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Differentiating f(#) with respect to 0; and setting the result equal to 0
produce
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If we let y denote the column vector with entries y; and X denote the
matrix with entry z;; in row ¢ and column j, these ¢ normal equations can
be written in vector form as

Xty = X'X¢
and solved as
0 = (X'X)'Xly.

In the method of least absolut_e deviation regression, we replace f(6) by
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Traditionally, one simpliﬁés this expression by defining the residual

P

hO) = >

i=1

g
ri(6) = y;— Z z;;0;.
- j=1

We are now faced with minimizing a nondifferentiable function. Fortu-
nately, the MM algorithm can be implemented by exploiting the convexity
of the function —y/u in inequality (3.2). Because
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Minimizing g(6 | ") is accomplished by minimizing the weighted sum of
squares




