Take integer parameters (T, N). Take discrete state space {—N,—N +
., N—1, N}. We will define a discrete time process (X5, s =0,1,2,...,T)
which is a martingale and a time-inhomogeneous Markov chain. The process
has
X(0)=0; X(T)=Nor —N. (1)

The process is designed to be the maximum entropy process satisfying (1)
and the martingale property.

We can define the transition probabilities ps(i,j) = P(Xsy1 = j|Xs = 1)
by backwards induction. Clearly for s =T — 1 we must have

pr-1(i, N) =S pr_q(i,—N) = 3L

Define
1,+N

er—1(i) = log 2N ]gjv log ]\2[17

that is the entropy of the distribution ppr_1(i, ).
Now inductively for s =T — 2,7 — 3,...,0, for each i we define p,(%, -)
as the distribution ¢(-) on integers [—N, N] which maximizes

- Z 10g (] Z es+1 (2)

subject to having mean = i, and let e4(i) be the corresponding maximized
value of (2). So this construction inductively specifies the maximum entropy
process, starting at state i at time s, satisfying (1) and the martingale
property.

Rather than try to study this process (Xs, t = 0,1,2,...,T) for fixed
(T, N), let us consider the natural rescaling

X =N"'X;p

so that the time interval becomes [0, 1] and the range becomes [—1,1]. In-
tuitively, if we take limits as T, N — oo in some appropriate way we should
get a limit process — or perhaps a one-parameter family of processes — which
will be time-inhomogeneous martingale diffusions, and therefore specified by
the variance rate o2(t, z).

Can we calculate 0?(¢,z) heuristically? Copying the argument above,
there should be some function e(t,x) representing “normalized entropy for
the process started at position z at time ¢’ and we expect some PDE for
the function e = e(¢,r) and an expression for the function o2 in terms of
the function e.



Below I give a heuristic argument that the PDE is

€ = %bg(_@m) (3)
with the obvious boundary conditions
e(t,£1) =0, 0<t<1; e(l,z)=0,—-1<x <1,
and that 4

o?(t,x) = 765%(1‘,, )

(4)

The heuristic argument.

Fix large K and consider N — co. We expect the entropy function eg(4)
to scale, for fixed 0 < s < K — 1, as

es(i) = ex(s,i/N) + (K — s)log N (5)

for some function ek (s, z), —1 < z < 1. And we expect the step distribution
ps(i, ) to scale as

ps(i,-) ~ Normal(i, N%0%(s,i/N))

for some function 0% (s,z), —1 < z < 1. Now (2) says that 0% (s,z) is the
value of o2 that maximizes

entropy(NZ) + Eesy1(zN + NZ) (6)

where Z =4 Normal(0, 02). To calculate (6), the Normal(0, 02) density f,(u)
has

—log fa(u) = 10g(27r) +logo + %

and therefore has entropy ¢+ log o for ¢ = log(27) + % So the first term in
(6) is ¢+ log N + log 0. Next, use (5) to write the second term of (6) as

(K—s—1)log N+Eeg (s+1,2+2Z) ~ (K—s—1)log N+ex(s+1, x)+%26’1'((s+1, )
where €/ is second derivative w.r.t. z. So the quantity (6) is
c+ (K —s)logN +eg(s+1,z) +logo + U—;e}'((s +1,z).

This is maximized by
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and the maximized value is
c— 5+ (K —s)logN +eg(s+1,2) — $log(—€e (s +1,)).

This maximized value is, by definition, supposed to equal es(zN), so from

(5)

ex(s,z) mc— 1 +ex(s+1,2) — 3log(—ef(s+1,z)).
To study what happens as K — oo, we look for a solution of the form

ex(s,z) ~ (K —s)(c— 5 —ak) + Kf(s/K,z)

for some function f(¢,2) and some constants ax. Setting t = s/K this
becomes

K(f(t,z)— f(t+ £.2) +ax = —%log(—K fou(t, z)).
So set ax = —%log K to get
K (f(t.x) = f(t+ . 7)) = —5log(—fuu(t, 2)).
This leads to (3), and (7) leads to (4).
Issues:

e Is the calculation in the heuristic argument for (3, 4) correct (as a
heuristic)?

e Has (3) ever been studied before? If not, can you solve it?

e Possible methods of proof? — there must be similar “weak limits of
dynamic programming” work somewhere.



