
Childrens’ game Up The River. Each player

has three boats; throw a non-standard die,

choose one boat to advance. At end of round,

every boat is moved backwards one step; boats

at last step are lost.

.
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If we chose a random boat each turn, then the

numbers on the die make each of 3 boats do

roughly a mean-zero random walk.

Suggests (to me) the following math problem.

Let K particles perform independent Brownian

motion on [0,∞), started at 1, killed on reach-

ing 0. Then suppose we have drift rate +1,

to be distributed amongst surviving particles

according to some strategy we choose.

Write N = N(K) = number of particles which

survive forever. Ask

• what strategy maximizes EN(K)?

• what is maximized value of EN(K)?
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Cute exercise for first course in BM or SDEs:

show

max
strategy

EN(K) ∈ [c1K
1/2, c2K

1/2] as K →∞.

Lower bound. Consider the following strat-

egy. Give a particle zero drift until it hits K1/2:

then give it drift 1/K1/2.

Upper bound. Arbitrary strategy; want to up-

per bound mean number of particles surviving

until time K. Write Xi(t) for position of par-

ticle i and consider

Y (t) :=
∑
i

hK−t(Xi(t))

for suitable hτ(x). After some thought choose

hτ(x) = P ( inf
0≤t≤τ

Bt > 0|B0 = x)

because if no drift then Y (t) is the martingale

E( number particles survive to K|Xi(t)),0 < t < K.
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Y (t) :=
∑
i

hK−t(Xi(t))

Now if Ai is drift rate assigned to particle i,

can calculate

dYt = dMt +
∑
i

Ai(t)gK−t(Xi(t))

where Mt is a martingale and gs(x) ≤ cs−1/2.

Integrating over 0 ≤ t ≤ K gives

EYK ≤ EY0 + cK1/2.

But EY0 = cK1/2 and

YK = number of particles survive until K.
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For rest of talk we analyze the strategy

assign drift 1 to the lowest particle.

We believe

• this is optimal strategy

• with this strategy EN(K) ∼ 5π−1/2K1/2.

Will give back-of-envelope calculations for the

latter.

[Joint work with Saul Jacka?]
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Brownian scaling. For BM B(t) on (−∞,∞), we know
we can “rescale time by K and rescale space by K1/2”,
that is
• replace B(t) by K−1/2B(tK)
and we get back BM.

Consider our setting but without any drift. That is, start
K independent Brownian particles at 1, and kill a particle
when it hits 0. Assign “mass” 1/K1/2 to each particle.
Then under Brownian scaling, there is a K → ∞ limit
“mass density” f̃(t, x) at time t. There are several ways
to think about/calculate f̃ ; in particular it solves the
heat equation

df/dt = 1
2
d2f/dx2

with boundary condition

f(t,0) = 0.

Now consider our strategy assign drift 1 to the lowest

particle. Presumably, under the same limit procedure

we get a (different) limit mass density f , satisfying the

heat equation but with some different boundary condi-

tion.
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Picture suggests: position L(t) of lowest par-

ticle is (after rescaling) approx. determinisic

`(t) of form

`(t) = 0, t ≤ t0
> 0, t > t0.

Remarkably, this is enough to calculate

• t0 = 2

• EN(K) ∼ 5π−1/2K1/2.
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Let’s change the initial conditions: instead of

K particles at 1, suppose initially we have a

Poisson point process of particles on (0,∞),

with some rate µ > 0. Allow particles to move

freely on (−∞,∞) without drift.

Question. At time t, if I want to move par-

ticles to restore original Poisson distribution,

how much “work” (= sum of distances moved)

is needed?

Answer is easy using reflection principle and

fact that Poisson scatter is stationary for reflecting

process: µt/2.

Now assign drift 1 to lowest particle. We see

heuristically

µ = 2 is critical value: at that value, adding

the drift mimics a reflecting boundary at 0.
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For general µ the position L(t) of lowest par-

ticle will be to first order a deterministic `(t)

and the spatial density of particles near the

boundary will always be ≈ 2.

Simple instance of self-organized criticality.

Same argument shows heuristically: for µ < 2

`(t) = aµt
1/2

aµ = (1− µ
2)

√
2/µ.

So absorbing boundary at 0 doesn’t matter in

subcritical setting.
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