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A formal mathematical framework is presented for the study of linkage in man 
and the concept of chromosome pedigree is defined for both autosomes and X 
chromosomes. It is shown that, assuming no interference, all the crossover 
processes in the pedigree may be viewed jointly as a continuous-time Markov 
random walk on the vertices of a hypercube, the time parameter being map distance 
along the chromosome. The event that two individuals have a segment of 
chromosome in common, thus proving them to be related, corresponds to the 
random walk hitting a particular set of vertices. The probability of this happening is 
calculated for various types of relationship, making use of the symmetry of the 
situation to partition the vertices into a very much smaller number of orbits and 
render the computations manageable. The probability that an individual with n 
children passes on all his or her genes to them is also calculated in this way. 

This paper approaches a limited problem in the field of human pedigree 
reconstruction from the new viewpoint of complete genetic information being 
available for all 22 pairs of autosomes. It is hoped, however, that the 
methods developed may be of use in other genetic problems concerning the 
complete genome. 

Edwards (1965) first suggested the possibility of using genetic information 
on living individuals in a small population to infer an unknown pedigree 
structure. Thompson (1974a, 1975, 1976) has done both theoretical and 
computational work on this problem, from the point of view of a finite 
number of independent loci, and indicates that significant practical progress 
can be made in estimating pairwise and multiple relationships. Although 
linked loci pose no theoretical problems, the computational complexity 
increases rapidly with the size of linkage groups. 
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The map of the human genome is being filled in increasingly rapidly in 
recent years (for a recent review of linkage analysis in man with further 
references see Conneally and Rivas (1980)), and there is the prospect of 
DNA sequencing becoming commonplace. It may therefore be timely to look 
tentatively toward the day when measurable informative loci are located 
densely throughout the genome, so that chromosomes are better represented 
by line segments, which are broken and respliced by crossovers, than as 
finite collections of loci. This is the approach we adopt in this paper. This 
approach is also the basis of Fisher’s theory of junctions (Fisher, 1949, 
1954, 1959; Bennett, 1953, 1954), and of the papers by Franklin (1977) and 
Stam (1980). Franklin’s paper is closest to our own and gives further 
references. In this paper we assume as Franklin does that the process of 
crossovers is Poisson (no interference), although this is known not to be the 
case. 

Parallels can also be seen between some of the concepts in a paper by 
Schnell (196 1) and those in the present paper, although Schnell deals with a 
finite number of loci and makes no assumption about the crossover process. 

The problem of pedigree reconstruction is complex, and we examine only 
a very small part of it. We calculate the probability that two individuals with 
a given relationship have some segment of chromosome in common, due to 
its descent from a common ancestor. We assume that in the event of this 
occurring the segment of chromosome contains a sufficient number of infor- 
mative loci for its identity by descent in the two individuals to be 
conclusively established, thus proving the individuals to be related, This 
possibility was suggested as long ago as 1963 by Smith (1963). 

In Section 1 we present a formal mathematical framework for the study of 
linkage. Although this is more formal than is strictly necessary for our 
immediate problem, it is hoped that it will provide a foundation for further 
studies. We define the useful concept of “chromosome pedigree” in which 
each nonfounder chromosome is obtained by a “crossover process” from two 
“parent chromosomes.” If we label the parent chromosomes 0 and 1, then 
the crossover process may be considered as a continuous-time Markov 
random walk on these two states, the “time” parameter being distance along 
the chromosome. When we consider jointly all the crossover process in the 
chromosome pedigree, the states are vectors of zeros and ones, only a single 
coordinates of which changes when a crossover occurs somewhere in the 
pedigree, so that we have a continuous-time Markov random walk on the 
vertices of a hypercube. This representation of the gene flow in a pedigree as 
a random walk on the vertices of a hypercube forms the basis of this paper. 
Genetic events, such as a relationship between two individuals being detec- 
table, correspond to the random walk hitting a particular subset of vertices. 

In Section 2 we recall briefly some results on hitting times for continuous- 
time Markov processes. Our hypercubes have. however. such a large number 
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of vertices that the computation of results would be impossible were it not 
that we can exploit the symmetry of the situation to divide the vertices into 
sets of corresponding vertices, called “orbits.” We then need not keep track 
of individual vertices, but only of the much smaller number of orbits. This is 
described in Section 3. In Section 4 various types of relationship are studied, 
obtaining the Q matrix and initial vector for the process of orbits, which can 
then be used to obtain the results presented in Section 5. Finally, in 
Section 6, we obtain an approximation to the exact results and use this to 
investigate robustness to some of the assumptions made. 

The model used in this paper must be regarded as tentative pending further 
knowledge of DNA sequence structure and crossovers in man, although it is 
hoped that the methodology will be of use whatever the precise model turns 
out to be. A discussion of some of the assumptions made in the light of 
present knowledge, as well as suggestions for further developments, will be 
found in Donnelly (1982). 

1. A FORMAL FRAMEWORK FOR THE STUDY OF LINKAGE IN MAN 

An Introductory Example 

Consider two half-sibs with a father in common and let us restrict 
attention to the chromosome number l’s which they possess. In Fig. 1 we 
represent the paternal chromosomes C and D of the two children and the 
chromosomes from which they are derived, namely the father’s maternal 
chromosome A and paternal chromosome B. 

Since this diagram has the structure of a pedigree, except that A, B, C, and 
D are chromosomes rather than persons, we call it a chromosome pedigree. 
Taking the analogy further, we say that chromosome A is the mother 
chromosome of chromosome C and chromosome B is the father 
chromosome. A and B are the founder chromosomes of the pedigree. 

The idea of chromosome pedigree also includes a notion of how the 

FIGURE 1 
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nonfounder chromosomes C and D are obtained by a random process from 
their parent chromosomes. At any point (“locus”) along its length. 
chromosome C is equally likely to be a copy of A or a copy of B. We denote 
the former event by 0 and the latter by 1. As we move along the length of the 
chromosome, however, crossovers may occur at random causing us to switch 
from 0 to 1 or vice versa. The same thing is happening for chromosome D. 
At any locus we may write the joint state of C and D as one of the four 
possibilities (00, 01, 10, 11 }, which correspond to the vertices of a square, as 
illustrated in Fig. 2. As we move in parallel along chromosomes C and D, 
the joint state may change for example from 00 to 10 if a crossover occurs in 
the formation of C, or from 00 to 01 if a crossover occurs in D. Since two 
crossovers are extremely unlikely to coincide, we cannot move directly from 
00 to 11. We thus have a random walk on the vertices of a square, moving 
between adjacent vertices. 

The event 00 corresponds to both C and D being at that point a copy of 
chromosome A, and the vertex 11 to them both being a copy of B; otherwise 
C and D are unequal. Thus the event that the two children share a section of 
chromosome identical by descent corresponds to the random walk hitting the 
hitting set (00, 1 1 }, 

We now place these ideas in a more formal and general mathematical 
context before going on to apply them. The central notion of chromosome 
pedigree applies to X chromosomes as well as autosomes, although we shall 
not study X chromosome pedigrees in this paper. 

Chromosomes 

There are 23 types of chromosome. Chromosomes of types 1 to 22 are 
called aufosomes. Chromosomes of the 23rd type are called X chromosomes. 
(We ignore the existence of Y chromosomes since they are likely to have 
very few genes.) 

Corresponding to each type of chromosome i is a positive real number I, 
called the length or map length of chromosomes of type i. Although the map 
lengths of chromosomes appear to differ in males and females (Conneally 
and Rivas, 1980), we ignore this and assume a fixed map length for each 
chromosome type. 

A chromosome of type i is a random function from 10, Ii 1 to the set of 
nucleotides. (What nucleotides are will be of no importance to us in this 
paper.) The distribution of the random function is the same for all 
chromosomes of the same type. 

Chromosome Pedigrees 

A pedigree structure is a finite, simply ordered set g, together with a 
subset ..7, called founders, and functions m and f, called mother and father 
functions, from the set of nonfounders @‘LF into @. The images of an 
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element C under m and f are written Cm and Cf; and must precede C in the 
ordering. 

A chromosome pedigree is pedigree structure where the set consists of 
chromosomes of a given type i, whose joint distribution is given as follows: 

(a) The founder chromosomes are independent random functions with 
the appropriate distribution for their type. 

(b) For each nonfounder chromosome C there is a random function s, 
(called a switch) from [0, li] to (0, 1). (This function indicates which parent 
chromosome is being copied.) The distribution of s, is invariant under 
interchange of 0 and 1, so s, is a two-point random walk on {O, 1 }, the 
“time” parameter being distance along the chromosome. The switches are 
independent and identically distributed, so the ordered set (scJcEIV is a 
random walk on a #(Q\g)-dimensional hypercube. 

(c) Once we are given the founder chromosomes and the switches, the 
nonfounder chromosomes are obtained deterministically as 

C(t) = Cm(f) if s&t) = 0 

= Cf 0) if se(t) = 1. 

Thus the gene flow for a chromosome pedigree is described by the random 
walk s on a hypercube. 

(d) Assumptions (b) and (c) require that we have no translocations, 
deletions, mutations, and equal crossover rates in males and females. We 
now assume no interference by requiring the distribution of sc to be in fact 
given as follows: s,(O) = 0 or 1 with equal probability, and sc changes from 
0 to 1 or vice versa at the points of a Poisson process of rate 1. These points 
are called crossovers. s is thus a continuous time Markov process on the 
vertices of a hypercube, starting with the equilibrium distribution, which 
assigns equal probability to each vertex. 

Person Pedigrees 

A person consists of a sex (male or female) together with an ordered set of 
chromosomes. There are two chromosomes of each type, except that males 
have only one X chromosome. One of each type is called a maternal 
chromosome and one is called a paternal chromosome. The single X 
chromosome of a male is always a maternal chromosome. The chromosomes 
of a person P will be written P-l,, P-l,, P-X,,,, etc., where, for example, 
P-1 m represents the maternal chromosome of type 1. 

A person pedigree is a pedigree structure whose underlying set consists of 
persons, and which satisfies the conditions which we now list. For each 
nonfounder person P, the mother, Pm, of P, is female, and the father, Pf of P, 
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is male. Further, the joint distribution of all the chromosomes of the persons 
in the pedigree is given as follows: 

(a) The paternal X chromosomes of nonfounder females P are the 
same as the father’s X chromosome; 

P-xp = PJLX, , 

(b) The autosomes of each type, and the X chromosomes, excluding 
paternal X chromosomes of nonfounder females, form 23 independent 
chromosome pedigrees with founder chromosomes defined to be the 
chromosomes of founder persons. The parent chromosomes of a maternal 
chromosome are the mother’s two chromosomes, and the parent 
chromosomes of a paternal chromosome are the father’s two chromosomes. 
except that paternal X chromosomes of nonfounder females are omitted since 
they come unchanged from the father. More formally. the mother and father 
functions for the chromosome pedigrees are defined as follows for autosomes 
of type i: 

(P-i,)m = Pm-i,, 

(P-i,) f = Pm-i,, 

(P-i, )m = Pf-i, . 

(P-i,) f = Pf-i, : 

and as follows for the maternal X chromosomes of nonfounders: 

(P-X,)m = Pm-X, 

(P-XJf = Pm-X, if Pm is a founder. 

= Pmf-X, if Pm is nonfounder. 

Thus every person pedigree has 23 chromosome pedigrees embedded within 
it, with mother and father functions defined as above. The 22 autosomal 
chromosome pedigree structures are isomorphic. 

Detectable Relationships between Chromosomes 

Suppose we are dealing with a fixed chromosome pedigree @. with 
founder set .Y. The gene flow s is a continuous time Markov random walk 
on the hypercube 
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The ‘younder being copied from” function F: H x Q + Sr is defined recur- 
sively by 

F(s(t), C) = C 

if C is a founder, and 

W(O, C) = F(s(O, Cm) 

= FW), Cf) 

if C is a nonfounder. 

if s&) = 0 

if se(t) = 1, 

Thus F(s, C) specifies the founder chromosome of which chromosome C is 
a copy at each “time” t E [0, /,I, given the gene flow s. Points t in [0, li] are 
called loci. 

Two chromosomes C and D are said to be identical by descent at locus t if 
F(s(t), C) = F(s(l), D), that is, if, at locus t, they are both derived from the 
same founder chromosome. They will then almost surely be identical by 
descent in an interval about t. 

Chromosomes C and D are said to be detectably related if they are equal 
on some interval (t,, tz) c [0, fi]. We assume now that the information 
density (entropy density) of chromosomes is infinite everywhere on [0, li]. 
For practical purposes this means that any section of chromosome, down to 
the shortest in which we might be interested, contains sufficient polymorphic 
loci for it to be distinct in unrelated individuals. We are thus assuming that 
there are no fixed sequences of nucleotides of any significant length, that 
polymorphic loci can be detected everywhere along the chromosome, and 
that linkage disequilibrium does not rise with decreasing map distance in 
such a way as to make the information density finite. This assumption 
implies that two chromosomes are detectably related if and only if they are 
identical by descent at some locus f. 

Thus C and D are detectably related if and only if by time fi the random 
walk s has hit the hitting set 3 given by 

Z’=oF(C, D) = {h E H: F(h, C) = F(h, D)}. 

3 is a subset of the vertices of the hypercube. 

2. HI’ITING TIME FOR A CONTINUOUS-TIME MARKOV PROCESS 

For an introduction to the theory of Markov processes and a definition of 
the terms used in this section see, e.g., Parzen (1962) or Karlin and Taylor 
(1975). 

We wish to calculate the probability that a Markov random walk on a 
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hypercube hits a given set of vertices 2 by time 1. Thus we wish to calculate 
the hitting time distribution for the hitting set Z. Since we are not interested 
in what the process does after it first hits A?, we can make .X an absorbing 
set and calculate, equivalently, the distribution of the absorption time. 

The behavior of the Markov process is determined by its Q matrix, which 
we denote for the moment A, in order to save the symbol Q for a matrix of 
greater interest. The off-diagonal elements of A are the transition intensities, 
defined such that aji 6t is the probability of the process being in state j after 
a small time 6t, starting from state i. The diagonal elements are the negative 
of the passage intensities, defined such that -a,, 61 is the probability that if 
the process starts in state i, it has left it after time 6t. The columns of A thus 
sum to 1. This is in fact the transpose of the usual Q-matrix definition, but 
we use it in order to be able to write the vectors of state probabilities as 
column vectors. 

If we order the states so that the hitting set states (which are now 
absorbing states) come first, then we may write the Q matrix in the block 
form 

PR 

A= OQ' (s-1 
The matrix Q, which describes the behavior of the process before it hits the 
hitting set, is all that need concern us, since the probability that the process 
has hit the hitting set may be deduced by summing the nonhitting state 
probabilities. Q is obtained by deleting from the full Q matrix the rows and 
columns corresponding to the hitting set. It is called a dishonest Q matrix 
because its columns may sum to less than 0; it describes a process which has 
some probability of leaving entirely the set of states under consideration. 

If the initial vector of probabilities for the nonabsorbing states, were an 
eigenvector v of Q, corresponding to eigenvalue 1, then the vector of 
probabilities at time t would be e”‘v. L is always negative. iv is the rate at 
which probability is “leaking” into the absorbing states. The hitting time 
distribution would thus be exponential with parameter -A. 

Since in general the initial vector u may be expressed as a mixture of the 
eigenvectors vi (which are normalized so that their elements sum to 1). 

the hitting time distribution is a mixture of exponential distributions with 
parameters --Ai, the weights being a,. 

The mean hitting time p is the weighted average of the means -A;’ of the 
exponential distributions, and so is given by ,U = -2 aill; ‘. This may be 
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more easily calculated as ,U = -ItQ1u, where 1 is a column vector of l’s 
and t denotes transpose, since 

= 1 ail,: ‘v, 

and l%, = 1 for each i, by the normalization of the vi’s. 

3. SYMMETRIES AND ORBITS 

The method of analysis which we have just described cannot be used 
directly in our application due to computational difficulties. The number of 
states of the Markov process (vertices of the hypercube in our case) is so 
large that eigenvectors and eigenvalues of the Q matrix would take too long 
to compute. We now describe, and clarify with a simple example, how any 
symmetry present in the problem can be used to considerably reduce the 
computation involved. The symmetry induces a partition of the set of 
vertices into sets of like vertices, called “orbits.” We need not keep track of 
individual vertices, but only of the orbit in which the process lies For an 
introduction to group theory and orbits see Green (1965) or Wielandt 
(1964), and for an example of their use in a genetic context see Thompson 
(1974b). 

If G is a group of symmetries of the hypercube, the orbit 0, of a vertex a 
is defined to be the set of vertices onto which (Y is mapped by the group of 
symmetries: 

0, = (g(a): g E G). 

Belonging to the same orbit can easily be shown to be an equivalence 
relation, so that the set of orbits forms a partition of the set of vertices 
(Green, 1965, p. 53; Wielandt, 1964, p. 4). If at each time t we replace the 
vertex a on which our Markov process lies by the corresponding orbit 0,, 
we obtain another stochastic process whose state space is now the set of 
orbits instead of the set of vertices. This process of orbits may easily be 
shown to be a Markov process. If the group G leaves the hitting set YP’ 
invariant, then 2 must be the union of a subset P’ of the set of orbits, and 
the hitting time distribution may be found more easily by looking at the time 
the process of orbits takes to hit A?‘. The maximum simplification is 
obtained when G is the stabiliser of X, the group of symmetries which 
leaves d%” invariant. This also helps to solve the technical problem caused by 
the eigenvalues of Q not all being distinct. 
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A d-dimensional hypercube (considered as a graph of vertices and edges) 
has 2dd! symmetries, these being given by changing 0 to 1 and vice versa in 
one of the 2d subsets of the d coordinates, and then applying one of the d! 
possible permutations to the ordering of the coordinates. 

Example 

Consider the continuous time random walk on the square, with state space 
S = (00, 01, 10, 1 1 } and the single-vertex hitting set 3” = { OO}. The group of 
symmetries G then consists of the identity- and the reflection r which 
interchanges 01 and 10 (Fig. 2). The orbits are (OO}, (01, lo}, and ( 11 }. The 
Q matrix for the process of orbits is 

?F= (OO} -2 1 0 

(01, 10) 

(111 [ 1 2-2 2, 
0 l-2 

and for the dishonest process with the hitting set X removed is 

Q= 
-2 2 

I I 1 -2 . 

The initial vector for the dishonest process of orbits is 

assuming an initial uniform distribution on the four vertices of the square. 

10 r 

ooi 

y 

1” 

> 
01 

FIGURE 2 
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The mean hitting time is therefore 

y=-l’Q-‘u 

as may be verified by the usual simultaneous equations method. 

4. EXAMPLES OF PARTICULAR RELATIONSHIPS 

We now look at the probability of two persons being detectably related 
through their autosomal chromosomes for some particular types of 
relationship. In this section we just derive the transition matrix and initial 
vector for the process of orbits. These are supplied to the computer program 
which produces the results given in Section 5. 

Grandparent- Type Relationships 

This is the type of relationship where person A is a grandparent, or more 
generally a direct ancestor, of person B. We can assume without loss of 
generality that the relationship is always through the maternal line. The 
chromosome pedigree is shown in Fig. 3, with the part of interest, containing 
the maternal chromosomes, boxed in. 

We obtain a detectable relationship only when all d switches in the box 
point to the maternal chromosomes above. That is, the hitting set Z consists 
of the single vertex 00 ... 0 of a d-dimensional hypercube, where d = 1 for 
grandparents, 2 for great-grandparents, and so on. We could also include the 
trivial case d = 0, for parents, where a detectable relationship is certain. 

The group of symmetries of the hypercube which leave 00 ..e 0 invariant 
consists of all permutations of the coordinates. The 2d vertices partition into 
d + 1 orbits according to their distance from 00 ... 0; that is, according to 
the number of coordinates equal to 1. The number of vertices in the ith orbit 
(vertices with i l’s) is given by the binomial coefficient (y). 

The Q matrix for the process of orbits is 

I 

-d 1 
d -d 2 

d-l -d ‘a. 

d-2 *.. d-l 
* . . -d d 

1 -d 
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The dishonest Q-matrix for the nonabsorbing states is obtained by deleting 
the first row and column. Since all the vertices have equal initial probability 
2 -d, the initial vector for the process of orbits is 

Probability of All of a Person’s Genes Being Passed On to His or Her 
Children 

This is not a two-person problem but is included here because it is similar 
to the detectable relationship poblem for grandparent type relationships. For 
simplicity we consider only autosomal genes, as in our other examples. The 
autosomal chromosome pedigree for a person with d children is shown in 
Fig. 4. 

In this problem it is the “not” event, the event that some part of the 
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. I. 
. l . 

I 

FIGURE 4 

genome is not passed on, which corresponds to the random walk hitting a set 
of vertices of the hypercube. The event that some part of the person’s 
paternal chromosome is not copied to any of the children corresponds to all 
of the d switches pointing simultaneously at some locus to the maternal 
chromosome, in other words, to hitting the vertex 000 e.. 0 of a d- 
dimensional hypercube. Similarly, the maternal chromosome not being 
copied corresponds to the diagonally opposite vertex 11 .+. 1. So the hitting 
set is the two-vertex set {00 a.. 0, 11 . . . 1 }. This is shown in Fig. 5 for the 
case d = 3. 

The vertices of the hypercube partition into orbits according to how many 
l’s they contain, in a similar manner to the case of grandparent-type 
relationships, except that the orbits of vertices with 1 and (d - 1) I’s merge, 
as do the orbits of vertices with 2 and (d - 2) l’s, and so on. This merging 
of the orbits is caused by the fact that we now have an additional symmetry 
of the hypercube-the reflection which changes all coordinates which are 0 
to 1, and vice versa. 

If d is even, then there are (d/2) + 1 orbits, and the Q matrix and initial 
vector for the process of orbits are, respectively, 

-d 1 

d -d 2 

d-l -d *.. 

d-2 ‘a. p-2 

. . . -d $1 

++2 -d d 

p,l -a 
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and 

1 
2d-I 

41 

If d is odd, then there are (d + 1)/2 orbits, and the Q matrix and initial 
vector for the process of orbits are 

-d 1 

d -d 2 

d-l -d *.. 

d-3 
d-2 ‘a. 2 

and 

1 
jz=i 

* 
d-l . . -d - 

2 

d+3 -d d+l 
2 2 

d+l d+ 1 -- 
2 2 -I 
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FIGURE 5 

The hitting set is the first orbit. The Q matrix and initial vector for the 
dishonest process which makes this an external absorbing state are therefore 
obtained by removing the first row and column. 

Half-Sib-Type Relationships 

In this type of relationship person A, or some ancestor of A, is the half-sib 
of B, or of some ancestor of B, this being the only way in which A and B are 
related (Fig. 6). This way of extending the half-sib relationship to half-sib 
type relationships is similar to the way in which we shall extend the cousin 
relationship to cousin-type relationships, such as second cousins once 
removed, and the uncle relationship to uncle-type relationships, such as 
great-great uncles. The subsequent analysis is also similar. We analyze half- 

ge”er:?io”s c 
)/+ 2 

I I 

Y 
3 Y 

4 

I A I 
\/ 

I5 

B I 

FIGURE 6 
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sib-type relationships first, although this is a less common type of 
relationship in most societies, because the hitting set and the number of 
orbits are smaller, making the analysis simpler. 

For half-sibs, we can see from Fig. 6 that the hitting set is (00, 1 1 }. For 
the case where A and B are the n,th and n,th generation descendants, 
respectively, of a pair of half-sibs, the only difference is that we have nA + n, 
additional switches which must all point the right way, say to 0. (In Fig. 6, 
nA = 1 and nB = 2.) This means that in general the hitting set is the set 
(OOOO --a 0, 1100 .a* 0), consisting of two vertices differing in precisely two 
coordinates. The dimension d of the hypercube is nA + nB + 2. 

Note, incidentally, that two relationships with the same value of nA + n8 
have exactly the same hitting set. This means that no amount of autosomal 
genetic information is of any help in distinguishing these two relationships. 
(Unless of course information is available on a third person related to both 
the individuals in question.) The same is true for relationships such as third 
cousins and second cousins twice removed. Moreover this does not depend 
on the process of crossovers being Poisson. 

To find the orbits and the Q matrix for the process of orbits, consider first 
the half-sib relationship itself, with hitting set (00, 11) on the two- 
dimensional hypercube as shown in Fig. 7. The group of symmetries is 
generated by the reflections about the diagonals and the orbits are the hitting 
set (00, 1 1 } itself, which we denote AO, and the set (0 1, lo), which we 
denote BO. The Q matrix is 

-2 2 [ 1 2 -2 ’ 

FIGURE 1 
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since there are two edges going from each vertex of A0 to BO and from each 
vertex of BO to AO, and the initial vector is 

.=a 2 [ 1 2 ’ 

reflecting the number of vertices in the orbits. It is convenient to write the Q 
matrix as M - 2I, where 

and z= 

Consider now the general relationship with hitting set (000 ..a 0, 
110 . .. 0) on the d-dimensional hypercube. The 2-face with the third and 
subsequent coordinates set to 0 is invariant under the group of symmetries, 
since it is the only 2-face containing the hitting set. The distances of vertices 
from this 2-face are also invariant. 

The group of symmetries is thus generated by the symmetries which we 
already have for half-sibs, applied to the first two coordinates, together with 
the group of permutations of third and subsequent coordinates. The orbits 
may be written 

AO, BO, Al, Bl)..., A(d-2), B(d-2), 

where the A or B denotes the state of the first two coordinates, and the 
integer denotes the number of l’s among subsequent coordinates. 

From each vertex of orbit Ai there are two edges leading to orbit Bi; there 
are i edges leading to orbit A(i - 1) (since a change of any of the i 
coordinates which are 1 among the third and subsequent coordinates gives a 
vertex of orbit A(i - 1)); and there are d - 2 - i edges leading to orbit 
A(i + 1). A similar statement holds for transitions from orbit Bi. 

Thus the Q matrix has the block form 

and the initial vector has the block form 
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1 
2d-2 

M, I. and u are defined as for the half-sib relationship. 
We see that the analysis for half-sib-type relationships is in some ways 

like a mixture of the half-sib relationship and grandparent-type relationships. 

Cousin-TJrpe Relationships 

These are relationships of the type “sth cousins t times removed,” where 
s > 1 and t 2 0. For first cousins (A and B in Fig. 8), the simplest 
relationship of this type, the hitting set may be seen to consist of the 
following 16 vertices of a six-dimensional hypercube: 

oo*oo*, 
01*01*, 
1*01*0, 
1*11*1; 

A 

FIGURE 8 



52 KEVIN P. DONNELLY 

where each * can denote either 0 or 1. For sth cousins t times removed the 
hitting set consists of the same 16 vertices of a (2s + t + 4)-dimensional 
hypercube, with the additional coordinates set to 0. 

The determination of the orbits for the cousin relationship is more tedious 
than for previously considered relationships, but is even more important 
because the unsimplified problem has an unwieldy 26 x 26 Q matrix. We 
start off by looking for generators for the group G of symmetries which 
leaves the hitting set invariant. We denote by o(i) the ith coordinate of a 
typical vertex u. 

The first and fourth coordinates form a pair distinguishable from the 
others, so any element of G either transposes them or leaves them where they 
are. If we take the symmetry which does nothing other than transpose them 
as a generator, then we can confine our search for further generators to 
symmetries which leave them where they are. 

No element of G can change u(l) or v(4) (i.e., change 0 to 1 and vice 
versa) without changing the other, because such a transformation would not 
leave the hitting set invariant. We take as generator the element of G which 
simultaneously changes u(l), changes u(4), transposes v(2) and v(3), and 
transposes v(5) and u(6), and confine our search for further generators to 
symmetries which do nothing to u(l) and u(4). 

The second and fifth coordinates now form a distinguishable pair, as do 
the third and sixth. As before if we change one coordinate of the pair we 
must change both. 

This argument leads to the following set of six generators for G: 

(a) transpose u(l) and u(4), 

(b) change u(l), change u(4), transpose u(2) and u(3), and transpose 
u(5) and u(6), 

(c) transpose u(2) and u(5), 

(d) change u(2) and change u(5), 

(e) transpose u(3) and u(6), 

(f) change v(3) and change u(6). 

We know that this is a complete set of generators because after finding (f) 
we are left looking for symmetries which do nothing to any of the coor- 
dinates. 

Having a set of generators available makes it easy to partition the vertices 
into orbits. To start with, the vertices divide up according to whether 
u(l)= u(4), because this characteristic is not changed by any of the six 
generators. The vertices with v(l) = u(4) split into four groups according to 
whether the following two statements are true: 
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(i) ]v(l)=u(4)=0 and v(2)=11(5)] 
or (u( 1) = v(4) = 1 and u(3) = v(6)], 

(ii) ]v( 1) = u(4) = 0 and u(3) = u(6)) 
or [u(l) = u(4) = 1 and u(2) = u(5)]. 

The vertices with u(l) # u(4) split into three groups according to whether 
neither, one, or both of the following statements are true: 

(iii) u(2) = v(5), 

(iv) u(3) = u(6). 

(Vertices with only (iii) true lie in the same orbit as vertices with only (iv) 
true. as may be seen by applying generators (a) and (b) above.) 

It may be verified that no further splitting occurs, so that, choosing an 
arbitrary ordering, the orbits are as follows: 

( 1) u( 1) = u(4), (i) and (ii) true, 

(2) u( 1) = u(4), (i) true, (ii) false, 

(3) u(1) = u(4), (i) false, (ii) true, 

(4) t)(l) = u(4), (i) and (ii) false, 

(5) u( 1) # u(4), (iii) and (iv) true, 

(6) u(1) # u(4), (iii) or (iv) true but not both, 

(7) v( 1) # u(4), (iii) and (iv) false. 

The hitting set consits of orbits (1) and (2). 
Orbit (6) has 16 vertices; the rest have 8. Thus the initial vector for the 

process of orbits is 

1 
1 
1 

II=; 1 . 
1 
2 

l_ 

By choosing a vertex from each of the orbits and seeing which orbits it 
moves to when a single coordinate is changed, we find that the Q matrix for 
the process of orbits is M-61, where Z is the identity matrix, and 
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M= 

0220200 

2002010 

2002010 

0220002 

2000020 

0220404 

0002020 

For the general case of sth cousins t times removed we find, in a similar 
manner to the analysis for half-sib-type relationships, that the Q matrix for 
the process of orbits has the block form 

where d = 2s + I + 4 is the dimension of the hypercube. The initial vector 
has the block form 

U U 

d-6 d-6 

-( ) -( ) 
1 1 1 1 

U U 

2d-6 2d-6 

The hitting set always consists of the first two orbits. 

Uncle- Type Relationships 

This type of relationship, illustrated in Fig. 9, includes the case where 
person A is the uncle, or great uncle, or great-great uncle, etc., of person B. 
Note that unlike previous two-person relationships which we have 
considered, it involves three chromosomes and does not reduce to a 
relationship between two chromosomes. However, the event that two such 
persons are detectably related still amounts to a random walk hitting a set of 
vertices on a hypercurbe. 

For the uncle relationship, the simplest case, the hitting set consists of the 
following 16 vertices of a five-dimensional hypercube: 
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A 

FIGURE 9 

oo*o* 1 
01*1* 1 
1 *o*o 7 
1*1*1; 

where each * may represent either 0 or 1. 
This hitting set is similar to the hitting set for cousins, but the orbits are 

easier to determine. After a little thought it may be seen that the group of 
hypercube symmetries leaving the hitting set invariant is generated by the 
following symmetries (v(i) represents the ith coordinate of a typical 
vertex ~1): 

(a) change u(l), transpose v(2) and u(3), and transpose ~‘(4) and v(5). 

(b) transpose u(2) and v(4), 

(c) change v(2) and change u(4), 

(d) transpose u(3) and u(5), 

(e) change ~‘(3) and change v(5). 

It may then be seen that the vertices partition into four orbits according to 
whether or not each of the following two statements is true, these being the 
only characteristics which remain invariant under the above symmetries: 

(i) \c( 1) = 0 and u(2) = u(4)] or [u( 1) = 1 and v(3) = v(5)], 

(ii) [t(l) =0 and u(3) = 0(5)] or [u(l) = 1 and v(2) = u(4)\. 

Statement (i) in fact defines the hitting set. 
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The orbits are thus 

/ 

0 00 00 1 00 00 0 00 01 

1 

0 11 11 1 11 11 0 11 10 
0 01 01 1 10 10 ’ 0 01 00 
0 10 10 1 01 01 I 2 I 0 10 11 

0 00 11 1 00 11 0 00 10 
0 11 00 1 11 00 

i ’ 4 / 

0 11 01 

3 

0 01 10 1 10 01 0 01 11 
0 10 01 1 01 10 0 10 00 

orbits 1 and 2 being the hitting set. 

1 00 10 
1 11 01 

1 10 00 1 01 11 I 

The Q matrix for the process of orbits may be seen to be M - 51, where Z 
is the identity matrix and 

M= 

The initial vector is 4 1 II= ; . [I a 4 
The analysis extends to general uncle-type relationships in exactly the 

same way as for cousin-type relationships and half-sib-type relationships. 
The Q matrix for the process of orbits is 

I”:” Lz Erg js 

and the initial vector is 
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u 

u 
7 

u 

where d, the dimension of the hypercube, is 6 for great uncles, 7 for great- 
great uncles, etc. The hitting set is always given by the first two orbits. 

5. RESULTS 

Now that we have reduced the computational complexity of the problem 
by finding, for various relationships, the Q matrix and initial vector of the 
process of orbits, it is easy to calculate the probability of a detectable 
relationship. As previously described, we can express the hitting time 
distribution as a mixture of exponentials by removing the rows and columns 
of the hitting set from the Q matrix and then determining its eigenvalues and 
eigenvectors. This was done using the FORTRAN computer subroutines of 
the standard NAG package (Numerical Algorithms Group, 1978). 

To determine the hitting probabilities we need to know the chromosome 
lengths. We take the total autosomal map length, L = C:’ l,, to be 33. In 
fact it appears to differ in males and females, being about 27.5 in males and 
38.5 in females (Renwick, 1971, p. 87), but we ignore this. We take the 
relative chromosome lengths, as percentages of the total autosomal map 
length, to be those measured cytologically and given by Maynard-Smith et 
al. (196 1 ), namely, 

9.12 8.53 7.16 6.59 6.15 5.87 5.31 4.92 4.81 4.71 4.60 

4.47 3.56 3.60 3.40 3.20 3.12 2.72 2.48 2.27 1.77 1.64 

for chromosomes 1 to 22, respectively, and 5.84 for the X chromosome. 
Using these figures we obtain the probabilities given in Table I. The 

probabilities, for the different types of relationships, are also plotted in 
Fig. 10. For comparability they are plotted against k, where k = 
d - log, #(X). That is, k is -log,(p), where p is the proportion of the 
vertices of the hypercube which lie in the hitting set, or the probability of a 
detectable relationship at any particular locus. The probabilities are in fact 
very similar for different relationships with the same value of k. 

We see that there is a 82% probability of a detectable relationship 
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TABLE I 

Probability of No Detectable Relationship 
(or Probability That All Genes Are Passed on to Offspring) 

Type of “relationship” 

k Cousin Uncle Offspring Half-sib 

4 
5 
6 
1 
8 
9 

10 
II 
12 
13 
14 
15 

o.oooo 
0.0012 
0.0232 
0.1206 
0.3069 
0.5196 
0.6976 
0.8216 
0.8989 
0.9442 

e-kL,lk Grandparent 

0.0000 0.0000 o.oooo 0.0003 0.0001 
0.0023 0.0017 0.0029 0.0058 0.0056 
0.0308 0.0280 0.0349 0.0453 0.0495 
0.1387 0.1347 0.1484 0.1645 0.1776 
0.3290 0.3268 0.3410 0.3566 0.3743 
0.5380 0.538 1 0.5483 0.5599 0.5753 
0.7099 0.7111 0.7170 0.7245 0.7350 
0.8287 0.8300 0.8310 0.8376 0.8438 
0.9028 0.9038 0.9053 0.9078 0.9112 
0.9462 0.9468 0.9476 0.9490 0.9507 
0.9707 0.97 11 0.9114 0.9722 0.973 I 
0.9842 0.9844 0.9846 0.9850 0.9854 

Note. k = n t 1 for (great)” grandparent ((n t 2)th generation ancestor), 
k = n + I for (great)” uncle (uncle n times removed), 
k = 2s + t for sth cousins t times removed, 
k = n t 1 for half-sibs n times removed, 
k = n - 1 for n offspring. 

between a person and his eighth generation ancestor (great-great-great-great- 
great-great grandparent), but only a 16 % probability of a detectable 
relationship with a 12th generation ancestor. This means that someone 
descended from the Scottish poet Robert Burns (born 1759) probably carries 
some of his genes, but that someone unilineally descended from the English 
playwright William Shakespeare (born 1564) is unlikely to have any genes in 
common with him. (In fact, the time scale in the latter example would make 
it very difficult to rule out other relationships, so that the present analysis is 
really only saying that proof of descent from William Shakespeare does little 
to increase the probability that the claimant has genes in common with him.) 

For cousins we see that a person has a 70% chance of sharing some genes 
with a fourth cousin, but only a 10% chance of sharing genes with a sixth 
cousin. To be 90% sure of passing on all his genes to his offspring, a person 
has to have at least 13 children; with only 7 children he has only a 3% 
chance of passing on all his genes. 

All these statements refer only to ausosomal genes, are subject to the 
assumptions of the model, notably no interference and a total map length of 
33 in both males and females, and assume that individuals are not inbred, or 
related in any way other than that referred to. 
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FIG. 10. Probability of no detectable relationship (or probability that all genes are passed 
on to offspring). 

Figure 10 also shows what the probabilities would be if there were no 
crossing over, each of the 22 autosomes acting as a single independent locus, 
namely, (1 - 2-k)22 z e-22’2k. Crossing over can considerably increase the 
chances of a detectable relationship. For instance, in Smith’s (1963) example 
of second cousins (k = 4), the probability of no autosomally detectable 
relationship would be 0.25 if there were no crossing over. With crossing over 
the probability falls to 10V5, so that Smith’s intuition was in fact wrong in 
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his suggestion that recombination would not change the general order of 
magnitude. 

6. DISCUSSION 

The exact results given in Table I could not have been obtained without 
the use of a computer. In this section, however, an empirical formula will be 
presented which gives a good approximation to the exact results and has a 
theoretical justification. This approximate formula indicates how the results 
would be changed by assuming a different total map length and slightly 
changed by assuming positive interference, and shows that the results are 
robust with respect to the relative chromosome map lengths and the exact 
nature of the positive interference. These predictions are verified by further 
exact calculations and by simulations. 

Approximations 

Also plotted in Fig. 9 is the function e-““‘. It can be seen that this gives 
a good approximation to the probabilities for all the types of relationship 
considered. The maximum error is less than 0.05 and occurs for cousin-type 
relationships. 

This formula is mainly empirical, but it can be justified by the following 
argument. It can be shown (David Aldous, private communication) that a 
Markov random walk on the vertices of a hypercube has a memory which is 
short, of order d, compared to its mean return time, which is of order 2d; the 
location of the random walk is little affected by where it was more than d 
steps ago. Thus returns to the hitting set occur approximately as a Poisson 
process. 

The modification which must be made to this statement is that the random 
walk may, with small probability, return immediately, or almost 
immediately, to the same vertex of the hitting set, before it has time to 
“forget,” and in the case of cousin, uncle or half-sib-type relationships, where 
the hitting set consists of a fairly compact set of vertices, the walk may move 
almost immediately to another vertex of the hitting set. Thus hits on the 
hitting set Z come in widely spaced clusters, the mean number of hits in a 
cluster being say c, where c is slightly greater than 1. Since by symmetry the 
random walk spends a proportion #(Z)/2d = 2-k of its time on the hitting 
set, the mean number of steps between clusters is ~2~. 

The expected number of crossovers for chromosomes of type i is dli, so 
that the expected number of visits to vertices by the random walk is dfi + 1. 
This is longer than the mean cluster length, but much shorter than the mean 
number of steps between clusters. The probability of a detectable relationship 
is the probability that a randomly located window of this width overlaps a 
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cluster. This probability is (dli + 1)/(~2~), or, slightly more accurately, 
(dli + y)/(~2~), where y is the mean length of a cluster, including any inter- 
vening nonhitting-set vertices. The probability of no detectable relationship 
for any autosome is therefore ni [ 1 - (dli + y)/(~2~)], or very nearly 

dL + 22~ 1 c2k ’ 

In the case of grandparent-type relationships and our offspring problem, we 
can derive the approximation (d - 2)/(d - 3) for c, and taking y to be 
approximately 2c - 1 we can check the above formula, which proves to work 
very well. For all but small values of k it works better than the formula 
eekL@, and for large values much better. 

We can now see why the formula emkLiZk should be a good approximation 
for all types of relationship. It is because the effect of replacing dL + 22~ by 
kL in the numerator is balanced by omitting c in the denominator. First the 
proportional effect, in any case fairly small, of the term 22~ on the 
numerator is close to the factor (d - 2)/(d - 3) by which the mean cluster 
size c is changed by the possibility of an immediate return to the same 
vertex. Secondly, for cousin-type and uncle-type relationships, where the 
term dL is significantly greater than ti, the mean cluster size c is also 
increased because of the possibility of moving from one vertex of the hitting 
set to another. If all 16 hitting set vertices for these relationship types were 
gathered together on a single 4-face, we would have complete compensation, 
because removing the redundant four dimensions would get us back to the 
grandparent-type relationship with the same value of k. Since the hitting set 
is somewhat dispersed, however, the mean cluster size is lower and we do not 
have complete compensation, explaining why these types of relationship give 
lower probabilities in Table I. Similarly the “no hit” probabilities for our 
offspring problem are slightly lower than for half-sib-type relationships, 
because although both problems have a two vertex hitting set, it is more 
dispersed in the former case. 

It would thus be unwise to rely on the approximate formula emkL’*’ in the 
case of relationships with very widely dispersed hitting sets, as well as for 
other species such as Drosophila with much fewer chromosomes or a very 
different total map length. 

Robustness 

It might be expected in view of the above approximation that the effect of 
changing the relative chromosome lengths while keeping the total length L 
constant would be small. This was tested for cousin-, uncle-, and half-sib- 
type relationships by recomputing the probabilities, keeping L = 33 but 
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making all chromosomes the same length. The maximum change in the 
probabilities was less than 3 x 10e4, which is indeed negligible. 

A major assumption we have made is that the process of crossovers is 
Poisson, when in fact it is known not to be. It appears (Bailey, 1961) that in 
reality there is generally positive interference: the presence of a crossover 
makes the occurence of another crossover nearby less likely. In this case the 
arguments leading to the above approximation still hold good, on the whole. 
We still have widely spaced clusters of at most a very few hits, viewed 
through a randomly located window of expected width dli + 1. The main 
difference would appear to be that since a change of coordinate is unlikely to 
be immediately reversed, an immediate return to the same hitting set vertex is 
unlikely, and the mean cluster size c is correspondingly reduced slightly. We 
can therefore speculate that positive interference reduces the probabilities in 
Table I very slightly, this effect being independent of the precise form of 
interference. 

This prediction was tested by simulating a renewal process of crossovers 
for each chromosome, with fr(2) distributions ($x2(4) distributions) for the 
intervals between crossovers, and an equal ir(l), $r(2) mixture for the time 
to the first crossover for stationarity. From 10,000, 15,000, and 5000 
simulations, respectively, of grandparent-type relationships with k = 5, k = 7, 
and k = 9. the “no detectable relationship” probabilities (i 1 SD) were 
estimated to be 0.0025 f 0.0005, 0.143 1 f 0.0028, and 0.5400 f 0.0070, 
respectively. These estimates agree with the values 0.0029, 0.1385, and 
0.5363 obtained from the formula exp(-(kl + 22)/2k), as we would expect 
if c = 1. Although the reduction from the “no interference” values in Table I 
is very small, it is proportionally greater for close relatives, making a detec- 
table relationship even more certain. We can expect the reduction to be 
approximately the same for other types of relationship, although these were 
not simulated. 
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