2 Largest common substructures in probabilistic combinatorics

Consider the following general setting. There is a set of \(n \) labeled elements \([n] := \{1, 2, \ldots, n\}\). There is an instance \(S \) of a “combinatorial structure” built over these elements. The type of structure is such that for any subset \(A \subset [n] \) there is an induced substructure of the same type on \(A \). Three examples of types:

- graphs on vertex-set \([n]\)
- partial orders on the set \([n]\)
- cladograms (leaf-labeled trees – see below) on leaf-set \([n]\).

Given two distinct instances \(S_1, S_2 \) of the same type of structure on \([n]\), we can ask for each \(A \subset [n] \) whether the two induced substructures on \(A \) are identical; and so we can define

\[
c(S_1, S_2) = \max\{\#A : \text{induced substructures are identical}\}
\]

where \(\#A \) denotes cardinality. Finally, given a probability distribution \(\mu_n \) on the set of all structures of a particular type, we can consider the random variable

\[
C_n = c(S_1, S_2) \quad \text{where} \quad S_1, S_2 \text{ are independent picks from } \mu_n.
\]

This general framework includes the following two well-known examples.

Example 1. Suppose the type is “graph” and the distribution \(\mu_n \) is the usual random graph \(G(n, p) \) in which possible edges are independently present with probability \(p \). Given two instances \(G_1, G_2 \) of graphs we can define the “similarity” graph \(G \) to have an edge \((i, j)\) iff both or neither of \(G_1, G_2 \) has the edge \((i, j)\). Then

\[
c(G_1, G_2) = \text{cl}(G) := \text{maximal clique size of } G.
\]

Moreover if \(G_1, G_2 \) are independent picks from \(G(n, p) \) then their “similarity” is distributed as \(G(n, q) \) for \(q = p^2 + (1 - p)^2 \). Thus \(C_n \) is just the maximal clique size of a random graph, a well-understood quantity ([12] section 11.1).

Example 2. Suppose the type is “total order” and \(\mu_n \) is the uniform distribution on all \(n! \) total orders on \([n]\). A few moments thought shows that here \(C_n \) is distributed as the longest increasing subsequence of a (single) uniform random permutation. This is again a well-studied quantity, of recent interest because of its connection with extreme eigenvalues of random matrices [8, 11, 28].
Of course these two examples are atypical, in that “by symmetry” a problem about two independent random structures reduces to a problem about one random structure, but they suggest that investigation of other examples may be interesting. Here are two new examples.

Example 3. Figure 1 shows a cladogram on $[n]$ (rooted unordered binary tree with non-root leaves labeled by $[n]$) for $n = 11$, together with the sub-cladogram on $A = \{1, 2, 3, 4\}$.

![Cladogram Diagram](image)

Figure 1. A cladogram on [11] and the induced sub-cladogram on [4].

There are two natural probability measures on n-cladograms:
(a) uniform on all $(2n - 3)!!$ cladograms;
(b) the coalescent, starting with n lineages and successively joining two randomly-chosen lineages into one lineage.

We conjecture that in both cases

$$EC_n = n^{\gamma + o(1)}$$

for different constants $\gamma_a, \gamma_b < 1/2$. We do not have conjectures for numerical values, but one can consider continuous limits of the relevant structures and seek to define candidate constants γ in terms of the limit random structures.

Example 4. Amongst several models for random partial orders [13], consider the random two-dimensional partial order on $[n]$. This is the partial order obtained by taking n points (x_i, y_i), $1 \leq i \leq n$ uniformly randomly in the unit square $[0, 1]^2$ and using the induced “coordinatewise” partial order [29]. Here the natural conjecture is

$$EC_n \sim cn^{1/3}, \text{ for some } 0 < c < \infty. \quad (2)$$

Remarkably, there are two quite different ways to obtain subsets $A \subset [n]$ of size $\approx n^{1/3}$ such that the partial orders agree on A.

5
(i) Partition $[0, 1]^2$ into subsquares of side $n^{-1/3}$. Take B as the set of i such that the i’th point in both processes falls into the same subsquare, so $E \# B = n \times n^{-2/3} = n^{1/3}$. Then take A as a maximal subset of B such that no two of the corresponding subsquares are in the same row or column.

(ii) Take C as the set of i such that in both processes the i’th point is within $n^{-1/3}$ of the reverse diagonal in $[0, 1]^2$. Again $\# C$ is order $n^{1/3}$. And one can choose $A \subset C$ with $\# A / \# C$ non-vanishing such that each partial order on A is the trivial partial order.

It is not hard (Graham Brightwell, personal communication) to prove an $O(n^{1/3})$ upper bound using the first moment method. But establishing a value for, or existence of, the presumed limit constant c in (2) may be genuinely hard.