
Some Open Problems – David Aldous
(May 2003)

Here are some open problems that I have (unsuccessfully) thought about
in the past, but am not working on now. They are not intended to be “rep-
resentative” or “the most important” or “the deepest” of all open problems
in mathematical probability. The majority are (I think) my own invention
and have not been discussed extensively elsewhere.
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1 Existence of Limit Constants in Probabilistic
Combinatorics

Often in probabilistic combinatorics one studies random variables Xn asso-
ciated with size-n structures, and wishes to prove

EXn

s(n)
→ c (1)

for some natural normalizing sequence s(n) and some limit constant c. When
direct methods (seeking to estimate EXn via “concrete mathematics”) fail,
the are two more abstract general methods that sometimes work to show
existence of a limit c in (1) without giving any explicit value for c.
(i) Subadditivity, used in e.g. the longest common subsequence problem ([16]
section 6.6) and first-passage percolation ([16] section 6.7).
(ii) Weak convergence to a limit random infinite or continuous structure, so
that c can be defined in terms of the limit structure. This method can be
used for random trees and triangulations [1, 2], or problems such as “how
long until random walk on the N -cycle visits every vertex N times?” which
reduces to the corresponding question for local time for Brownian motion
on the circle.

Indeed there are examples to which both techniques can be applied, such as
the Euclidean minimal spanning tree [10, 30].

But there are examples (we list three below) where neither of these tech-
niques seems applicable:

PROBLEM. Find a new general technique for proving existence of limits
of the form (1).

Discussion
Here are the three examples we mentioned, in which existence of a limit c
has not been proved. The first example is well-known.

(i) Random 3-SAT. Define a random subset An ⊂ {0, 1}n as follows.
Pick uniformly at random an increasing triple 1 ≤ i1 < i2 < i3 ≤ n and
a binary triple (b1, b2, b3) ∈ {0, 1}3. Then let An be the complement of
{(x1, . . . , xn) : xi1 = b1, xi2 = b2, xi3 = b3}. Now let An(1), An(2), An(3) . . .
be i.i.d. copies of An. Finally define

Xn = min{k : ∩k
i=1An(i) is the empty set}.

2



A well-known conjecture is that

n−1EXn → c

where Monte Carlo suggests c ≈ 4.2. See [20] for discussion.

(ii) Independent sets in sparse random graphs. Fix 1 < α < ∞. Consider
the random graph G(n, α/n): so there are n vertices, and each possible edge
is present with probability α/n. An independent set in a graph is a set of
vertices, no two of which are linked by an edge. Let Xn be the maximal size
of an independent set in G(n, αn). Then it is natural to believe

n−1EXn → c(α)

since by considering isolated vertices we have a lower bound e−α for the
limit. See [17] for bounds.

(iii) Greedy tours. Take n points i.i.d. uniform on the unit square. Let
ξ1 be one of these point (the rule for choosing ξ1 shouldn’t matter) and then
define an ordering ξ2, ξ3, . . . , ξn of the remaining point as follows. Given
ξ1, . . . , ξi, choose amongst the remaining n − i points the one closest to
ξi, and let that closest point be ξi+1. This gives a tour with some length
Ln = d(ξ1, ξ2) + d(ξ2, ξ3) + . . . + d(ξn, ξ1), where d(·) is Euclidean distance.
It is natural to believe

n−1/2ELn → c

for some constant c.
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2 Largest common substructures in probabilistic
combinatorics

Consider the following general setting. There is a set of n labeled elements
[n] := {1, 2, . . . , n}. There is an instance S of a “combinatorial structure”
built over these elements. The type of structure is such that for any subset
A ⊂ [n] there is an induced substructure of the same type on A. Three
examples of types:
• graphs on vertex-set [n]
• partial orders on the set [n]
• cladograms (leaf-labeled trees – see below) on leaf-set [n].

Given two distinct instances S1,S2 of the same type of structure on [n], we
can ask for each A ⊂ [n] whether the two induced substructures on A are
identical; and so we can define

c(S1,S2) = max{#A : induced substructures are identical}

where #A denotes cardinality. Finally, given a probability distribution µn

on the set of all structures of a particular type, we can consider the random
variable

Cn = c(S1,S2) where S1,S2 are independent picks from µn.

This general framework includes the following two well-known examples.
Example 1. Suppose the type is “graph” and the distribution µn is

the usual random graph G(n, p) in which possible edges are independently
present with probability p. Given two instances G1, G2 of graphs we can
define the “similarity” graph G to have an edge (i, j) iff both or neither of
G1, G2 has the edge (i, j). Then

c(G1, G2) = cl(G) := maximal clique size of G.

Moreover if G1,G2 are independent picks from G(n, p) then their “similarity”
is distributed as G(n, q) for q = p2 + (1− p)2. Thus Cn is just the maximal
clique size of a random graph, a well-understood quantity ([12] section 11.1).

Example 2. Suppose the type is “total order” and µn is the uniform
distribution on all n! total orders on [n]. A few moments thought shows
that here Cn is distributed as the longest increasing subsequence of a (sin-
gle) uniform random permutation. This is again a well-studied quantity, of
recent interest because of its connection with extreme eigenvalues of random
matrices [8, 11, 28].
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Of course these two examples are atypical, in that “by symmetry” a
problem about two independent random structures reduces to a problem
about one random structure, but they suggest that investigation of other
examples may be interesting. Here are two new examples.

Example 3. Figure 1 shows a cladogram on [n] (rooted unordered binary
tree with non-root leaves labeled by [n]) for n = 11, together with the sub-
cladogram on A = {1, 2, 3, 4}.
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Figure 1. A cladogram on [11] and the induced sub-cladogram on [4].

There are two natural probability measures on n-cladograms:
(a) uniform on all (2n − 3)!! cladograms;
(b) the coalescent, starting with n lineages and successively joining two
randomly-chosen lineages into one lineage.
We conjecture that in both cases

ECn = nγ+o(1)

for different constants γa, γb < 1/2. We do not have conjectures for numeri-
cal values, but one can consider continuous limits of the relevant structures
and seek to define candidate constants γ in terms of the limit random struc-
tures.

Example 4. Amongst several models for random partial orders [13],
consider the random two-dimensional partial order on [n]. This is the partial
order obtained by taking n points (xi, yi), 1 ≤ i ≤ n uniformly randomly in
the unit square [0, 1]2 and using the induced “coordinatewise” partial order
[29]. Here the natural conjecture is

ECn ∼ cn1/3, for some 0 < c < ∞. (2)

Remarkably, there are two quite different ways to obtain subsets A ⊂ [n] of
size ≈ n1/3 such that the partial orders agree on A.
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(i) Partition [0, 1]2 into subsquares of side n−1/3. Take B as the set of i
such that the i’th point in both processes falls into the same subsquare, so
E#B = n×n−2/3 = n1/3. Then take A as a maximal subset of B such that
no two of the corresponding subsquares are in the same row or column.
(ii) Take C as the set of i such that in both processes the i’th point is within
n−1/3 of the reverse diagonal in [0, 1]2. Again #C is order n1/3. And one
can choose A ⊂ C with #A/#C non-vanishing such that each partial order
on A is the trivial partial order.
It is not hard (Graham Brightwell, personal communication) to prove an
O(n1/3) upper bound using the first moment method. But establishing a
value for, or existence of, the presumed limit constant c in (2) may be
genuinely hard.
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3 Percolation of Averages, in the Mean-Field Set-
ting

We use the following standard setting for “mean-field” (i.e. without d-
dimensional geometry) models involving distances between random points.
Take n vertices, and for each pair (i, j) let the distance d(i, j) = d(j, i)
be random with exponential (mean n) distribution, independently over the(n
2

)
pairs. For any path σ = v0, v1, v2, . . . , vl of any length l, write Aσ :=

l−1 ∑l
i=1 d(vi−1, vi) for the average edge-length. Now for each c > 0 define

M(n, c) := max{l : ∃ some path σ of length l with Aσ ≤ c}.

It is fairly easy to see that, as n → ∞ for c fixed,

M(n, c) = o(log n) if c < e−1

= Ω(n) if c > e−1.

PROBLEM. Give more details of the behavior near c = e−1. In particular,
do there exist scaling exponents α, β such that

n−αM(n, e−1 + xn−β) → m(x) in probability

for some deterministic function m(x) satisfying

lim
x→∞

m(x) = ∞, lim
x→−∞

m(x) = 0.

Discussion
See [7] for references to other problems in this mean-field model of distance.
The fact that the first-order critical value equals e−1 is mentioned at the end
of [4], where the analogous first-order problem for spanning trees is treated
in detail. Our problem here asks for second-order behavior, or finite-size
scaling in the language of statistical physics. We regard the model as a
mean-field analog of first passage percolation, though the n1/3 scaling there
(long conjectured and recently proved in various related models [21]) seems
unlikely to have a direct parallel in our problem. The corresponding ques-
tions for ordinary percolation in this mean-field setting is just a rephrasing
of questions concerning emergence of the giant component in the Erdős -
Rényi random graph process, where the corresponding critical value is 1
and the scaling exponents are α = 2/3, β = 1/3 [19, 3]. Returning to our
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definition of M(n, c), it is natural to conjecture that a broader description
of first-order behavior is given by

n−1M(n, c) → m1(c) in probability

where the limit function has

m1(c) = 0 iff c ≤ e−1; m1(c) = 1 iff c ≥ c∗ (for some c∗)

Convincing heuristics going back to [22] (see [7] section 5.2) for the mean-
field traveling salesman problem assert a formula for c∗, numerically c∗ =
2.04.
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4 Mixing Times for the Branch-Rotation Chain on
Cladograms (or the Triangulation Walk)

This concerns two problems which are similar (intuitively, at least). Con-
sider the regular n-gon. There are a finite number Cn = 2n−4)!

(n−1)!(n−2)! of
triangulations, that is ways to draw diagonals which partition the n-gon
into triangular regions (Cn is a Catalan number: see [27] pages 219–229).
One can define a discrete time Markov chain on the space of triangulations
of the n-gon as follows. In each step

pick uniformly at random a diagonal line; delete it, to leave a
quadrilateral; then insert the opposite diagonal of that quadri-
lateral to get a new triangulation.

A different combinatorial set is the set of n-cladograms. Such a clado-
gram, illustrated in figure 1, has leaves labeled 1, 2, . . . , n, an unlabeled root
(at the top) and binary splits, where we do not distinguish left and right sub-
trees. (Cladograms are one formalization of phylogenetic trees from biologi-
cal systematics, indicating evolutionary relationships between species. The
number of n-cladograms equals (2n−2)!

2n−1(n−1)! .) One can define several Markov
chains on the set of n-cladograms (see [6, 26] for a more easily-analyzed
chain), but the following type of chain seems most interesting.
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Figure 1. A cladogram on 11 species.

A n-cladogram has 2n − 1 edges. Pick one edge (not the edge at the root)
uniformly at random; in figure 1, say we pick the edge upwards from the
common ancestor of {11, 8}. Cut this edge at its top, thus separating the
3-edge subcladogram on {11, 8} and making the two other edges at the cut-
point merge into a single edge e from the common ancestor of {6, 1} to the
common ancestor of {7, 6, 1}. Now there are exactly 4 edges adjacent to e,
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viz the edges leading upwards from

6, 1, 7, the common ancestor of {7, 6, 1}.

Pick each of these 4 edges with chance 1/4, and reattach the subcladogram
to the middle of that edge. If we picked the edge upwards from the common
ancestor of {7, 6, 1}, then we would obtain the cladogram in figure 2. (in
general e might have less than 4 adjacent edges, in which case with the
remaining probability we make no change).
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Figure 2. A step of the chain from figure 1.

Being reversible, each chain has largest eigenvalues 1 = λ1 > λ2, and the
relaxation time defined as 1/(1−λ2) has an interpretation as a mixing time
parameter. In each chain it is easy to show (by the usual technique of
applying the variational characterization of λ2 to a suitable test function)
that the relaxation is at least order n3/2 as n → ∞.

PROBLEM. For each chain, show that the relaxation time is at most order
n3/2.

Discussion
There are good heuristic reasons (too lengthy to explain here) for expecting
these two chains to have similar behavior. The chain on triangulations is
discussed in [24, 25], who obtain an O(n4) upper bound. Over the last 20
years, techniques has been developed which enable one to find the correct
order of magnitude of the mixing times for natural random walks on famil-
iar combinatorial structures; this “triangulation walk” example is perhaps
the simplest structure for which correct order is unproved. The “clado-
grams” chain has a semi-applied story. Reconstructing phylogenetic trees
from actual biological data is a large-scale academic activity; it involves al-
gorithmically hard optimization problems which in practice are attacked via
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heuristic “local search” methods, exploring the space of cladograms to find
a “best fit” to data. One class of algorithms uses MCMC (Markov chain
Monte Carlo), built over a “base chain” like ours. The data-dependent
chains which arise in practice are so complicated that rigorous theoretical
analysis seems hopeless, but understanding the base “no data” chain is a
natural first step.

11



5 Spectral Gap for the Interchange (Exclusion)
Process on a Finite Graph

Consider a n-vertex graph – assume connected, undirected. Take n particles
labeled 1, 2, . . . , n. In a configuration, there is one particle at each vertex.
The interchange process is the following continuous-time Markov chain on
configurations. For each edge (i, j), at rate 1 the particles at vertex i and
vertex j are interchanged.

The interchange process is a reversible, and its stationary distribution is
uniform on all n! configurations. There is a spectral gap λIP (G) > 0, which
is the smallest non-zero eigenvalue of the transition rate matrix. If instead
we just watch a single particle, it performs a continuous-time random walk
on G, which is also reversible and hence has a spectral gap λRW (G) > 0.
Simple arguments (the contraction principle [9]) show λIP (G) ≤ λRW (G).

PROBLEM. Prove λIP (G) = λRW (G) for all G.

Discussion
Fix m < n and color particles 1, 2, . . . , m red. Then the red particles in the
interchange process behave as the usual exclusion process [23]. But in the
finite setting, the interchange process seems more natural.

The problem arose in conversation with Persi Diaconis (see e.g. [15]). It
has been proved in various special cases, such as trees [18].
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6 Self-similarity for Coalescing Regions of R2

Consider the two-dimensional plane partitioned in regions. At time zero the
region are unit squares. As time increases, two regions which are adjacent
(that is, have a common boundary segment) may merge into one region (the
common boundary line disappears). For adjacent regions A, B, this merger
rate r(A, B) depends on the geometry of A and B (that is, some function
invariant under Euclidean transformations, e.g. dependent on the areas of
A and B and the length of their common boundary).

PROBLEM. Find a rate function r(·) for which one can prove this pro-
cess is asymptotically self-similar, i.e. as t → ∞ the configuration, with
space rescaled by some deterministic s(t), converges to some limit random
partition of the plane.

Discussion
This arises from my interest in mean-field models of coalescence [5]. But
apparently no problem of quite this type has been studied in the d > 1-
dimensional setting. In the opposite process of fragmentation in d dimen-
sions, it is easy to see (e.g. [14]) that some simple models where each
region splits independently in some way lead to asymptotically self-similar
processes. However, the limit processes have some long-range dependence
which one doesn’t expect with our “locally-specified” coalescence process.
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