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A brief review of Aboav’s law (the relationship between the average number of edges of 
a randomly chosen neighboring cell of a typical n-cell and n) and Lewis’ law (the relation- 
ship between the mean area of a typical n-cell and n) is presented. These two laws now 
play central roles in Rivier’s maximum entropy theory of statistical crystallography. A dis- 
cussion of the mathematical forms of these laws is our emphasis in this article. 

INTRODUCTION 

Froths (so called by physicists) or random 
tessellations (so called by mathematicians), 
which form an important class of space- 
filling cellular structures, have been studied 
extensively, both analytically and empiri- 
cally. Many first-order characteristics were 
found (Mecke [l], Msller [2], Okabe et al. 
[3], Rivier [4], and Stoyan et al. [5]. How- 
ever, analytic and empirical results for con- 
ditional characteristics appear not so fre- 
quently in published data. Exceptions are 
empirical studies of m, (the average num- 
ber of edges of a randomly chosen neigh- 
boring cell of the typical cell of a planar 
tessellation under the condition that it has 
n edges; such a cell is called the “typical 
n-cell”) and of A, (the mean area of the typi- 
cal n-cell of a planar tessellation). But these 
results are widely scattered in biological, 
geographical, mathematical, and physical lit- 
erature. Scientists, mainly physicists, have 
struggled for a long time to fmd the relation- 
ship between n and m, (Aboav’s law) or A,, 
(Lewis’ law). Aboav’s law or Aboav-Weaire’s 
law, which was first investigated empirically 
by Aboav [6] with the original aim of under- 

standing the mechanism of the growth of 
polycrystals, and Lewis’ Law, which was 
found originally in epidermal studies of 
Cucumis (Lewis [7, S]), are now observed in 
many naturally cellular networks, even in 
the cellular structure of the administrative 
divisions of a country (Le Caer and Delannay 
[9]) or in some similar networks (Boots [lo] 
and Pignol et al. [ll]). These two laws now 
play central roles in Rivier’s [4] maximum 
entropy theory of statistical crystallography. 

Here, the studies of Aboav’s law and 
Lewis’ law is briefly reviewed. The ultimate 
aims are (a) to give a review of the devel- 
opment of the theory and a colIection of im- 
portant results, and (b) to consider these 
problems in the frame of stochastic geome- 
try to see the possibility of further theoret- 
ical studies. Therefore, we emphasize the 
mathematical forms of the laws. A proof of 
an exact identity related to Aboav’s law, using 
techniques in stochastic geometry, is given 
in Appendix A. 

Other texts on the subject can be found 
in Biarez and Gourves [12], Bideau and 
Dodds [13], Bideau and Hansen [14], 
Dormer [15], Getis and Boots [16], Gibson 
and Ashby [17], Gorden [18], Guinier [19], 
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Okabe et al. 131, Smoljaninov [20], Stoyan 
et al. [5], Stoyan and Stoyan [21], Thomp- 
son [22], and Weaire and Rivier [23]. 

Physicists have not always stated explicitly 
their underlying models, except Rivier [24,4] 
who stated that all cells should be convex 
polygons in the two-dimensional (2D) space 
(polytopes in the d-dimensional space), and 
some of the arguments are not true in gen- 
eral when nonconvex polygons are allowed. 
Thus, we assume in the following context 
that all polygons are convex. Moreover, we 
assume all tessellations are stationary and 
in ordinary equilibrium state, that is, there are 
always three edges emanating from each 
node in a planar tessellation, which means 
all vertices have the same coordination 
number 3, where the networks (froths) are 
of trivalent vertices. 

As this is a review article, I prefer to write 
down all the authors of published data; so 
even if an article is of seven authors, the ab- 
breviation et al. is not used. Appendices A 
and B contain some relevant excerpts of two 
not-yet published works. 

ABOAVWEAIRE’S LAW 

Lewis [25] observed that in planar random 
tessellations seen in epithelia, the few-edged 
cells have a remarkable tendency to be in 
contact with many-edged cells and vice versa. 

Aboav [6] found empirically that 

m, = 5 + ;, 

and in his example, the average experimental 
error was less than 3%. This formula is an 
approximation; and because of the follow- 
ing relation, the constants 5 and 8 cannot 
be true in general. 

Denote ~2 = W(N), E(N2) = pz + E(w2, 
where N is the random number of the typi- 
cal cell edges, with the distribution mass 
function {pn}. As we have assumed that the 
tessellation is stationary and the number of 
edges emanating from each vertex of a cell 
is always 3, then E(N) = 6. The following 
rule, called Weuire‘s sum rule (Weaire [26]), 
was used frequently in published data, 

Cm,np,, = pL2 + 36 = E(W). (2) 

The leftmost term of Eqn. (2) is the mean 
total number of the edges of all neighboring 
cells of a typical cell. Weaire’s proof is rather 
“heuristic.” (Every cell of n edges will be 
counted n times. However, we have to per- 
form this counting process among infinitely 
many cells! Then, we have to divide the total 
number of edges of the neighboring cells of 
all (infmitely many) cells by the total number 
of (infinitely many) cells. Fortunately, a rig- 
orous proof, using Mecke’s [l] Palm method, 
can be constructed easily, and is given in 
Appendix A (see also Chiu [27] and Weiss 
[28]). Lambert and Weaire [29] have given 
a generalization of this sum rule, but this 
generalization did not provide a new insight 
of Aboav’s law and was shown (Le Ca@r and 
Delannay [30]) to be a simple consequence 
of the symmetry of the topological corre- 
lation functions Anj = Ajn, where Ajn = 
Mj(n)lpj, and Mj(n) is the mean number of 
j-edged neighboring cells of a typical n-cell 
(see the sections about Rivier’s microrevers- 
ible system and maximum entropy method 
and about Le Caer’s topological lattice 
model). 

Weaire [26] used the sum rule (2) and 
proposed 

m,=5+!iLE, 
n 

and Aboav [31] suggested that 

m, = (BI + B2~2) + 
B3 + B4p2 

n I 

where the B/s are constants for i = 1, 2, 3, 
and 4. By Weaire’s sum rule, it becomes 

m, = 6 _a+!E+ &J + (1 - bh 
6 n f (4) 

where [1 and b are constants. Now (3) is a 
special case of (4) with c1 = 1 and b = 0, and 
(1) is a special case of (3) with v2 = 2. Ex- 
perimental studies suggested that b = 0, and 
a = 1.2, with average error less than 2%, 
but the deviations showed signs of being sys- 
tematic (Aboav [33]). (4) with b = 0 can be 
written as 

fja + c12 m,=6-a+-, 
n 
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and can also be expressed as 

m,n - E(mrN) 
-=6-a. 

n - E(N) (6) 

Aboav [31] raised two questions: (a) is a = 
1.2 a pure1.y geometrical property or does 
it depend on a physical property of the sys- 
tem; (b) is it directionally dependent? 

An artifi.cial example showed that the 
linear law 

B2 
m, = B1 + n 

does not hold (Aboav [31b]). On the other 
hand, a = 1..2 was found to be valid for three 
different natural physical systems (Aboav 
[32]). In natural structures, deviations from 
Aboav’s law mainly occur outside the range 
5<n<8. 

Boots [34] considered Voronoi polygons 
and showed that a can be less than 0.6 and 
can depend on the aggregation of the poly- 
gons’ generating points. That is to say a 
varies with different systems. Analytic re- 
sults for a special model in Le Caer and 
Delannay [:30], simulations of Delannay and 
Le Caer [35], Fortes and Andrade [36], and 
Peshkin, Strandburg, and Rivier [37] and ex- 
periments of Gervois, Troadec, and Lemaitre 
[38], Lemaitre, Gervois, Bideau, Troadec, 
and Amm:i [39], and Lemaitre, Gervois, 
Troadec, Rivier, Ammi, Oger, and Bideau 
[40] corroblorated the variability of a. 

Experiments showed that there is a rela- 
tionship between the number of edges of 
a typical cell and its size. Therefore, unlike 
E(N) = 6, uz is not only a topological quan- 
tity but also depends on metric consideration. 

Aboav [32] conjectured that a is a metrical 
parameter whose value for the systems 
considered is determined by a geometrical 
condition governing the angle at which the 
cell edges meet. In his later work [41], he 
introduced a, the differential longitudinal 
dispersion, and renamed it in [33] as differ- 
ential metrical dispersion, by 

sx - !% 
a = G+!;y’ (7) 

In Aboav’s notation, X is the typical edge 
length of the cells of a tessellation; Y is that 
of its dual. .A dual (not uniquely defined to 

a tessellation) is constructed in the follow- 
ing way. For each cell in the tessellation 
under investigation, choose its centroid or 
generating point (if existing) as a dual node. 
Whenever two cells are neighboring to each 
other, the corresponding nodes in the dual 
are joined together by adding an edge to 
them. So a Delaunay tessellation is a dual 
of a Voronoi tessellation, but we can also 
choose the centroids of a Voronoi tessella- 
tion to produce a dual. And 

Therefore, a is a geometrical parameter only. 
The results from six natural systems (used 

centroids to produce duals) and four Voronoi 
tessellations (used generating points to pro- 
duce duals) showed empirically that 

a = 6a, (8) 

with the range that a E [0.08,0.2] and ~2 E 
[0.6,2.9]. 

Aboav’s [31] experimental results sug- 
gested that a and ~2 are independent but 
that Sx, Sr and u2 are strongly correlated in 
some cases and are less correlated in some 
other cases. With a = 6a, (5) can be reex- 
pressed as 

m, = 6(1 - a) + 
36~ + u2 

n , 

for a E [0.08,0.2] and ug E [0.6,2.9]. Aboav 
[33] used different methods to produce gen- 
erating points of Voronoi polygons, and the 
results showed no violation of the equation. 

Delannay and Le Caer [35], Fortes and 
Andrade [36], Le Caer and Delannay [30], 
and Pignol, Delannay, and Le Caer [ 111 have 
observed that all tessellations considered so 
far were rather similar in their geometrical 
aspect in that the cells were fairly regular 
polygons and u2 was small, usually less 
than 2, and never exceeds 5 in natural struc- 
tures. This may be the reason why a in nat- 
ural froths is always close to 1. Le Caer and 
Delannay [30] proposed that a decreases 
when u.2 increases and becomes negative 
for large ~2. Although this suggestion dif- 
fers from Aboav’s [31], it has been empiri- 
cally justified; see also God&he, Kostov, 
and Yekutieli [42] (~2 = 10.5 and a = -1) 
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and Peshkin, Strandburg, and Rivier [37] 
(~2 = 12.69 and u = -1.33). 

Fortes and Andrade’s [36] model is not 
only of large lr2 but also looks different from 
many natural structures. They have con- 
structed two kinds of networks of Poisson- 
distributed straight lines. One was simply 
the tessellation formed by a Poisson line pro- 
cess on the plane. They called such a tes- 
sellation a 4-regular network (as there are 
always 4 edges emanating from each vertex). 
The other kind was generated similarly, by 
drawing successive random straight lines on 
the plane, but a new line was interrupted 
at the points of intersection with previously 
drawn lines, forming T-junctions. These tes- 
sellations were called 3-regular networks be- 
cause there are always three edges emanat- 
ing from each vertex. These tessellations 
looked rather different from Voronoi tessel- 
lations and those considered by other physi- 
cists. By studying a 3-regular network with 
l.t2 = 9.11, they claimed that m, in that net- 
work was still well presented by Aboav’s law 
for a = 0.35 despite some deviation for large 
n. They thought that this deviation was due 
to their poor sfutisfics but without further 
comment. This study led to the conclusion 
that Aboav’s law may have a great general 
applicability to random networks. These 
authors observed that the linear relation is 
not more than a good approximation, and 
the exact determination of m, may require 
the knowledge of the probability that an 
edge belongs to two cells of n- and j-edges. 
(We will discuss this in the nextsection.) 

Deviations from the law, however, appear 
in Poisson Voronoi tessellations (Boots [43]). 
To overcome this, Aboav [44] proposed 

m, = E(N) + i + 
E(W’*) - tC2 

2 I (10) 

but the drawbacks (suggested by Le Caer 
and Ho [45] are (a) it departs too much from 
the basic linear law, and (b) it is also not valid 
for all tessellations. Weaire’s sum rule (2) re- 
quires that 

cL2 = 2 + Ww’2) - EW2) 
2 * (11) 

This is approximately true for the Poisson 
Voronoi case but not for Voronoi polygons 
generated by eigenvalues of random matrices 
(Le Caer and Ho [45]). 

Boots and Murdoch [46] suggested 

B2 B3 m, = Bi + - + -, 
It 712 (12) 

with Bi = 5.01, B2 = 9.68, and Bs = - 11.18 
for Poisson Voronoi polygons. And Weaire’s 
sum rule (2) requires 

m -6_a+bE1 +6a+p2 ’ n- 
0 6 N - - n2’ n 

(13) 

Le Caer and Ho [45] had another suggestion, 

B2 
m, = B1 + n + Bgz, 

which yields, using Weaire’s sum rule (2), 

m,=6-u+b6+: +q-bn. 
( 1 

(15) 

A fit of m, values for Poisson Voronoi tes- 
sellation gives II = 0.2332 and b = 0.06343, 
but (15) is not valid for all n as m, < 0 for 
n = 195 (although the probability of {N = 
50} is already of order 1O-75; see Drouffe 
and Itzykson [47]). 

They also claimed that the ratio b/a is re- 
lated to the ugeing of their physical structures 
that changes the cell shape correlations. The 
equilibrated cells may correspond to b/u = 0. 
The Poisson Voronoi tessellation gives a large 
b/u ratio and so it is a young structure (see 
also Rivier [48]). 

In addition, they studied the conditional 
second moment of the number of edges of 
a typical n-cell randomly chosen neighbor, 
o&(n), and found that empirically 

o,(n) = P(m, - y) (16) 

with p = 0.241 and y = 4.723 in Poisson 
Voronoi cells. Using sampling theory, they 
obtained that the estimator of the standard 
derivation (s) of m, is 

Gl(n) s(mJ = -, mjc 
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where I is the number of simulations, with 
C cells and p,, the probability that the typ- 
ical cell has n edges. 

Lauritsen, Moukarzel, and Herrmann [49] 
studied dynamic Voronoi diagrams and also 
found deviations of Aboav’s law. 

EXACT IDENTITY 

Actually, it can be shown by using Mecke’s 
[l] Palm m.ethod (Chiu [27]) or by some 
simple but not mathematically rigorous 
geometric arguments (Chiu [SO]), that for 
pn > 0, 

where k(j,n) is the mean number of j-edged 
cells belonging to the compZe.x or the system, 
which is the union of the typical cell and its 
neighboring; cells (this complex is the main ob- 
ject of this study), under the condition that 
the typical cell has IZ edges when pn > 0 and 
is zero otherwise. The proof taken from Chiu 
[27] is given in Appendix A. 

This covariance is not yet known but 
should depend on p,,. The mean value k(iln) 
is not new tlo physicists. Delannay, Le Caer, 
and Khatun [51], Le Caer and Delannay 
[9,30], Mombach, de Almeida, and Iglesias 
[52], Peshkin, Strandburg, and Rivier [37], 
and Pignol, Delannay, and Le Caer [ll] have 
studied Mi(n) (the average number of j- 
edged neighboring cells of a typical n-cell). 
k( j,n) and hlj(n) can be connected by a sim- 
ple relation,. 

k(j,n) = Mj(n) + &j, 

where 

(19) 

6 = 

f 

1 when n = j 
“I Owhenn z j. (20) 

Simulatio:n and experimental data given 
by physicists (see Appendix A) showed that 
the behavior of that covariance (as a func- 
tion of n) is rather similar to that of pn, 
when pn increases (decreases), the covari- 

ante increases (decreases). Unfortunately, 
the ratios between the covariances and pn's 
do not show a special pattern (Chiu [27]). 
Nevertheless, Eqn. (18) can still provide 
some insight for the linear law, especially 
that the first two terms are so close to (1) 
and (3) and that “magic” number’ “5” 
appears again (see Peshkin, Strandburg, and 
Rivier [37] for a discussion of this “magic” 
number). It is suggested that perhaps physi- 
cists should investigate k( j,n)/pj more 
deeply. 

Moreover, as first observed by Fortes and 
Andrade [36], natural tessellations studied 
so far were usually with fairly regular cells 
and low variances of the number of edges 
of a typical cell. This means that there were 
only a few data points; so, it is not surpris- 
ing that a linear regression line provides a 
good fit of the m, values, especially when 
the exact relation already contains a linear part. 

RIVIER’S MICROREVERSIBLE SYSTEM 
AND MAXIMUM ENTROPY METHOD 

Rivier [48] considered a microreversible 
system-a system where elementary topo- 
logical transformations (neighbor switching, 
T1 [Fig. 11; face disappearance, 7’2 [Fig. 21, 
and their inverses, and mitosis, or cell di- 
vision, which is an iterated inverse TZ trans- 
formation) can occur (when possible, e.g., 
T2 is not possible in Voronoi tessellations 
where the number of cells is conserved) in- 
dependently of each other in space or time, 
without affecting the statistical equilibrium 

Tl 

FIG. 1. Neighbor switching, Tl (after Rivier [48]). 

1 The term “magic number” was first used by Le Ca@r and Delannay [30]. 



FIG. 2. Face disappearance, T2 (after Rivier [48]). 

of the structure. Discussions of these trans- 
formations can be found in Rivier [24, 41. 

Recursive formulas for both T1 and T2 
have been obtained in Rivier [48]; and with 
the assumption that there is no dependency 
beyond nearest neighbors in Tr, the solu- 
tion (for both Tr and T,) was 

ml =5+6+p2 -. 
n (21) 

However, the argument for T1 was shown 
to be incorrect by Peshkin, Strandburg, and 
Rivier [37]. The solution for Tr was found 
to be 

m ,5+!2+6 n 6 n’ 

whereas (21) is still valid for Tr. These 
authors argued that if the ratio of Tl to T2 
were independent of n, Aboav’s law would 
still be obtained from this microreversibility 
with the constant term intermediate between 
5 and 5 + uJ6. But they also believed that 
it is not a realistic assumption. They simu- 
lated these two elementary topological trans- 
formations and the results agreed with their 
predictions. 

As this microreversibility cannot be used 
to derive Aboav’s law, they used the maxi- 
mum entropy method developed by Rivier 
[4, 24, 48, 53-551 and Rivier and Lissowski 
[56] to show that the entropy S = -&p,, 
ln(p,/q,), where 9n is a prior of p,, (see Rivier 
[4]), will be maximized if 

Mj(n) = Ai + Bin, (22) 

for some Aj and Bj depending on j only, and 
so 

nm,, = ~jM+z) = (FjAj) + (FjBj) n (23) 

(this form is called a linear Aboav’s law). 
However, not only their own simulation but 
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also those of Delannay, Le Caer, and Khatun 
[51], Le Caer and Delannay [9, 301, and 
Mombach, de Almeida, and Iglesias [52] 
showed empirically that Mj(n) departs from 
the linearity. When they studied Lewis’ law 
Gervois, Troadec, and Lemaitre [38] sug- 
gested, that C,(lln)p, may be fixed. Le Caer 
and Delannay [30] also discussed some prob- 
ably missing topological constraints such as 
the positivity of Mj(n), the impossibility of 
two 3-edged cells neighboring each other 
[Ma(3) = 01, the correlation between the 
number of 3-cells and 4-cells, and the triplet 
correlations. 

Chiu [50] (see Appendix B for some ex- 
cerpts) showed that (22) is only a suficienf 
but not necessary condition for S to be maxi- 
mized under those constraints considered 
in Peshkin, Strandburg, and Rivier [37]; that 
is, although the linear form (22) implies that 
S is maximized, when S is maximized, it is 
not necessarily that (22) holds. Actually if 
Peshkin, Strandburg, and Rivier’s [37] argu- 
ments were applied on k( j,n), we would con- 
clude that k(j,n) is also linear in n. It is im- 
possible to have both Mj(n) and k( j, n) being 
linear in n. On the other hand, we can, by 
using the same arguments, obtain a non- 
linear Aboav’s law with the same value of 
S. Chiu [50] concluded that Rivier’s maxi- 
mum entropy method cannot be used to de- 
rive or prove Aboav’s law, and the equiva- 
lence between the statistical equilibrium and 
the maximum value of S is in doubt. 

Using a microreversibility argument simi- 
lar to that in the planar case, Rivier [48] pro- 
posed a 3D version of Aboav’s law for m,(n), 
the average number of edges of the neigh- 
boring faces of an n-edged face of a typical 
cell, under the condition that it has f faces. 
But this relation has not yet been checked 
against simulation or experimental data. 
Moreover, parts of this work are incorrect 
because the author has not distinguished 
a typical face and a face of a typical cell, 
which have different distributions. Perhaps, 
it is more interesting to investigate the mean 
number of edges of the neighboring faces 
of a typical n-edged face or the mean number 
of faces of the neighboring cells of a typical 
f-faceted cell in 3D. 
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THREE-DIMENSIONAL ABOAV’S LAW 

Aboav [57,58] studied a 3D metal structure 
and obtain’ed a 3D Aboav’s law for the mean 
number of edges of the neighboring faces 
of a typical n-edged face. (Unlike soap foam, 
metal is opaque; so, it is difficult to inves- 
tigate its topological properties in 3D). Ob- 
serving directly the shape of individual grains 
of pure aluminum separated from a poly- 
crystal, he found that after grain growth, 

m’n3’ = E(N) + ;, 

where rnf) is the mean number of edges of 
a randomly chosen neighboring face of the 
typical face of a 3D tessellation under the 
condition that it has n edges, N is the ran- 
dom number of edges of the typical face, 
and u2 = \7ar(N). Note that in general E(N) 
# 6 but 

E(N) = -?!& 
n ‘-E(P) 

where p is the angle between two randomly 
chosen edges at the typical node. Unfortu- 
nately, E(p) is not a universal constant for 
all 3D tessellations and neither is E(N). The 
E(N) in (24) for aluminum is 5.09 and ~2 is 
2.9 (Aboav Private communication, 1994). 
It is interesting that in (24) there is no arbi- 
trary const,ant a as in (5) for the 2D case. 

Using Mecke’s [ 11 Palm method, Chiu [27] 
has obtained an identity for 3D, which is 
similar to (X3), 

mf’ = E(W) + %!&? + c@+‘hN),N], 
2npn 

where k(n,;“rl) and pn have the same mean- 
ing as before, except that they are defined 
for the typical face of a 3D tessellation. The 
3D Weaire’s sum rule is similar to that in 2D 

&zrn~)p, = E(N2). 
n 

LE CAiiR’S TOPOLOGICAL LATTICE MODEL 

Le Caer [5S: 601 studied a topological lattice 
model that does not depend on geometrical 
considerati’ons. Consider a lattice (say, a 

square lattice) in which every node, or ver- 
tex, is characterized by its coordination num- 
ber of valence, z, which is the number of 
edges emanating from the node. Vertices of 
valence z > Z~ = d + 1 in the d-dimensional 
space are unstable as their properties will 
be changed by small deformations (see also 
Rivier [4]). To remove the instability of a ver- 
tex of valence z, we add z - d - 1 edges to 
it. When d = 2, every added edge is con- 
nected to at least one of the other added 
edges if there are more than one edges 
added. This produces a set of possible stable 
configurations, called states, for the vertex 
of valence z; every state is characterized by 
a z-dimensional vector with components tak- 
ing integer values within 1 and z - 2. Exact 
expressions for pn and nrrzn for this kind of 
lattice models have been obtained (see also 
Delannay, Le Caer, and Khatun [51]; Delan- 
nay, Le Caer, and Sfeir [61]; and Le Caer 
and Delannay [30]). This idea was based on 
Thompson [22]. An important application 
of this lattice model is in simulation studies 
(Rivier [4]). Moreover, experimental studies 
(described later) also showed that the topo- 
logical properties of some natural froths are 
in good agreement with lattice models. 

Experimental studies of cellular tissues in 
human amnion, epidermal epithelium of the 
cucumber, and Pb-Tl alloys, and simulations 
using 2D hard-disk models and models for 
liquid show satisfactory agreement in pn 
with that calculated from the topological 
models associated with a distribution of in- 
dependent states on a square lattice (Le Caer 
[59]). A deeper discussion for the epider- 
ma1 epithelium of the cucumber and for the 
2D hard-disk simulations can be found in 
Delannay Le Caer, and Khatun [51]. Some 
more simulation results based on this topo- 
logical lattice model using an Ising cellular 
structure were also reported in that study. 

They also derived that if the Mj(n) are 
linear in n, then the topological correlation 
functions, Ajn E Mj(n)lpj, are linear both in 
j and 12 owing to the symmetry of Ajn = Ad 
and are uniquely expressed as 

Ajn = TZ + j - 6 - : (n - 6)(j - 6), (25) 
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where u is that parameter in (5); see also 
Delannay, Le Caer, and Sfeir [61]. They also 
suggested the use of these topological cor- 
relation functions Ajn for comparing topo- 
logical properties of tissues with different 
distribution p,, . 

Le Caer and Delannay [30] used grains of 
planar cuts of alumina polycrystals to calcu- 
late p,, nmn, and Ajn; and these values 
turned out to be similar to that obtained by 
exact calculations of the lattice model asso- 
ciated with a distribution of independent 
and equiprobable states on the vertices of 
tilings by triangles. But in Poisson Voronoi 
tessellations, only a similarity in Ajn be- 
tween the simulated and the theoretic values 
was observed. 

CODRkHE, KOSTOV, AND YEKUTIELI’S 
TOPOLOGICAL MODEL 

God&he, Kostov, and Yekutieli [42] studied 
the following topological model. 

Start from any ordinary equilibrium con- 
figuration of C + 2 cells. An edge is chosen 
randomly to perform the neighbor switch- 
ing (Ti) transformation. Each cell configura- 
tion generated in this way corresponds to 
a planar Feynman diagram of a 43 field 
theory with a fixed number of vertices. Tak- 
ing the limit C - ao, they derived analyti- 
cally that 

nm, = 7n + 3 + 9 
n+l’ 

with ~2 = 10.5, This result was confirmed 
by their simulations. Approximately when 
II is large, we obtain a linear Aboav’s law of 
the form (5) with II = -1. 

However, any application of this model 
for modelling natural cellular networks was 
not suggested. One reason (Le Caer, private 
communication, 1994) may be that the 10.5 
is much larger than any u2 observed in nat- 
ural structures. 

LEWIS’ LAW-RIVIER’S MAXIMUM 
ENTROPY METHOD 

Lewis [7, 8, 25, 62, 631 observed in several 
2D cellular mosaics, at various stages of their 

development, a specific relationship be- 
tween the average area of a typical n-cell, 
A,, say, and n, 

A, = a(n - 2), (26) 

where a = l/(4&) and hp is the intensity of 
the point process of cell centroids. 

Rivier and Lissowski [56] showed that if 
there exists II linear relationship between A,, and 
n, for n 3 2, then Lewis’ law can be obtained. 
Their argument was, however, not so rigor- 
ous because matrices of infinite rank were 
involved. Rivier [24,4] gave a simple proof, 
namely, let A, = kI + kg be true, where kl 
and k2 are some constants. Because E(N) = 
6 and E(AN) = l/Xl (expectation with re- 
spect to N), kI + 6k2 = II&,. By writing k2 = 
j3/&, where /3 is some constant, we obtain 

A,, = f-[n - (6 - i)]. (27) 

Because a convex cell must have at least 3 
edges, it is A2 = 0, which yields B = 114. 
Hence, Lewis’ law (26) is obtained. 

Rivier and Lissowski, however, added the 
strange remark that the condition that a cell 
has at least three edges is too strong in 
general and stated that Lewis [25] and 
Smoljaninov [20] had examples of tissues 
following (27) with 2 # 6 - (l/B) < 3. This 
may correspond to cases when nonconvex 
cells are allowed (see Introduction), or the 
linear relationship is not valid when n = 2. 
Indeed, there is no reason to assume that 
this linear relationship has an intercept at 
n = 2 (Rivier, private communication, 1993). 
Rivier [4] argued that B is actually the time 
that measures the ageing of a soap froth struc- 
ture and a polycrystal, but this interpretation 
is not applicable to biological tissues. 

Rivier and Lissowski then used the max- 
imum entropy method to show that the 
linear relationship between A,, and n maxi- 
mizes the entropy S under constraints (281, 
(29) and (30) below. 

zpn = 1, (28) 

&,pn = $ (2% 

c(6 - n)pn = 0. (30) 

There may exist some hidden constraints. 
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Mombach, de Almeida, and Iglesias [52] dis- 
cussed the maximum possible area of an 
n-edged cell with given perimeter and the 
absence of zero area cells. Some other topo- 
logical corrstraints were already mentioned 
in the section about Rivier’s microreversible 
system and maximum entropy method. 

Rivier’s :later work [48] showed that if 
further physical constraint “the average 
energy of a cell is proportional to its perim- 
eter” exists, which has been observed in 
metallurgical grain structures, the entropy 
S is maximized by the perimeter law or 
Des&s law, 

II, = a’(n - nb), 

where a’ and nb are some constants and II, 
is the mean perimeter of a typical n-cell. It 
then replaces Lewis’ law. 

It was found (e.g., Rivier [4]) that 

II n= 
A,, ;’ 

where L, i.s the average chord length of a 
typical n-cell. Thus, Lewis’ law and Desch’s 
law can coexist in the special case that I, 
is a constant. Some comparisons between 
Lewis’ law (and Des&s law in various froths 
can be found in Le Caer and Delannay [9]. 

However, the above studies were based 
on the maximum entropy method. Similar 
to Aboav’s law, Chiu [50] showed that this 
maximum entropy method indeed cannot 
be used to prove Lewis’ law nor Des&s law 
(see the section about Rivier’s microrevers- 
ible system and maximum entropy method 
and Appendix B). 

SOME EMPIRICAL STUDIES OF 
LEWIS’ LAW 

Le Caer and Ho [45] and Drouffe and 
Itzykson [47] showed empirically that, for 
Poisson Voronoi tessellations, A, varied 
linearly with n for n < 11. A change of the 
slope was observed by the latter authors for 
n > 12. 

Lewis’ law can be reexpressed as 

(31) 

for some no. Crain [64] has suggested em- 
pirically that, for Poisson Voronoi cells, this 
no is close to zero. (In his example this no 
is about 0.4.) This result is, however, incon- 
sistent with other studies. Other simulation 
values of rzo for Poisson Voronoi tessella- 
tions were 1.4 (using the data in Quine and 
Watson [65]), 1.6 (using Le Caer and Ho [45]) 
and 1.7 (using Drouffe and Itzykson [47]). 
(Boots [66] has suggested that perhaps the 
columns for the conditional average second 
moment of the perimeter and for the area 
of a typical n-cell have been transposed er- 
roneously in Crain’s article. If this is true, 
then that no in his example would be 1.4 in- 
stead of 0.4). For Voronoi cells generated by 
eigenvalues of a particular random matrix, 
Le Caer and Ho [45] has obtained that no = 
-1.78, whereas for dynamic Voronoi cells 
immersed in a heat bath, Lauritsen, Mou- 
karzel, and Herrmann’s [49] simulations ob- 
tained no = 5.77 for high temperature and 
no = 5.5 for low temperature. 

Quine and Watson [65] estimated the first 
four moments for the area and the perim- 
eter of a typical Poisson Voronoi n-cell and 
conjectured that 

A =2n-3 
n X’ (32) 

which is a special case of (27) or (31) with 
S = 2/9 or no = 3/2. 

The slope of (31) is l/h2(6 - no) and I/ 
(6 - no) was calculated by Okabe, Boots, 
and Sugihara [3] (using least squares esti- 
mation) to be 0.200 (using Quine and 
Watson’s [65] data), 0.219 (using Crain [64]), 
0.229 (using Le Caer and Ho [45]) and 0.256 
(using Drouffe and Itzykson [47]) for Pois- 
son Voronoi tessellations. However, I recal- 
culated the slopes, and the values are differ- 
ent from their calculation: 0.1993 (using 
Quine and Watson [65]), 0.2189 (using Crain 
[64], assuming that the columns for the con- 
ditional average second moment of the pe- 
rimeter and for the area of a typical n-cell 
have been transposed; otherwise it is 0.1785), 
0.2277 (using Le Caer and Ho [45]) and 
0.2571 (using Drouffe and Itzykson [47]). Be- 
cause there is an obvious change of the slope 
in Drouffe and Itzykson [47] for n > 12, and 
a linear relation fits A, and n pretty well for 
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n < 11, I also calculated the slope for n < 11 
and obtained 0.2270. 

Brakke [68] used numerical integration to 
obtain the following second order moment: 
k(A) = 0.2802, l&(II) = 0.9455, W(N) = 
1.7808, cm(A,l-I) = 0.4905, cov(A,N) = 0.4009 
and cuzQI,N) = 0.6506, where A is the 
random area of a typical cell, and II is its 
random perimeter. Thus, we can obtain the 
coefficients of correlation: r(A,II) = 0.9529, 
r(A,N) = 0.5675 and r(II,N) = 0.5014. Hinde 
and Miles [67] had already obtained almost 
identical results by simulation. Crain [64] 
found that in general r(A,PIN = n) increases 
with PI. Moreover, it was found empirically 
that the distribution of cell areas of planar 
sections of polycrystals and various Voronoi 
tessellations are fitted well by a gamma dis- 
tribution (Le Caer and Delannay [9]). 

Rivier [48] suggested a 3D version of Lewis’ 
law (namely, the expected volume of a typi- 
cal cell): under the condition that it has f 
faces, Vf, 

90 0 90 
V, = b g tf - WI + %:o’ 

whereas 2D Lewis’ law can be reexpressed 
in a similar form, 

A, = b’ 2 [n - E(N)] + ;t 
0 

where F is the random number of faces of 
the typical cell of a froth, 90 (go) is the total 
volume (area) of the froth, &, (go) is the total 
number of cells, and b (b’) is a constant. 

SOME SPECIAL MODELS 
STUDIED RECENTLY 

Gervois et al. [38] and Lemaitre et al. [39, 
401 found that 

A, = an + b + i, 

where a, b, and c are some constants in the 
experiments of hard disks on an air cushion 
table. Moreover, it was found that A, is not 
a monotonically increasing function of n, but 
attains its minimum at IZ = 5 or 6. 

Mombach et al. [69] studied cellular net- 
works with mitosis; a main difference be- 
tween biological cells and cells of other froths 
is the existence of mitosis among biological 
cells. They found that Lewis’ (as well as a 
linear Aboav’s) law has an agreement with 
both simulation and experimental data. They 
also found empirically that the distribution 
of the cell area attains its maximum at non- 
zero area if mitosis is allowed, whereas if 
mitosis is forbidden, the maximum of the 
distribution is attained at zero area. They 
suggested that the existence of zero area cells 
should be suppressed by adding some more 
constraints. A theoretical treatment of a sta- 
tistically equilibrated tessellation in which 
cell divisions are allowed can be found in 
Rivier, Arcenegui-Siemens, and Schliecker 
[70]. Delannay and Le Caer [35] simulated 
a 2D cellular structure in which cell divisions 
are allowed. The results of WZ,, and Ajn (the 
topological correlation function) showed sig- 
nificant but small deviations from the lin- 
earity in n. 

Flyvbjerg [71] suggested a nonlinear dy- 
namic model that contains no free param- 
eter, and all rates are determined dynami- 
cally. Using this model, he was able to derive 
the following form of Lewis’ law (for this 
model only), 

A, = a(n - 6) + 8 + 0 i , 
0 

where a and l3 are known. Therefore, the 
linear Lewis’ law is only asymptomatically 
valid in this model. 

THE FUNDAMENTAL REGION 

Zuyev [72, 731 introduced the notion of the 
fundamental region for a Voronoi polygon 
in the d-dimensional space. 

Consider a cell generating point x and its 
corresponding Voronoi cell T(x). For any ver- 
tex of T(x), there are d + 1 equidistant near- 
est cell generating points, x1 xi, x2, . . ., xd. 
That is to say, there exists a ball centered 
at this vertex having x, xl, . . ., xd on its 
boundary and no other generating points 
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inside it. x or each Xi forming T(X) lies in the 
intersection of d such balls. The union of all 
these balls for x and all x/s forming T(x) is 
called the fundamental region for T(x) and is 
denoted by D(x). 

Russo’s [PI] formula for Bernoulli processes 
is modified to the case of Poisson processes 
and using this formula, Zuyev showed that 
the volume of the fundamental region of a 
typical Voronoi polygon, given n hyperfaces, 
follows a gamma distribution (see also Miles 
[75]). Because for any x, the volume of T(x) 
does not exceed the volume of D(x) divided 
by 2d, a rough upper bound on the volume 
distribution of a typical Voronoi polygon hav- 
ing n hyperfaces is obtained. 
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APPENDIX A 
SOME EXCERPTS OF CHIU [27] 

Weaire’s proof of the sum rule (2) is “heu- 
ristic” because it involves a counting process 
not possible to perform as we have to count 
infinitely many cells and divide infinity by 
infinity. A more rigorous treatment of this 
sum rule is still needed. Chiu [27] studied 
this Weaire’s sum rule and Aboav’s law in 
the d-dimensional space (Rd) . The following 
is the particular case d = 2. 

The proof may be a bit too mathematical. 
The monograph by Stoyan, Kendall, and 
Mecke [5] can serve as a useful background 
for this Ap:pendix. Nevertheless, the mate- 
rials below are self-contained. 

The exact identity (18), although not very 
physically illuminating, helps us to show the 
fallacy of the maximum entropy method (see 
Appendix 13). 

NOTATION 

Consider stationary planar tessellations that 
have only convex cells and are in ordinary 
equilibrium state, meaning there are always 
three edges emanating from each node. 

Let T = {e} be the class of all such tessel- 
lations, where 8 denotes such a tessellation. 
Let C,(O) be the cell of the random tessel- 
lation 0 containing o, the origin, when o 
does not lie on an edge of 0, and be the 
empty set otherwise. Let ok(O) be the sets 
of nodes, of edge-midpoints, and of cell- 
centroids of 0 for k = 0, 1, and 2, respec- 
tively. Let 

p(0) = ?J ak(@). 
k=O 

The intensities of these point processes 
ok(@) and p(O) are hk and h’, respectively, 
where x’ is positive and finite. If P is the dis- 
tribution of a stationary random tessellation 
0, the Palm distribution of p(O), P’, is 

where A is the subclass of tessellations in 
T such that all tessellations in A have cer- 
tain properties that are of interest and ZA(.) 
is the indicator function of A, that is, IA(~) 
= 1 if 0 E A and zero otherwise. Clearly, 
the Palm distribution P’ is also a distribution 
of tessellations. Suppose 0 follows this Palm 
distribution P’. When o E a@), C,(O) is 
called the typical cell (see Mecke [l], and 
Stoyan et al. [5]). This typical cell has the 
same distribution as a randomly chosen cell 
in the tessellation 0, where all cells are 
equally weighted. 

Let Tk be (0 E T : 0 E a#)} and for any 
measurable function gk : Tk - [0, 00); Ekgk(@) 
is the mean of gk(@) with respect to P’, 
under the condition that o E ok, i.e., 

Ekgk(@) = t jTx gk(e)P’(de) I 

for k = 0, 1, and 2. 
Moreover, let, for integer n, T!$ be the set 

(0 E T2 : C&I) has n edges}. If C,(O) = 0, 
then let C#) be the empty set, otherwise 
let it be the union of the closures of C,(O) 
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and its neighboring cells; we call this union 
the complex fomzed by C&l) and it is fypicaZ if 
C,(6) is the typical cell. Define e&0) to be 
the number of edges of the cell containing 
x, where x E u&3). 

For random 0 E TZ, denote the random 
number of edges of the typical cell of 0 by 
N = N(0) and the random total number of 
edges of the neighboring cells of the typical 
cell of 0 by Mr = Mz(O). Let p,, = P{N = n}. 
u2 denotes tir(N), and k(j,n) is the mean 
number of cells in Co(O) having j edges 
when C,(0) has II edges, where n is an 
integer such that p,, > 0, and zero otherwise. 
Thus, k(j,N) is a random variable. A well- 
known and important result is E,(N) = 6 for 
all planar stationary tessellations in ordinary 
equilibrium state. 

For the case of presentation, in the text 
the subscript k in Ek(.) for k = 1, 2, or 3 is 
omitted. 

MECKE’S [1] THEOREM 4.2 

For any measurable function h : R* x T - 
[Q m), 

1 z h(x,B)P’(de) = 
WW) 

j IS h( -x,8 - x)P’(de). 
W(e) 

WEAIRE’S SUM RULE 

E(M”) = E(N2) = 36 + ~2. (35) 

Proof. Consider the following integral, 

h’ jr? x Ir$+)&@) n G(e)(x)c(x&P’(d@ 
re!W% 

= ~~E{I{oET?:N(o)=~~(O)[M~(O) + N(@)l} 

= ~~~E{~~ET~:N(o,=~}(O)[M~(O) + NW 

IN;@) = i}pi 

= h2E[Mr + N]N = n)pn. (36) 

By Mecke’s [l] Theorem 4.2, this integral 
is equal to 

h’j K50J'T'Y@ - x)l,,(e-r)ncb(e-x)(-x) 

e(-x,0 - x)P’(dO). (37) 

The product of the indicator functions does 
not vanish if and only if 8 E T2 and x E a,(e) 
n CO(e) such that the cell containing x has 
n edges. Therefore, (37) is equal to 

&EWWW . (38) 

Because C,k(n,N) = # cells in C@), given 
that CO(O) has N edges = N + 1. Hence, 
summation over all possible values of n of 
both (36) and (38) yields 

EW) + E(N) = ~E[NW,N)l 

= E(W) + E(N). 

Theorem. When p,, > 0, we have 

m 
n 

~ E(M”IN = n) 
n 

Proof. From (36) and (38) we have the fol- 
lowing identity, 

E(Mx + N/N = n)p, = E[Nk(n,N)J 

= E(N)E[k(n,N)I 
+ c~[k(n,NWl . 

(40) 

If we can show that E[k(n,N)] = (n + l)p,,, 
then the result follows. Consider the follow- 
ing integral, 

h2(n + VP,. (41) 

By Mecke’s [l] Theorem 4.2, this integral is 
equal to 

h’S xEgej$$$e - x)l,,(e-x)ncb(e-x)(-x)pl(de)- 

(42) 

The product of the indicator functions does 
not vanish if and only if 8 E T2, x E a,(e) n 
C$3) and the cell containing x has n edges. 
Therefore, (42) is equal to h2E[k(n,N)]. The 
result follows. 

THE COVARIANCE TERM 

As can be seen in Table 1, cov[k(n,N),N] is 
empirically always less than ~1~. Moreover, 
cov[k(n,N),N] is usually but not always posi- 
tive; see Chiu [27]. 
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Table 1. Simulated Poisson Voronoi tessellation, up = 1.726 (Le Caer and Ho [42]) 

covfk(n,N),NI covM,N), NI 
n Pn wl np?l Pn cov~kfd'~,Nl 

3 0.0113 7.009 0.009 0.027 0.0003 
4 0.1068 6.718 0.218 0.872 0.0931 

5 0.2595 6.492 0.292 1.460 0.3789 

6 0.2946 6.315 0.315 1.890 0.5568 

7 0.1986 6.171 0.314 2.197 0.4363 

8 0.0905 6.050 0.300 2.400 0.2172 
9 0.0295 5.948 0.281 2.532 0.0747 

10 0.0074 5.859 0.259 2.590 0.0192 

11 0.0014 5.780 0.235 2.580 0.0037 

APPENDIX B 
SOME EXCERPTS OF CHIU [50] 

Chiu [50] showed that (22), Mj(n) = Aj + 
Bin, is only a sufficient but not necessa y con- 
dition for S to be maximized under the fol- 
lowing constraints considered in Peshkin, 
Strandburg, and Rivier [37]. 

;pn = 1, (43) 

+p,, = 6, (44) 

FM,(j)pi = npnr (45) 

#L(j) = pJ$(n). (46) 

PESHKIN, STRANDBURG, AND RIVIER’S [371 
MAXIMUM ENTROPY METHOD 

Let us consider their argument again. They 
argued that if Mj(n) is written in the linear 
form (22), then the constraint (45) can be re- 
expressed as a “linear” combination of the 
constraints (43) and (44) and so the entropy 
S can be increased further. (However, it is 
indeed not a ‘linear’ combination. This will 
be explained later.) 

By summing up all possible j of both sides 
of (46), we hnd that the constraint (45) is a 
consequence of the constraint (46), which 
is also made redundant by the linear form 
(22); this has not been established in their 
article. 

To show this redundancy of (46), note that 

substituting (22) and (19) into the exact iden- 
tity (18) yields 

nm, = 5n + 6 + 
ceWL + &IN + hN,N) 

Pn 

= 6n + $,, (47) 

as co@&N,N) = (n - 6)p,. Compare (47) 
with (23) we obtain 

2~2 = (F&) + (bBl)n - 6n, (48) 

for reasons that will become clear, the run- 
ning index is changed from j to 2. 

By (43), (44), and (45), (22) becomes 

Al + 6B2 = 1~1. (49) 

Multiplying both sides of (49) by 1 and then 
summing up all possible 1 yields 

FlAl + 671B, = p2 + 36, (50) 

Substituting (50) into (48) yields 

: p2 = ~2 + (n - 6)(?1&) - 6(n - 6). (51) 

Therefore, from (22), (49), and (51), 

M~JI A, + f&j - = 
Pn Pn 

= np, + Wj - 6) 
Pn 

by (49) 
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= n + !$?(p2 + (n - 6)(3 - 
\ 

6(n - 6’) by (51) 

= n + j _ 6 + (i - W - 6) 
P2 

FIBI - 61~2) 

Mj(n) = -. 
Pi 

Thus, (46) is fulfilled. [Compare with (25), 
we find that u = Cl& - 6~2.1 

Note that the linear form (22) does not 
make the constraint (45) to be a linear com- 
bination of the constraints (43) and (44). A 
linear combination of, say f(p) and g(p), is 
in the form af(p) + bg(p) where u and b are 
constants, which are independent of p. Now 
from (49), Al and Bl depend on pl and so 
(45) is not a linear combination of (43) and 
(44). However, because Al and BI are arbi- 
trary, (49) does not impose a new constraint 
on {pn}. Therefore, the maximum entropy 
prediction of {pn} is simply the solution ob- 
tained by maximizing S = -&,p,,ln(p,/q,) 
subject to the constraints (43) and (44). Let 
the solution be {tiE} and the maximum en- 
tropy value SME. Note that because the prior 
{qn} is unknown, it is not possible to obtain 
tJ~sexplicit form of {e”} nor the value of 

OTHER POSSIBLE MAXIMUM 
ENTROPIC PREDICTIONS 

Let us reconsider this argument, using k( j, n) . 
Substituting (19) into the constraints (45) and 
(46) yields 

Fk(n,j)pj = (n + l)pn, (52) 

pjk(n, j) = p&C j, n> . (53) 

If Peshkin, Strandburg, and Rivier’s [37] 
arguments were applied on k( j,n), we would 
conclude that k(j,n) is also linear in n, i.e., 

k(j,n) = A; + b$, (W 

where A; and I?; are some constants depend 
only on j. Although a linear Aboav’s law can 
still be the result, 

S. N..Chiu 

run,, = Fjk(j,n) i n 

= (?A;) + (Tj”; - I) nt 

it is impossible to have both Mj(n) and k( j,n) 
being linear in n because they are different 
by 1 at the point j = n and are the same other- 
wise. However, the entropy S in this case 
is still SME, because with the linear form 
(54), it can be shown easily that 

Wi) -= n + l _ 5 + (i - W - 6) 

Ii2 
W n) =-, 

Pi 

and so (53), as well as (45), (46), and (52), 
is also redundant. Therefore, whether it is 
Mj(n) or k(j,n) (but not both) that is linear 
in n, the entropy is still SME, and so it is 
not clear which functional form is “more 
probable.” 

It is also possible to establish another en- 
tropic prediction of the form of Mj(n) with 
the same entropy value SME, by making the 
constraint (45) to be really a linear combi- 
nation of (43) and (44). Define 

f(j,n) = Mj(n) - S,jj = k(j,n) -- Sq(j + 1). 

Then both constraints (45) and (52) can be 
rewritten as 

Ff(j.n)pn = 0. (56) 

Using the argument of this maximum en- 
tropy method, when the constraint (56) is 
a linear combination of the constraints (43) 
and (44), then the entropy S can be increased 
further, when f(j,n) is in the form, 

f(j,n) = aj + bin, 

for some constants Uj and bj depending on 
j only, then (56) is a linear combination of 
(43) and (44), provided that Uj + 6bj = 0 
(which does not depend on tin}). Thus, M](n) 
and k( j, n) are nonlinear, 

Mj(n) = (bi + &q)n - 6bj, 

k(j,n) = (bj + 6,j)n - 6bj + Snj. 
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Surprisingly, a nonlinear Aboav’s law is 
obtained, 

and Mj(6) = 666j, which means that all 
neighbors of the typical 6-cell are also cells 
of 6 edges! It means that p6 is either zero or 
l! Although it seems that such a froth is un- 
likely to be a real equilibrated natural struc- 
ture, this :structure has the same entropy 
value as those with the two linear Aboav’s 
laws considered before, namely, SME. This 
can be proved by using a similar argument 
as above. 

Actually, whenever CjMj(n) = n and 
Mj(n)/pj is a function that is symmetric in 
n and j, (46) holds and so does (45). Thus, 
it may be helpful to use the topological corre- 
lation function Ajn 3 Mj(n)/pj, introduced by 
Delannay, Le Caer and Khatun [51], Delan- 
nay, Le Caer, and Sfeir [61], and Le Caer and 
Delannay l/30]. Then, (45) and (46) can be 
rewritten as 

NOW, suppose that Anj is (nj)/6, 1 + (n - 
l)(j - 1)/5,2 + (n - 2)(j - 2)/4, . . ., or n&j/ 
pn, 1 + (n -- 1)&j/& . . . etc. (see also equa- 
tion (19) of Le Caer and Delannay [30]. Then, 
the constraints (45) and (46) are redundant. 
Hence, the entropy can still be maximized 
to SME; that is to say, all these forms are 
“equally probable.” That means Mj(n) is not 
uniquely dIetermined by this maximum en- 
tropy method, nor are Ajn and k( j,n). 

CONCLUSIONS 

The fallacy of this method is due to that the 
maximum entropy is always SME, no matter 

how the constraints (45) and (46) are made 
redundant. Thus, M](n) = Aj + Bjn is only 
a suficient but not necessary condition for 
s = SME. 

It is not yet clear which Mi(n), k(j,n), 
f<jA Ajnt and/or some other characteris- 
tic(s) their/its functional form(s) can be 
chosen arbitrarily. Even if we can set up 
some criteria such that only the functional 
form of Mj(n), say, can be chosen arbitrarily, 
it is not necessary to be linear. Even if it had 
to be linear, the slope (Bj) and the intercept 
(Aj) would not be fixed. Thus, the structure 
can undergo changes without changing the 
value of the entropy and so the structure is 
not in statistical equilibrium. 

Hence, the maximum entropy method can 
only be used to obtain the following: 

a linear Aboav’s law 

4 S is maximized 

ii statistical equilibrium 

However, the example presented above 
shows that this method cannot be used to 
derive a unique linear Aboav’s law (nor 
Lewis’ law). The equivalence between the 
statistical equilibrium and the maximum 
value of S is in doubt because the structure 
can undergo changes without reducing or 
increasing S. Thus, the following is wrong: 

a unique linear Aboav’s law 

ii S is maximized 

& 
statistical equilibrium 

Indeed, the example above shows that 

S is maximized => infinitely many possible 
forms of Aboav’s law 

=> not necessary in 
statistical equilibrium. 


