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How could a binary string representing a sequence of 𝑛
coin tosses be random, when all strings of length 𝑛 have
the same probability of 2−𝑛 for a fair coin?

Less well known than the work of Kolmogorov are early
attempts to answer this kind of question by providing no-
tions of randomness for individual objects. The modern
theory of algorithmic randomness realizes this goal. Oneway
to develop this theory is based on the idea that an object
is random if it passes all relevant “randomness tests.” For
example, by the law of large numbers, for a random real𝑋,
we would expect the number of 1’s in the binary expansion
of 𝑋 to have limiting frequency 1

2 . (That is, writing 𝑋(𝑗)
for the 𝑗th bit of this expansion, we would expect to have
lim𝑛→∞

|{𝑗<𝑛∶𝑋(𝑗)=1}|
𝑛 = 1

2 .) Indeed, we would expect 𝑋
to be normal to base 2, meaning that for any binary string
𝜎 of length 𝑘, the occurrences of 𝜎 in the binary expan-
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sion of 𝑋 should have limiting frequency 2−𝑘. Since base
representation should not affect randomness, we would
expect 𝑋 to be normal in this sense no matter what base
it were written in, so that in base 𝑏 the limiting frequency
would be 𝑏−𝑘 for a string 𝜎 of length 𝑘. Thus 𝑋 should
be what is known as absolutely normal.

The idea of normality, which goes back to Borel (1909),
was extended by von Mises (1919), who suggested the fol-
lowing definition of randomness for individual binary se-
quences.1 A selection function is an increasing function 𝑓 ∶
ℕ → ℕ. We think of 𝑓(𝑖) as the 𝑖th place selected in form-
ing a subsequence of a given sequence. (For the defini-
tion of normality above, where we consider the entire se-
quence, 𝑓(𝑖) = 𝑖.) Von Mises suggested that a sequence
𝑎0𝑎1 … should be random if any selected subsequence
𝑎𝑓(0)𝑎𝑓(1) … is normal.

There is, of course, an obvious problem with this ap-
proach. For any sequence 𝑋 with infinitely many 1’s we
could let 𝑓 select the positions where 1’s occur, and 𝑋
would fail the test determined by 𝑓. However, it does not
seem reasonable to be able to choose the testing places
after selecting an 𝑋. The question is then: What kinds
of selection functions should be allowed, to capture the
intuition that we ought not to be able to sample from a
random sequence and get the wrong frequencies? It is
reasonable to regard prediction as a computational pro-
cess, and hence restrict ourselves to computable selection
functions. Indeed, this suggestion was eventually made by
Church (1940), though von Mises’ work predates the defi-
nition of computable function, so he did not have a good
way to make his definition mathematically precise.

As we will see, von Mises’ approach had a more sig-
nificant flaw, but we can build on its fundamental idea:
Imagine that we are judges deciding whether a sequence
𝑋 should count as random. If 𝑋 passes all tests we can
(in principle) devise given our computational power, then
we should regard 𝑋 as random since, as far as we are con-
cerned, 𝑋 has all the expected properties of a random ob-
ject. We will use this intuition and the apparatus of com-
putability and complexity theory to describe notions of al-
gorithmic randomness.

Aside from the intrinsic interest of such an approach,
it leads to useful mathematical tools. Many processes in
mathematics are computable, and the expected behavior
of such a process should align itself with the behavior ob-
tained by providing it with an algorithmically random in-
put. Hence, instead of having to analyze the relevant dis-
tribution and its statistics, we can simply argue about the
behavior of the process on a single input. For instance, the

1Due to space limitations, we omit historical citations and those found in the books
Downey and Hirschfeldt [9], Li and Vitányi [18], or Nies [24] from the list of references.
In some sections below, we also cite secondary sources where additional references can be
found.

expected number of steps of a sorting algorithm should be
the same as that for a single algorithmically random input.
We could also bemore fine-grained and seek to understand
exactly “how much” randomness is needed for certain typ-
ical behaviors to arise. (See the section on “Some Applica-
tions.”)

As we will discuss, algorithmic randomness also goes
hand in hand with other parts of algorithmic information
theory, such as Kolmogorov complexity, and has ties with
notions such as Shannon entropy and fractal dimension.
Some basic computability theory. In the 1930s, Church,
Gödel, Kleene, Post, and most famously Turing (1937)
gave equivalent mathematical definitions capturing the in-
tuitive notion of a computable function, leading to the
Church-Turing Thesis, which can be taken as asserting that
a function (from ℕ to ℕ, say) is computable if and only
if it can be computed by a Turing machine. (This defini-
tion can easily be transferred to other objects of countable
mathematics. For instance, we think of infinite binary se-
quences as functions ℕ → {0, 1}, and identify sets of nat-
ural numbers with their characteristic functions.) Nowa-
days, we can equivalently regard a function as computable
if we can write code to compute it in any given general-
purpose programming language (assuming the language
can address unlimited memory). It has also become clear
that algorithms can be treated as data, and hence that
there is a universal Turing machine, i.e., there is a listing
Φ0, Φ1,… of all Turing machines and a single algorithm
that, on input ⟨𝑒, 𝑛⟩ computes the resultΦ𝑒(𝑛) of running
Φ𝑒 on input 𝑛.2

It is important to note that a Turing machine might
not halt on a given input, and hence the functions com-
puted by Turing machines are in general partial. Indeed,
as Turing showed, the halting problem “Does the 𝑒th Tur-
ing machine halt on input 𝑛?” is algorithmically unsolv-
able. Church and Turing famously showed that Hilbert’s
Entscheidungsproblem (the decision problem for first-order
logic) is unsolvable, in Turing’s case by showing that the
halting problem can be coded into first-order logic. Many
other problems have since been shown to be algorithmi-
cally unsolvable by similar means.

We write Φ𝑒(𝑛)↓ to mean that the machine Φ𝑒 eventu-
ally halts on input 𝑛. Then ∅′ = {⟨𝑒, 𝑛⟩ ∶ Φ𝑒(𝑛)↓} is a
set representing the halting problem. This set is an exam-
ple of a noncomputable computably enumerable (c.e.) set,

2The realization that such universal machines are possible helped lead to the development
of modern computers. Previously, machines had been purpose-built for given tasks. In a
1947 lecture on his design for the Automated Computing Engine, Turing said, “The special
machine may be called the universal machine; it works in the following quite simple man-
ner. When we have decided what machine we wish to imitate we punch a description of it
on the tape of the universal machine . . . The universal machine has only to keep looking at
this description in order to find out what it should do at each stage. Thus the complexity of
the machine to be imitated is concentrated in the tape and does not appear in the universal
machine proper in any way. . . . [D]igital computing machines such as the ACE . . . are
in fact practical versions of the universal machine.” From our contemporary point of view,
it may be difficult to imagine how novel this idea was.
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which means that the set can be listed (not necessarily in
numerical order) by some algorithm.

Another important notion is that of Turing reducibility
(which we define for sets of natural numbers but is sim-
ilarly defined for functions), where 𝐴 is Turing reducible
to 𝐵, written as 𝐴 ≤T 𝐵, if there is an algorithm for com-
puting 𝐴 when given access to 𝐵. That is, the algorithm
is allowed access to answers to questions of the form “Is
𝑛 in 𝐵?” during its execution. This notion can be formal-
ized using Turing machines with oracle tapes. If 𝐴 ≤T 𝐵,
then we regard 𝐴 as no more complicated than 𝐵 from a
computability-theoretic perspective. We also say that 𝐴 is
𝐵-computable or computable relative to 𝐵. Turing reducibil-
ity naturally leads to an equivalence relation, where𝐴 and
𝐵 are Turing equivalent if 𝐴 ≤T 𝐵 and 𝐵 ≤T 𝐴. The (Tur-
ing) degree of 𝐴 is its equivalence class under this notion.
(There are several other notions of reducibility and result-
ing degree structures in computability theory, but Turing
reducibility is the central one.)

In general, the process of allowing access to an oracle in
our algorithms is known as relativization. As in the unrel-
ativized case, we can list the Turing machines Φ𝐵

0 , Φ𝐵
1 ,…

with oracle 𝐵, and let 𝐵′ = {⟨𝑒, 𝑛⟩ ∶ Φ𝐵
𝑒 (𝑛)↓} be the rel-

ativization of the halting problem to 𝐵. This set is called
the (Turing) jump of 𝐵. The jump operation taking 𝐵 to
𝐵′ is very important in computability theory, one reason
being that 𝐵′ is the most complicated set that is still c.e.
relative to 𝐵, i.e., 𝐵′ is c.e. relative to 𝐵 and every set that is
c.e. relative to 𝐵 is 𝐵′-computable. There are several other
important classes of sets that can be defined in terms of
the jump. For instance, 𝐴 is low if 𝐴′ ≤T ∅′ and high
if ∅″ ≤T 𝐴′ (where ∅″ = (∅′)′). Low sets are in cer-
tain ways “close to computable,” while high ones partake
of some of the power of ∅′ as an oracle. These properties
are invariant under Turing equivalence, and hence are also
properties of Turing degrees.
Martin-Löf randomness. As mentioned above, Church
suggested that a sequence should count as algorithmically
random if it is random in the sense of von Mises with se-
lection functions restricted to the computable ones. How-
ever, in 1939, Ville showed that von Mises’ approach can-
not work in its original form, no matter what countable
collection of selection functions we choose. Let 𝑋 ↾ 𝑛 de-
note the first 𝑛 bits of the binary sequence 𝑋.

Theorem 1 (Ville (1939)). For any countable collection of
selection functions, there is a sequence 𝑋 that passes all von
Mises tests associated with these functions, such that for every
𝑛, there are more 0’s than 1’s in 𝑋 ↾ 𝑛.

Clearly, Ville’s sequence cannot be regarded as random in
any reasonable sense.

We could try to repair von Mises’ definition by adding
further tests, reflecting statistical laws beyond the law of

large numbers. But which ones? Ville suggested ones re-
flecting the law of iterated logarithms, which would take
care of his specific example. But how could we know that
further examples along these lines—i.e., sequences satis-
fying both von Mises’ and Ville’s tests, yet failing to have
some other property we expect of random sequences—
would not arise?

The situation was finally clarified in the 1960s by
Martin-Löf (1966). In probability theory, “typicality” is
quantified using measure theory, leading to the intuition
that random objects should avoid null sets. Martin-Löf no-
ticed that tests like von Mises’ and Ville’s can be thought of
as effectively null sets. His idea was that, instead of consid-
ering specific tests based on particular statistical laws, we
should consider all possible tests corresponding to some
precisely defined notion of effectively null set. The restric-
tion to such a notion gets around the problem that no se-
quence can avoid being in every null set.

To giveMartin-Löf’s definition, wework for convenience
in Cantor space 2𝜔, whose elements are infinite binary se-
quences. (We associate a real number with its binary ex-
pansion, thought of as a sequence, so we will also obtain a
definition of algorithmic randomness for reals. The choice
of base is not important. For example, all of the notions
of randomness we consider are enough to ensure absolute
normality.) The basic open sets of Cantor space are the
ones of the form [𝜎] = {𝑋 ∈ 2𝜔 ∶ 𝑋 extends 𝜎} for
𝜎 ∈ 2<𝜔, where 2<𝜔 is the set of finite binary strings.
The uniform measure 𝜆 on this space is obtained by defin-
ing 𝜆([𝜎]) = 2−|𝜎|. We say that a sequence 𝑇0, 𝑇1,… of
open sets in 2𝜔 is uniformly c.e. if there is a c.e. set 𝐺 ⊆
ℕ× 2<𝜔 such that 𝑇𝑛 = ⋃{[𝜎] ∶ (𝑛,𝜎) ∈ 𝐺}.

Definition 2. A Martin-Löf test is a sequence 𝑇0, 𝑇1,… of
uniformly c.e. open sets such that 𝜆(𝑇𝑛) ≤ 2−𝑛. A se-
quence 𝑋 passes this test if 𝑋 ∉ ⋂𝑛 𝑇𝑛. A sequence is
Martin-Löf random (ML-random) if it passes all Martin-Löf
tests.

The intersection of a Martin-Löf test is our notion of
effectively null set. Since there are only countably many
Martin-Löf tests, and each determines a null set in the clas-
sical sense, the collection of ML-random sequences has
measure 1. It can be shown that Martin-Löf tests include
all the ones proposed by von Mises and Ville, in Church’s
computability-theoretic versions. Indeed they include all
tests that are “computably performable,” which avoids the
problem of having to adaptively introduce more tests as
more Ville-like sequences are found.

Martin-Löf’s effectivization of measure theory allowed
him to consider the laws a random sequence should obey
from an abstract point of view, leading to a mathemati-
cally robust definition. As Jack Lutz said in a talk at the 7th
Conference on Computability, Complexity, and Randomness
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(Cambridge, 2012), “Placing computability constraints on
a nonconstructive theory like Lebesgue measure seems a
priori to weaken the theory, but it may strengthen the the-
ory for some purposes. This vision is crucial for present-
day investigations of individual random sequences, dimen-
sions of individual sequences, measure and category in
complexity classes, etc.”
The three approaches. ML-randomness can be thought
of as the statistician’s approach to defining algorithmic ran-
domness, based on the intuition that random sequences
should avoid having statistically rare properties. There are
two other major approaches:

• The gambler’s approach: random sequences should
be unpredictable.

• The coder’s approach: random sequences should
not have regularities that allow us to compress the
information they contain.

The gambler’s approach may be the most immediately
intuitive one to the average person. It was formalized in
the computability-theoretic setting by Schnorr (1971), us-
ing the idea that we should not be able to make arbitrar-
ily much money when betting on the bits of a random se-
quence. The following notion is a simple special case of
the notion of amartingale fromprobability theory. (See [9,
Section 6.3.4] for further discussion of the relationship be-
tween these concepts.)

Definition 3. A martingale is a function 𝑓 ∶ 2<𝜔 → ℝ≥0

such that

𝑓(𝜎) = 𝑓(𝜎0) + 𝑓(𝜎1)
2

for all𝜎. We say that 𝑓 succeeds on𝑋 if limsup𝑛→∞ 𝑓(𝑋 ↾
𝑛) = ∞.

We think of 𝑓 as the capital we have when betting on
the bits of a binary sequence according to a particular bet-
ting strategy. The displayed equation ensures that the bet-
ting is fair. Success then means that we can make arbitrar-
ily much money when betting on 𝑋, which should not
happen if 𝑋 is random. By considering martingales with
varying levels of effectivity, we get various notions of algo-
rithmic randomness, including ML-randomness itself, as
it turns out.

For example, 𝑋 is computably random if no computable
martingale succeeds on it, and polynomial-time random if
no polynomial-time computable martingale succeeds on
it. (For the purposes of defining these notionswe can think
of the martingale as rational-valued.) Schnorr (1971)
showed that𝑋 is ML-random iff no left-c.e. martingale suc-
ceeds on it, where a function 𝑓 ∶ 2<𝜔 → ℝ≥0 is left-c.e. if
it is computably approximable from below, i.e., there is
a computable function 𝑔 ∶ 2𝜔 × ℕ → ℚ≥0 such that
𝑔(𝜎,𝑛) ≤ 𝑔(𝜎,𝑛 + 1) for all 𝜎 and 𝑛, and 𝑓(𝜎) =
lim𝑛→∞ 𝑔(𝜎,𝑛) for all 𝜎. One way to think of a left-c.e.

martingale is that initially we might have no idea what to
bet on some string 𝜎, but as we learn more about the uni-
verse, we might discover that 𝜎 seems more unlikely to
be an initial segment of a random sequence, and are then
prepared to bet more of our capital on it.

The coder’s approach builds on the idea that a random
string should have no short descriptions. For example, in
describing 010101… (1000 times) by the brief descrip-
tion “print 01 1000 times,” we are using regularities in
this string to compress it. For a more complicated string,
say the first 2000 bits of the binary expansion of 𝑒𝜋, the
regularities may be harder to perceive, but are still there
and can still lead to compression. A random string should
have no such exploitable regularities (i.e., regularities that
are not present in most strings), so the shortest way to de-
scribe it should be basically to write it out in full. This idea
can be formalized using the well-known concept of Kol-
mogorov complexity. We can think of a Turing machine
𝑀with inputs and outputs in 2<𝜔 as a description system.
If 𝑀(𝜏) = 𝜎 then 𝜏 is a description of 𝜎 relative to this
description system. The Kolmogorov complexity 𝐶𝑀(𝜎) of
𝜎 relative to 𝑀 is the length of the shortest 𝜏 such that
𝑀(𝜏) = 𝜎. We can then take a universal Turing machine
𝑈, which emulates any given Turing machine with at most
a constant increase in the size of programs, and define the
(plain) Kolmogorov complexity of𝜎 as𝐶(𝜎) = 𝐶𝑈(𝜎). The
value of 𝐶(𝜎) depends on 𝑈, but only up to an additive
constant independent of 𝜎. We think of a string as ran-
dom if its Kolmogorov complexity is close to its length.

For an infinite sequence 𝑋, a natural guess would be
that 𝑋 should be considered random if every initial seg-
ment of 𝑋 is incompressible in this sense, i.e., if 𝐶(𝑋 ↾
𝑛) ≥ 𝑛−𝑂(1). However, plain Kolmogorov complexity
is not quite the right notion here, because the information
in a description 𝜏 consists not only of the bits of 𝜏, but
also its length, which can provide another log2 |𝜏| many
bits of information. Indeed, Martin-Löf (see [18]) showed
that it is not possible to have 𝐶(𝑋 ↾ 𝑛) ≥ 𝑛 − 𝑂(1):
Given a long string 𝜌, we can write 𝜌 = 𝜎𝜏𝜈, where |𝜏|
is the position of 𝜎 in the length-lexicographic ordering
of 2<𝜔. Consider the Turing machine 𝑀 that, on input 𝜂,
determines the |𝜂|th string 𝜉 in the length-lexicographic
ordering of 2<𝜔 and outputs 𝜉𝜂. Then 𝑁(𝜏) = 𝜎𝜏. For
any sequence 𝑋 and any 𝑘, this process allows us to com-
press some initial segment of 𝑋 by more than 𝑘 many bits.

There are several ways to get around this problem by
modifying the definition of Kolmogorov complexity. The
best-known one is to use prefix-free codes, that is, to re-
strict ourselves tomachines𝑀 such that if𝑀(𝜏) is defined
(i.e., if the machine eventually halts on input 𝜏) and 𝜇 is
a proper extension of 𝜏, then 𝑀(𝜇) is not defined. There
are universal prefix-free machines, and we can take such
a machine 𝑈 and define the prefix-free Kolmogorov complex-
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ity of 𝜎 as 𝐾(𝜎) = 𝐶𝑈(𝜎). The roots of this notion can
be found in the work of Levin, Chaitin, and Schnorr, and
in a certain sense—like the notion of Kolmogorov com-
plexity more generally—even earlier in that of Solomonoff
(see [9,18]). As shown by Schnorr (see Chaitin (1975)), it
is indeed the case that 𝑋 is Martin-Löf random if and only
if 𝐾(𝑋 ↾ 𝑛) ≥ 𝑛−𝑂(1).

There are other varieties of Kolmogorov complexity, but
𝐶 and 𝐾 are the main ones. For applications, it often
does not matter which variety is used. The following sur-
prising result establishes a fairly precise relationship be-
tween 𝐶 and 𝐾. Let 𝐶(1)(𝜎) = 𝐶(𝜎) and 𝐶(𝑛+1)(𝜎) =
𝐶(𝐶(𝑛)(𝜎)).

Theorem4 (Solovay (1975)). 𝐾(𝜎) = 𝐶(𝜎)+𝐶(2)(𝜎)±
𝑂(𝐶(3)(𝜎)), and this result is tight in that we cannot extend
it to 𝐶(4)(𝜎).

There is a vast body of research on Kolmogorov com-
plexity and its applications. We will discuss some of these
applications below; much more on the topic can be found
in Li and Vitányi [18].

Goals
There are several ways to explore the ideas introduced
above. First, there are natural internal questions, such as:
How do the various levels of algorithmic randomness in-
terrelate? How do calibrations of randomness relate to the
hierarchies of computability and complexity theory, and
to relative computability? How should we calibrate par-
tial randomness? Can a source of partial (algorithmic)
randomness be amplified into a source that is fully ran-
dom, or at least more random? The books Downey and
Hirschfeldt [9] and Nies [24] cover material along these
lines up to about 2010.

We can also consider applications. Mathematics has
many theorems that involve “almost everywhere” behav-
ior. Natural examples come from ergodic theory, analysis,
geometric measure theory, and even combinatorics. Be-
havior that occurs almost everywhere should occur at suf-
ficiently random points. Using notions from algorithmic
randomness, we can explore exactly how much randomness
is needed in a given case. For example, the set of reals at
which an increasing function is differentiable is null. How
complicated is this null set, and hence, what level of algo-
rithmic randomness is necessary for a real to avoid it (as-
suming the function is itself computable in some sense)?
Is Martin-Löf randomness the right notion here?

We can also use the idea of assigning levels of random-
ness to individual objects to prove new theorems or give
simpler proofs of known ones. Early examples of this
method tended to use Kolmogorov complexity and what
is called the “incompressibility method.” For instance,
Chaitin (1971) (see also [17]) famously used Kolmogorov

complexity to give a proof of a version of Gödel’s First
Incompleteness Theorem, by showing that for any suffi-
ciently strong, computably axiomatizable, consistent the-
ory 𝑇, there is a number 𝑐 such that 𝑇 cannot prove that
𝐶(𝜎) > 𝑐 for any given string 𝜎 (which also follows by
interpreting an earlier result of Barzdins; see [18, Section
2.7]). More recently, Kritchman and Raz [17] used these
methods to give a proof of the Second Incompleteness The-
orem as well.3 As we will see below, a more recent line
of research has used notions of effective dimension based
on partial randomness to give new proofs of classical theo-
rems in ergodic theory and obtain new results in geometric
measure theory.

Some Interactions with Computability
Halting probabilities. A first question we might ask is
how to generate “natural” examples of algorithmically ran-
dom reals. A classic example is Chaitin’s halting probabil-
ity. Let 𝑈 be a universal prefix-free machine and let

Ω = ∑
𝑈(𝜎)↓

2−|𝜎|.

This number is the measure of the set of sequences𝑋 such
that 𝑈 halts on some initial segment of 𝑋, which we can
interpret as the halting probability of 𝑈, and was shown
by Chaitin (1975) to beML-random (where, asmentioned
above, we identifyΩwith its binary expansion, thought of
as an infinite binary sequence).

For any prefix-free machine𝑀 in place of𝑈we can sim-
ilarly define a halting probability. In some ways, halting
probabilities are the analogs of computably enumerable
sets in the theory of algorithmic randomness. Every halt-
ing probability 𝛼 is a left-c.e. real, meaning that there is
a computable increasing sequence of rationals converging
to it. Calude, Hertling, Khoussainov, and Wang (1998)
showed that every left-c.e. real is the halting probability of
some prefix-free machine.

We should perhaps write Ω𝑈 instead of Ω, to stress the
dependence of its particular value on the choice of uni-
versal machine, but the fundamental properties of Ω do
not depend on this choice, much as those of the halting
problem do not depend on the specific choice of enumer-
ation of Turing machines. In particular, Kučera and Sla-
man (2001) showed that every left-c.e. real is reducible to
every Ω𝑈 up to a strong notion of reducibility known as
Solovay reducibility, and hence all such Ω𝑈’s are equiva-
lent modulo this notion. (The situation is analogous to
that of versions of the halting problem, where the relevant
notion is known as 1-reducibility.)
3Other recent work has explored the effect of adding axioms asserting the incompressibility
of certain strings in a probabilistic way. Bienvenu, Romashchenko, Shen, Taveneaux, and
Vermeeren [4] have shown that this kind of procedure does not help to prove new interest-
ing theorems, but that the situation changes if we take into account the sizes of the proofs:
randomly chosen axioms (in a sense made precise in their paper) can help to make proofs
much shorter under the reasonable complexity-theoretic assumption that NP ≠ PSPACE.
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Left-c.e. and right-c.e. reals (those of the form 1−𝛼 for
a left-c.e. 𝛼) occur naturally in mathematics. Braverman
and Yampolsky [7] showed that they arise in connection
with Julia sets, and there is a striking example in symbolic
dynamics: A 𝑑-dimensional subshift of finite type is a cer-
tain kind of collection of 𝐴-colorings of ℤ𝑑, where 𝐴 is a
finite set, defined by local rules (basically saying that cer-
tain coloring patterns are illegal) invariant under the shift
action

(𝑆𝑔𝑥)(ℎ) = 𝑥(ℎ + 𝑔) for 𝑔, ℎ ∈ ℤ𝑑 and 𝑥 ∈ 𝐴ℤ𝑑 .
Its (topological) entropy is an important invariantmeasuring
the asymptotic growth in the number of legal colorings of
finite regions. It has been known for some time that en-
tropies of subshifts of finite type for dimensions 𝑑 ≥ 2 are
in general not computable, but the following result gives
a precise characterization.

Theorem 5 (Hochman and Meyerovitch [15]). The values
of entropies of subshifts of finite type over ℤ𝑑 for 𝑑 ≥ 2 are
exactly the nonnegative right-c.e. reals.

Algorithmic randomness and relative computability.
Solovay reducibility is stronger than Turing reducibility, so
Ω can compute the halting problem ∅′. Indeed Ω and
∅′ are Turing equivalent, and in fact Ω can be seen as a
“highly compressed” version of ∅′. Other computability-
theoretically powerful ML-random sequences can be ob-
tained from the following remarkable result.

Theorem6 (Gács (1986), Kučera (1985)). For every𝑋 there
is an ML-random 𝑌 such that 𝑋 ≤T 𝑌.

This theorem and the Turing equivalence of Ω with ∅′

do not seem to accord with our intuition that random sets
should have low “useful information.” This phenomenon
can be explained by results showing that, for certain pur-
poses, the benchmark set by ML-randomness is too low. A
set 𝐴 has PA degree if it can compute a {0, 1}-valued func-
tion 𝑓 with 𝑓(𝑛) ≠ Φ𝑛(𝑛) for all 𝑛. (The reason for the
name is that this property is equivalent to being able to
compute a completion of Peano Arithmetic.) Such a func-
tion can be seen as a weak version of the halting problem,
but while∅′ has PA degree, there are sets of PA degree that
are low, in the sense of the section on “Some basic com-
putability theory,” and hence are far less powerful than
∅′.

Theorem 7 (Stephan (2006)). If an ML-random sequence
has PA degree then it computes ∅′.

Thus there are two kinds of ML-random sequences.
Ones that are complicated enough to somehow “simulate”
randomness, and “truly random” ones that are much
weaker. It is known that the class of sequences that can
compute ∅′ has measure 0, so almost all ML-random se-
quences are in the second class. One way to ensure that

a sequence is in that class is to increase the complexity of
our tests by relativizing them to noncomputable oracles.
It turns out that iterates of the Turing jump are particu-
larly natural oracles to use. Let ∅(0) = ∅ and ∅(𝑛+1) =
(∅(𝑛))′. We say that 𝑋 is 𝑛-random if it passes all Martin-
Löf tests relativized to ∅(𝑛−1). Thus the 1-random
sequences are just the ML-random ones, while the 2-
random ones are the ones that are ML-random relative to
the halting problem. These sequences have low compu-
tational power in several ways. For instance, they cannot
compute any noncomputable c.e. set, and in fact the fol-
lowing holds.

Theorem 8 (Kurtz (1981)). If 𝑋 is 2-random and 𝑌 is com-
putable relative both to ∅′ and to 𝑋, then 𝑌 is computable.

A precise relationship between tests and the dichotomy
mentioned above was established by Franklin and Ng [11].

In general, amongML-random sequences, computation-
al power (or “useful information”) is inversely proportion-
al to level of randomness. The following is one of many
results attesting to this heuristic.

Theorem 9 (Miller and Yu (2008)). Let 𝑋 ≤T 𝑌. If 𝑋 is
ML-random and 𝑌 is 𝑛-random, then 𝑋 is also 𝑛-random.

There are many other interesting levels of algorithmic
randomness. Schnorr (1971) argued that his martingale
characterization of ML-randomness shows that this is an
intrinsically computably enumerable rather than computable
notion, and defined a notion now called Schnorr random-
ness, which is like the notion of computable randomness
mentioned below Definition 3 but with an extra effective-
ness condition on the rate of success of martingales. He
also showed that 𝑋 is Schnorr random iff it passes all
Martin-Löf tests 𝑇0, 𝑇1,… such that the measures 𝜆(𝑇𝑛)
are uniformly computable (i.e., the function 𝑛 ↦ 𝜆(𝑇𝑛)
is computable in the sense of the section on “Analysis and
ergodic theory” below). It follows immediately from their
definitions in terms of martingales that ML-randomness
implies computable randomness, which in turn implies
Schnorr randomness. It ismore difficult to prove that none
of these implications can be reversed. In fact, these levels
of randomness are close enough that they agree for sets
that are somewhat close to computable, as shown by the
following result, where highness is as defined in the sec-
tion on “Some basic computability theory.”

Theorem 10 (Nies, Stephan, and Terwijn (2005)). Every
high Turing degree contains a set that is computably random
but not ML-random and a set that is Schnorr random but not
computably random. This fact is tight, however, because every
nonhigh Schnorr random set is ML-random.

As we will discuss, various notions of algorithmic ran-
domness arise naturally in applications.
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Randomness-theoretic weakness. As mentioned above,
𝑋 is ML-random iff 𝐾(𝑋 ↾ 𝑛) ≥ 𝑛 − 𝑂(1), i.e., 𝑋’s ini-
tial segments have very high complexity. There are similar
characterizations of other notions of algorithmic random-
ness, as well as of notions arising in other parts of com-
putability theory, in terms of high initial segment complex-
ity. For instance, Downey and Griffiths (2004) showed
that 𝑋 is Schnorr random iff 𝐶𝑀(𝑋 ↾ 𝑛) ≥ 𝑛 − 𝑂(1)
for every prefix-free machine 𝑀 with computable halting
probability, while Kjos-Hanssen, Merkle, and Stephan
(2006) showed that 𝑋 can compute a diagonally noncom-
putable function, that is, a function ℎ with ℎ(𝑒) ≠ Φ𝑒(𝑒)
for all 𝑒, iff there is an 𝑋-computable function 𝑓 such that
𝐶(𝑋 ↾ 𝑓(𝑛)) ≥ 𝑛 for all 𝑛. But what if the initial seg-
ments of a sequence have low complexity? Such sequences
have played an important role in the theory of algorithmic
randomness, beginning with the following information-
theoretic characterization of computability.

Theorem 11 (Chaitin (1976)). 𝐶(𝑋 ↾ 𝑛) ≤ 𝐶(𝑛)+𝑂(1)
iff 𝑋 is computable.

It is also true that if 𝑋 is computable then 𝐾(𝑋 ↾ 𝑛) ≤
𝐾(𝑛)+𝑂(1). Chaitin (1977) considered sequences with
this property, which are now called 𝐾-trivial. He showed
that every𝐾-trivial sequence is∅′-computable, and asked
whether they are all in fact computable. Solovay (1975)
answered this question by constructing a noncomputable
𝐾-trivial sequence.

The class of 𝐾-trivials has several remarkable proper-
ties. It is a naturally definable countable class, contained
in the class of low sets (as defined in the section on “Some
basic computability theory,” where we identify a set with
its characteristic function, thought of as a sequence), but
with stronger closure properties. (In technical terms, it is
what is known as a Turing ideal.) Post’s problem asked
whether there are computably enumerable sets that are nei-
ther computable nor Turing equivalent to the halting prob-
lem. Its solution in the 1950s by Friedberg and Much-
nik introduced the somewhat complex priority method,
which has played a central technical role in computability
theory since then. Downey, Hirschfeldt, Nies, and Stephan
(2003) showed that 𝐾-triviality can be used to give a sim-
ple priority-free solution to Post’s problem.

Most significantly, there are many natural notions of
randomness-theoretic weakness that turn out to be equiv-
alent to 𝐾-triviality.

Theorem 12 (Nies (2005), Nies and Hirschfeldt for
(1) → (3)). The following are equivalent.

1. 𝐴 is 𝐾-trivial.
2. 𝐴 is computable relative to some c.e. 𝐾-trivial set.
3. 𝐴 is low for 𝐾, meaning that 𝐴 has no compression
power as an oracle. i.e., that 𝐾𝐴(𝜎) ≥ 𝐾(𝜎) − 𝑂(1),

where 𝐾𝐴 is the relativization of prefix-free Kolmogorov
complexity to 𝐴.

4. 𝐴 is low for ML-randomness, meaning that 𝐴 does
not have any derandomization power as an oracle, i.e., any
ML-random set remains ML-random when this notion is
relativized to 𝐴.

There are now more than a dozen other characteriza-
tions of 𝐾-triviality. Some appear in [9, 24], and several
others have emerged more recently. These have been used
to solve several problems in algorithmic randomness and
related areas. Lowness classes have also been found for
other randomness notions. For Schnorr randomness, for
instance, lowness can be characterized using notions of
traceability related to concepts in set theory, as first ex-
plored by Terwijn and Zambella (2001).

Some Applications
Incompressibility and information content. This article
focuses on algorithmic randomness for infinite objects, but
we should mention that there have been many applica-
tions of Kolmogorov complexity under the collective ti-
tle of the incompressibility method, based on the observa-
tion that algorithmically random strings should exhibit
typical behavior for computable processes. For example,
this method can be used to give average running times
for sorting, by showing that if the outcome is not what
we would expect then we can compress a random input.
See Li and Vitányi [18, Chapter 6] for applications of this
technique to areas as diverse as combinatorics, formal lan-
guages, compact routing, and circuit complexity, among
others. Many results originally proved using Shannon en-
tropy or relatedmethods also have proofs using Kolmogor-
ov complexity. For example, Messner and Thierauf [22]
gave a constructive proof of the Lovász Local Lemma us-
ing Kolmogorov complexity.

Other applications come from the observation that
in some sense Kolmogorov complexity provides an
“absolute” measure of the intrinsic complexity of a string.
We can define a notion of conditional Kolmogorov com-
plexity 𝐶(𝜎 ∣ 𝜏) of a string 𝜎 given another string 𝜏.
Then, for example, 𝐶(𝜎 ∣ 𝜎) = 𝑂(1), and 𝜎 is “inde-
pendent of 𝜏” if 𝐶(𝜎 ∣ 𝜏) = 𝐶(𝜎) ±𝑂(1). Researchers
comparing two sequences𝜎,𝜏 representing, say, twoDNA
sequences, or two phylogenetic trees, or two languages, or
two pieces of music, have invented many distance metrics,
such as themaximumparsimony distance on phylogenetic
trees, but it is also natural to use a content-neutral mea-
sure of “information distance” like max{𝐶(𝜎 ∣ 𝜏),𝐶(𝜏 ∣
𝜎)}. There have been some attempts to make this work in
practice for solving classification problems, though results
have so far been mixed. Of course, 𝐶 is not computable,
but it can be replaced in applications by measures derived
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from practical compression algorithms. See [18, Sections
8.3 and 8.4].
Effective dimensions. If𝑋 = 𝑥0𝑥1 … is random, thenwe
might expect a sequence such as 𝑥000𝑥100𝑥200… to be
“1
3 -random.” Making precise sense of the idea of partial al-

gorithmic randomness has led to significant applications.
Hausdorff used work of Carathéodory on 𝑠-dimensional
measures to generalize the notion of dimension to possi-
bly nonintegral values, leading to concepts such as Haus-
dorff dimension and packing dimension. Much like algo-
rithmic randomness can make sense of the idea of individ-
ual reals being random, notions of partial algorithmic ran-
domness can be used to assign dimensions to individual
reals.

The measure-theoretic approach, in which we for
instance replace the uniform measure 𝜆 on 2𝜔 by a gen-
eralized notion assigning the value 2−𝑠|𝜎| to [𝜎] (where
0 < 𝑠 ≤ 1), was translated by Lutz (2000, 2003) into a
notion of 𝑠-gale, where the fairness condition of a martin-
gale is replaced by 𝑓(𝜎) = 2−𝑠(𝑓(𝜎0) + 𝑓(𝜎1)). We
can view 𝑠-gales as modeling betting in a hostile environ-
ment (an idea due to Lutz), where “inflation” is acting so
that not winning means that we automatically lose money.
Roughly speaking, the effective fractal dimension of a se-
quence is then determined by the most hostile environ-
ment in which we can still make money betting on this
sequence.

Mayordomo (2002) and Athreya, Hitchcock, Lutz, and
Mayordomo (2007) found equivalent formulations in
terms of Kolmogorov complexity, which we take as defi-
nitions. (Here it does not matter whether we use plain or
prefix-free Kolmogorov complexity.)

Definition 13. Let 𝑋 ∈ 2𝜔. The effective Hausdorff dimen-
sion of 𝑋 is

dim(𝑋) = lim inf
𝑛→∞

𝐾(𝑋 ↾ 𝑛)
𝑛 .

The effective packing dimension of 𝑋 is

Dim(𝑋) = limsup
𝑛→∞

𝐾(𝑋 ↾ 𝑛)
𝑛 .

It is not hard to extend these definitions to elements of
ℝ𝑛, yielding effective dimensions between 0 and 𝑛. They
can also be relativized to any oracle 𝐴 to obtain the ef-
fective Hausdorff and packing dimensions dim𝐴(𝑋) and
Dim𝐴(𝑋) of 𝑋 relative to 𝐴.

It is of course not immediately obvious why these no-
tions are effectivizations of Hausdorff and packing dimen-
sion, but crucial evidence of their correctness is provided
by point to set principles, which allow us to express the di-
mensions of sets of reals in terms of the effective dimen-
sions of their elements. The most recent and powerful of
these is the following, where we denote the classical Haus-

dorff dimension of 𝐸 ⊆ ℝ𝑛 by dimH(𝐸), and its classical
packing dimension by dimp(𝐸).
Theorem 14 (Lutz and Lutz [19]).

dimH(𝐸) = min
𝐴⊆ℕ

sup
𝑋∈𝐸

dim𝐴(𝑋).

dimp(𝐸) = min
𝐴⊆ℕ

sup
𝑋∈𝐸

Dim𝐴(𝑋).

For certain well-behaved sets 𝐸, relativization is actu-
ally not needed, and the classical dimension of 𝐸 is the
supremum of the effective dimensions of its points. In the
general case, it is of course not immediately clear that the
minima mentioned in Theorem 14 should exist, but they
do. Thus, for example, to prove a lower bound of 𝛼 for
dimH(𝐸) it suffices to prove that, for each 𝜖 > 0 and each
𝐴, the set 𝐸 contains a point 𝑋 with dim𝐴(𝑋) > 𝛼 − 𝜖.
In several applications, this argument turns out to be eas-
ier than ones directly involving classical dimension. This
fact is somewhat surprising given the need to relativize to
arbitrary oracles, but in practice this issue has so far turned
out not to be an obstacle.

For example, Lutz and Stull [21] obtained a new lower
bound on the Hausdorff dimension of generalized sets of
Furstenberg type; Lutz [20] showed that a fundamental in-
tersection formula, due in the Borel case to Kahane and
Mattila, is true for arbitrary sets; and Lutz and Lutz [19]
gave a new proof of the two-dimensional case (originally
proved by Davies) of the well-known Kakeya conjecture,
which states that, for all 𝑛 ≥ 2, if a subset of ℝ𝑛 has lines
of length 1 in all directions, then it has Hausdorff dimen-
sion 𝑛.

There had been earlier applications of effective dimen-
sion, for instance in symbolic dynamics, whose iterative
processes are naturally algorithmic. For example, Simp-
son [25] generalized a result of Furstenberg as follows. Let
𝐴 be finite and𝐺 be eitherℕ𝑑 or ℤ𝑑. A closed set𝑋 ⊆ 𝐴𝐺

is a subshift if it is closed under the shift action of 𝐺 on 𝐴𝐺

(see the section on “Halting probabilities”).

Theorem 15 (Simpson [25]). Let𝐴 be finite and𝐺 be either
ℕ𝑑 or ℤ𝑑. If𝑋 ⊆ 𝐴𝐺 is a subshift then the topological entropy
of𝑋 is equal both to its classical Hausdorff dimension and to the
supremum of the effective Hausdorff dimensions of its elements.

In currently unpublished work, Day has used effective
methods to give a new proof of the Kolmogorov-Sinai the-
orem on entropies of Bernoulli shifts.

There are other applications of sequences of high effec-
tive dimension, for instance ones involving the interesting
class of shift complex sequences. While initial segments of
ML-random sequences have high Kolmogorov complexity,
not all segments of such sequences do. Random sequences
must contain arbitrarily long strings of consecutive 0’s, for
example. However, for any 𝜖 > 0 there are 𝜖-shift complex
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sequences 𝑌 such that for any string 𝜎 of consecutive bits
of 𝑌, we have 𝐾(𝜎) ≥ (1 − 𝜖)|𝜎| − 𝑂(1). These se-
quences can be used to create tilings with properties such
as certain kinds of pattern-avoidance, and have found uses
in symbolic dynamics. See for instanceDurand, Levin, and
Shen (2008) and Durand, Romashchenko, and Shen [10].
Randomness amplification. Many practical algorithms
use random seeds. For example, the important Polynomial
Identity Testing (PIT) problem takes as input a polynomial
𝑃(𝑥1,… , 𝑥𝑛)with coefficients from a large finite field and
determineswhether it is identically0. Many practical prob-
lems can be solved using a reduction to this problem.
There is a natural fast algorithm to solve it randomly: Take
a random sequence of values for the variables. If the poly-
nomial is not 0 on these values, “no” is the correct answer.
Otherwise, the probability that the answer is “yes” is very
high. It is conjectured that PIT has a polynomial-time de-
terministic algorithm,4 but no such algorithm is known.

Thus it is important to have good sources of random-
ness. Some (including Turing) have believed that random-
ness can be obtained from physical sources, and there are
now commercial devices claiming to do so. At a more the-
oretical level, we might ask questions such as:

1. Can a weak source of randomness always be amplified
into a better one?

2. Can we in fact always recover full randomness from
partial randomness?

3. Are random sources truly useful as computational re-
sources?

In our context, we can consider precise versions of such
questions by taking randomness to mean algorithmic ran-
domness, and taking all reduction processes to be com-
putable ones. One way to interpret the first two questions
then is to think of partial randomness as having nonzero
effective dimension. For example, for packing dimension,
we have the following negative results.

Theorem 16 (Downey and Greenberg (2008)). There is an
𝑋 such that Dim(𝑋) = 1 and 𝑋 computes no ML-random
sequence. (This𝑋 can be built to be of minimal degree, which
means that every 𝑋-computable set is either computable or has
the same Turing degree as𝑋. It is known that such an𝑋 cannot
compute an ML-random sequence.)

Theorem 17 (Conidis [8])). There is an 𝑋 such that
Dim(𝑋) > 0 and 𝑋 computes no 𝑌 with Dim(𝑌) = 1.

On the other hand, we also have the following strong
positive result.

Theorem 18 (Fortnow, Hitchcock, Pavan, Vinochandran,
and Wang (2006)). If 𝜖 > 0 and Dim(𝑋) > 0 then there is

4This conjecture comes from the fact that PIT belongs to a complexity class known as BPP,
which is widely believed to equal the complexity class P of polynomial-time solvable prob-
lems, since Impagliazzo and Wigderson showed in the late 1990s that if the well-known
Satisfiability problem is as hard as generally believed, then indeed BPP = P.

an 𝑋-computable 𝑌 such that Dim(𝑌) > 1− 𝜖. (In fact, 𝑌
can be taken to be equivalent to 𝑋 via polynomial-time reduc-
tions.)

For effective Hausdorff dimension, the situation is
quite different. Typically, the way we obtain an 𝑋 with
dim(𝑋) = 1

2 , say, is to start with an ML-random sequence
and somehow “mess it up,” for example by making ev-
ery other bit a 0. This kind of process is reversible, in
the sense that it is easy to obtain an 𝑋-computable ML-
random. However, Miller [23] showed that it is possible to
obtain sequences of fractional effective Hausdorff dimen-
sion that permit no randomness amplification at all.

Theorem19 (Miller [23]). There is an𝑋 such thatdim(𝑋) =
1
2 and if 𝑌 ≤T 𝑋 then dim(𝑌) ≤ 1

2 .

That is, effective Hausdorff dimension cannot in general
be amplified. (In this theorem, the specific value 1

2 is only
an example.) Greenberg and Miller [13] also showed that
there is an 𝑋 such that dim(𝑋) = 1 and 𝑋 does not com-
pute any ML-random sequences. Interestingly, Zimand
(2010) showed that for two sequences 𝑋 and 𝑌 of nonzero
effective Hausdorff dimension that are in a certain techni-
cal sense sufficiently independent, 𝑋 and 𝑌 together can
compute a sequence of effective Hausdorff dimension 1.

In some attractive recent work, it has been shown that
there is a sense in which the intuition that every sequence
of effective Hausdorff dimension 1 is close to an ML-
random sequence is correct. The following is a simplified
version of the full statement, which quantifies how much
randomness can be extracted at the cost of altering a se-
quence on a set of density 0. Here 𝐴 ⊆ ℕ has (asymptotic)
density 0 if lim𝑛→∞

|𝐴↾𝑛|
𝑛 = 0.

Theorem 20 (Greenberg, Miller, Shen, and Westrick [14]).
If dim(𝑋) = 1 then there is an ML-random 𝑌 such that
{𝑛 ∶ 𝑋(𝑛) ≠ 𝑌(𝑛)} has density 0.

The third question above is whether sources of random-
ness can be useful oracles. Here we are thinking in terms of
complexity rather than just computability, so results such
as Theorem 6 are not directly relevant. Allender and oth-
ers have initiated a program to investigate the speedups
that are possible when random sources are queried effi-
ciently. Let 𝑅 be the set of all random finite binary strings
for either plain or prefix-free Kolmogorov complexity (e.g.,
𝑅 = {𝑥 ∶ 𝐶(𝑥) ≥ |𝑥|}). For a complexity class 𝒞, let 𝒞𝑅

denote the relativization of this class to𝑅. So, for instance,
for the class P of polynomial-time computable functions,
P𝑅 is the class of functions that can be computed in poly-
nomial time with 𝑅 as an oracle. (For references to the
articles in this and the following theorem, see [1].)
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Theorem 21 (Buhrman, Fortnow, Koucký, and Loff (2010);
Allender, Buhrman, Koucký, van Melkebeek, and Ronneb-
urger (2006); Allender, Buhrman, and Koucký (2006)).

1. PSPACE ⊆ P𝑅.
2. NEXP ⊆ NP𝑅.
3. BPP ⊆ P𝑅

tt (where the latter is the class of functions
that are reducible to 𝑅 in polynomial time via truth-table
reductions, a more restrictive notion of reduction than Tur-
ing reduction).

The choice of universal machine does have some effect
on efficient computations, but we can quantify over all uni-
versal machines. In the result below, 𝑈 ranges over uni-
versal prefix-free machines, and 𝑅𝐾𝑈 is the set of random
strings relative to Kolmogorov complexity defined using
𝑈.

Theorem 22 (Allender, Friedman, and Gasarch (2013);
Cai, Downey, Epstein, Lempp, and Miller (2014)).

1. ⋂𝑈 P
𝑅𝐾𝑈
tt ⊆ PSPACE.

2. ⋂𝑈 NP𝑅𝐾𝑈 ⊆ EXPSPACE.

We can also say that sufficiently random oracles will al-
ways accelerate some computations in the following sense.
Say that 𝑋 is low for speed if for any computable set 𝐴
and any function 𝑡 such that 𝐴 can be computed in time
𝑡(𝑛) using 𝑋 as an oracle, there is a polynomial 𝑝 such
that𝐴 can be computed (with no oracle) in time bounded
by 𝑝(𝑡(𝑛)). That is, 𝑋 does not significantly accelerate
any computation of a computable set. Bayer and Slaman
(see [3]) constructed noncomputable sets that are low for
speed, but these cannot be very random.

Theorem 23 (Bienvenu and Downey [3]). If 𝑋 is Schnorr
random, then it is not low for speed, and this fact is witnessed
by an exponential-time computable set 𝐴.
Analysis and ergodic theory. Computable analysis is an
area that has developed tools for thinking about comput-
ability of objects like real-valued functions by taking ad-
vantage of separability. Say that a sequence of rationals
𝑞0, 𝑞1,… converges fast to 𝑥 if |𝑥 − 𝑞𝑛| ≤ 2−𝑛 for all 𝑛.
A function 𝑓 ∶ ℝ → ℝ is (Type 2) computable if there is
an algorithm Φ that, for every 𝑥 ∈ ℝ and every sequence
𝑞0, 𝑞1,… that converges fast to 𝑥, ifΦ is given 𝑞0, 𝑞1,… as
an oracle, then it can compute a sequence that converges
fast to 𝑓(𝑥). We can extend this definition to similar sep-
arable spaces. We can also relativize it, and it is then not
difficult to see that a function is continuous iff it is com-
putable relative to some oracle, basically because to define
a continuous function we need only to specify its action
on a countable collection of balls.

Mathematics is replete with results concerning almost
everywhere behavior, and algorithmic randomness allows
us to turn such results into “quantitative” ones like the fol-
lowing.

Theorem 24 (Brattka, Miller, and Nies [5], also Demuth
(75, see [5]) for (2)).

1. The reals at which every computable increasing function
ℝ → ℝ is differentiable are exactly the computably random
ones.

2. The reals at which every computable function ℝ → ℝ
of bounded variation is differentiable are exactly the ML-
random ones.

Ergodic theory is another area that has been studied
from this point of view. A measure-preserving transfor-
mation 𝑇 on a probability space is ergodic if all measur-
able subsets 𝐸 such that 𝑇−1(𝐸) = 𝐸 have measure 1
or 0. Notice that this is an “almost everywhere” defini-
tion. We can make this setting computable (and many sys-
tems arising from physics will be computable). One way
to proceed is to work in Cantor space without loss of gen-
erality, since Hoyrup and Rojas [16] showed that any com-
putable metric space with a computable probability mea-
sure is isomorphic to this space in an effective measure-
theoretic sense. Then we can specify a computable trans-
formation 𝑇 as a computable limit of computable partial
maps 𝑇𝑛 ∶ 2<𝜔 → 2<𝜔 with certain coherence condi-
tions. We can also transfer definitions like that of ML-
randomness to computable probability spaces other than
Cantor space.

The following is an illustrative result. A classic theorem
of Poincaré is that if𝑇 is measure-preserving, then for all𝐸
of positive measure and almost all 𝑥, we have 𝑇𝑛(𝑥) ∈ 𝐸
for infinitely many 𝑛. For a class 𝒞 of measurable subsets,
𝑥 is a Poincaré point for 𝑇 with respect to 𝒞 if for every
𝐸 ∈ 𝒞 of positivemeasure,𝑇𝑛(𝑥) ∈ 𝐸 for infinitely many
𝑛. An effectively closed set is one whose complement can be
specified as a computably enumerable union of basic open
sets.

Theorem 25 (Bienvenu, Day, Mezhirov, and Shen [2]). Let
𝑇 be a computable ergodic transformation on a computable
probability space. Every ML-random element of this space is
a Poincaré point for the class of effectively closed sets.

In general, the condition that the element be ML-
random is not just sufficient but necessary, even in a sim-
ple case like the shift operator on Cantor space.

The non-ergodic case has also been analyzed, by Frank-
lin and Towsner [12], who also studied the Birkhoff er-
godic theorem. In these and several other cases, similar
correspondences with various notions of algorithmic ran-
domness have been found. While many theorems of er-
godic theory have been analyzed in this way, including the
Birkhoff, Poincaré, and von Neumann ergodic theorems,
some, like Furstenberg’s ergodic theorem, have yet to be
understood from this point of view.

Regarding the physical interpretation of some of the
work in this area, Braverman, Grigo, and Rojas [6] have
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obtained results that they argue show that, while random
noise makes predicting the short-term behavior of a sys-
tem difficult, it may in fact allow prediction to be easier in
the long term.
Normality revisited. Borel’s notion of normality, with
which we began our discussion, is a very weak kind of
randomness. Polynomial-time randomness implies abso-
lute normality, and Schnorr and Stimm (1971/72) showed
that a sequence is normal to a given base iff it satisfies a
martingale-based notion of randomness defined using cer-
tain finite state automata, amuchweakermodel of compu-
tation than Turing machines. Building examples of abso-
lutely normal numbers is another matter, as Borel already
noted. While it is conjectured that 𝑒, 𝜋, and all irrational
algebraic numbers such as√2 are absolutely normal, none
of these have been proved to be normal to any base. In
his unpublished manuscript “A note on normal numbers,”
believed to have been written in 1938, Turing built a com-
putable absolutely normal real, which is in a sense the clos-
est we have come so far to obtaining an explicitly-described
absolutely normal real. (His construction was not pub-
lished until his Collected Works in 1992, and there was
uncertainty as to its correctness until Becher, Figueira, and
Picchi (2007) reconstructed and completed it, correcting
minor errors.5) There is a sense in which Turing antici-
pated Martin-Löf’s idea of looking at a large collection of
effective tests, in this case ones sufficiently strong to ensure
that a real is normal for all bases, but sufficiently weak to al-
low some computable sequence to pass them all. He took
advantage of the correlations between blocks of digits in
expansions of the same real in different bases.

This approach can also be thought of in terms of effec-
tive martingales, and its point of view has brought about
a great deal of progress in our understanding of normality
recently. For instance, Becher, Heiber, and Slaman (2013)
showed that absolutely normal numbers can be
constructed in low-level polynomial time, and Lutz and
Mayordomo (arXiv:1611.05911) constructed them in
“nearly linear” time. Much of the work along these lines
has been number-theoretic, connected to various notions
of well-approximability of irrational reals, such as that of
a Liouville number, which is an irrational 𝛼 such that for
every natural number 𝑛 > 1, there are 𝑝,𝑞 ∈ ℕ for which
|𝛼 − 𝑝

𝑞 | < 𝑞−𝑛. For example, Becher, Heiber, and Sla-
man (2015) have constructed computable absolutely nor-
mal Liouville numbers. This work has also produced
results in the classical theory of normal numbers, for in-
stance by Becher, Bugeaud, and Slaman (2016).

5See https://www-2.dc.uba.ar/staff/becher/publications.html
for references to the papers cited here and below.
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