera, the founder species of each genus are ex-
actly the “new type” species. So a coarse genus consists of its “new type”
founder and its descendant species, with the modification that any “new
type” descendant species are discarded (and so don’t have descendants).
The chance of a species being a founder is θ, so (19) implies (20). Because
the relative chances of a species to first (become extinct; have daughter
species which is not “new type”) are (1; 1 − θ), it is clear that the coarse
genus has the distribution of a Galton-Watson process whose offspring dis-
tribution D is shifted geometric(p = 1/(2 − θ));

P (D = d) = 1
2−θ

(

1−θ
2−θ

)d
, d ≥ 0.

By classical theory, the probability generating function g(z) = E(zG) of the
total size G of the Galton-Watson process is determined by the probability
generating function fD(z) = E(zD) as the unique positive solution of the
equation g(z) = zfD(g(z)) ([13] XII.5.). When the offspring distribution is
shifted geometric(p) we have fD(z) = p/(1 − (1 − p)z), and hence g(z) =
(1−

√

1 − 4p(1 − p)z)/2(1− p). Setting p = 1/(2− θ) gives (22). From the
generating function formula we can derive the formula for variance.
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θ p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0.5 0.667 0.148 0.066 0.037 0.023 0.015 0.011 0.008 0.006 0.004
0.25 0.571 0.140 0.068 0.042 0.029 0.021 0.016 0.013 0.010 0.009
0.09 0.524 0.131 0.065 0.041 0.028 0.021 0.017 0.013 0.011 0.009
0.04 0.510 0.127 0.064 0.040 0.028 0.021 0.016 0.013 0.011 0.009
0.01 0.502 0.126 0.063 0.039 0.027 0.021 0.016 0.013 0.011 0.009
0.0025 0.501 0.125 0.063 0.039 0.027 0.021 0.016 0.013 0.011 0.009
0.001 0.500 0.125 0.062 0.039 0.027 0.020 0.016 0.013 0.011 0.009

Table 6. Probability distribution {pk}k≥1 of the “number of species in a typ-

ical coarse genus ”.

7.4.2 Number of species per extinct fine genus

Recall that a founder species of a fine genus is a species such that it itself,
or some descendant species, is “new type”. A standard formula for CBP is
that the number Ns of descendants of a random species s, including s itself,
has probability generating function

G(z) =
∞
∑

n=1

P (Ns = n)zn = 1 −
√

1 − z.

(This is the θ = 0 case of (22).) Consider

q(θ) = probability that s is the founder of a genus

= probability that s or a descendant is a “new type”.

Because 1−q(θ) is the chance that each of the Ns species is not “new type”,

1 − q(θ) = G(1 − θ) = 1 −
√

θ.

Thus we get the formula
q(θ) =

√
θ.

As a corollary, note by (19)

mean number of species per fine genus = 1/
√

θ. (23)

Another corollary is that the proportion of genera in which the founder is a
“new type” equals θ/

√
θ =

√
θ.
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A more elaborate calculation (Section 9.2) shows that the probability
generating function of G, the number of species in a genus, is

E(zG) =
z√
θ

(

1

1 −
√

θ +
√

1 − z(1 − θ)
− 1 − θ

1 +
√

1 − z(1 − θ)

)

. (24)

From this formula we get that

the variance of number of species per fine genus equals
√

θ/2
(

1/θ2 + 1
)

−
1.

We can also calculate the probability distribution of G for different values
of the θ. The following table shows pk = P (G = k), for k = 1, . . . , 10, and a
few select values of θ = 1/2, . . . , 1/1000.

θ p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0.5 0.740 0.167 0.056 0.021 0.008 0.004 0.002 0.001 0.000 0.000
0.25 0.583 0.193 0.093 0.051 0.030 0.018 0.011 0.007 0.005 0.003
0.09 0.444 0.180 0.103 0.067 0.046 0.033 0.025 0.019 0.015 0.012
0.04 0.378 0.165 0.099 0.067 0.049 0.037 0.029 0.023 0.019 0.016
0.01 0.313 0.146 0.090 0.063 0.047 0.036 0.029 0.024 0.020 0.018
0.0025 0.281 0.136 0.084 0.059 0.044 0.035 0.028 0.023 0.020 0.017
0.001 0.256 0.127 0.079 0.056 0.042 0.033 0.027 0.022 0.019 0.016

Table 7. Probability distribution {pk}k≥1 of the “number of species in a

typical fine genus ”, with θ the chance of a species being of “new type”.

7.5 Previous work

xxx Lea: what you write here is good, but needs a little more detail (e.g.
what does ”better” mean?)

- found/cited papers: Sepkoski [45] used simulation of CBP sampled at
some rate to form a tree on base taxa, then group into higher order taxa ac-
cording to several different schemes (some monophyletic, some paraphyletic)
to show paraphyletic taxa can capture underlying base diversity better (es-
pecially if sampling rate is poor). Robeck et al. [41] improve/refine the type
of different schemes used above adding randomized (non-cladistic) schemes
as control for the distribution on the size of higher order taxa; they argue
simulation results show it is the number of higher taxa and their sizes that
influences how well they capture underlying base taxa diversity. Common
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conclusion: sometimes paraphyletic schemes do better, sometimes the mono-
phyletic ones do.

8 Final remarks

The main conclusions of this paper were outlined in Sections 1.2 and 1.3
and will not be recapitulated here. Let us instead emphasize some slightly
more technical matters.

8.1 Tree and hierarchical classifications

As we wrote in Section 6, the difficulties of reconciling tree-based classifi-
cations with the Linnean hierarchy are well recognized in the systematics
literature, though how this issue interacts with stochastic modeling has not
been investigated so thoroughly. Let us reiterate that the treatment in Sec-
tion 6.2 of the classification issues is separate from our particular stochastic
model, and so could be incorporated into more realistic models.

8.2 Comments on simulations

The viewpoint

Because one can easily simulate stochastic models, whether sim-
ple or complex, on a computer, the mathematical study of simple
models is unnecessary

has some practical merit, but let us illustrate some pitfalls. Another conse-
quence of the observation above (11) is that it is easy to simulate c−TREEn

by first simulating the “time run backwards” process (Cn(t), 0 ≤ t ≤ T
origin
n )

and then superimposing the branching structure (each daughter species
arises from a uniform random parent). Wollenberg et al [52] sought to
give a simulation study of the model (critical branching conditional on n
extant species) which we have formalized as c − TREEn; their purpose was
to assess goodness of fit to three actual phylogenetic trees. By not know-
ing the observation, they needed to rely on rejection sampling (discarding
realizations which didn’t have the required n extant species), and fixed the
time of origin rather than allowing it to vary; moreover (unaware of the 1/r
law) they deleted realizations in which the maximum number of species at
one time exceeded max(50, n + 20), which for a typical value n = 17 would
remove (where time of origin is not fixed) about 1/3 of the realizations.
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Each of the latter modifications reduces variability of realizations, and in
particular has dramatic effect on likelihood of extreme realizations. So we
guess that in c−TREEn the P -values would be substantially different from
those reported in [52], though perhaps not enough to affect their conclusions
about their particular three examples.

8.3 External constraints on time of origin

We have emphasized the variability of realizations of our model, but we
should admit a sense in which this is artifactual. Suppose our data is the
lineage tree on extant species in a clade, so that we know T lca. Then our
model predicts a probability distribution (10) for T origin, whose median is

2T lca. This sounds biologically unrealistic; the point is that we will typically
have extra data – molecular phylogenies linking this clade with some other
clade, or fossil evidence – which tells us that T origin must be less than some
known value t∗. For making inference about evolutionary history of the
clade using a model like ours, one should include the knowledge of t∗, and
this will reduce variability which is in part associated with a priori possible
large values of T origin.

8.4 Incorporating the fossil record

To compare a model involving extinct species with fossil data obviously
requires one to pay attention to incompleteness of the fossil record. The
simplest way to extend our model to this setting would be to assume that
each extinct species has chance p to be recognized in the fossil record, in-
dependently for different species. This leads to a model of a clade with n
extant species and m observed fossil species (out of some unknown total
number of extinct species). Mathematical treatment of this model has been
given in [36]. One could extend these ideas in several ways, e.g. to consider
whether an extinct genus contains a recognized fossil species, but we have
not pursued such questions.
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