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Preface

This book is an extended write-up of some lectures in a course I have given
in Berkeley every few years since 2002, most recently in Fall 2014. It is part
of a broad project described on my web site Probability in the Real World.
In particular the site contains much more discussion of the goals outlined
below, of the three lists mentioned below, and of the type of “Perception”
material in Chapter 1.

My overall goal, compressed to 11 words, is

to articulate critically what mathematical probability says about
the real world.

By critically I mean with reference to actual evidence, not just repeating
mathematical or rhetorical arguments – what would stand up under cross-
examination in the witness box? Hidden behind what is an emphasis on the
extraordinary breadth of contexts where we perceive chance or uncertainty,
while seeking to understand in which of these contexts mathematics is use-
ful. And by real world I mean “not mathematics or philosophy or fantasy
examples”, though I do include issues of perception.

The book is addressed to two opposite audiences. First, the readership
of serious popular science books. As a hobby I have read and reviewed every
(around 100) non-technical book on probability I’ve found, so I can claim
some familiarity with the genre. An author, bearing in mind the dictum
every equation will cut sales in half, faces an immediate decision of how
much math to include. Books without any math strike me as too fuzzy,
tending to flit to a new topic every other page without leaving any bottom
line conclusion. At the other extreme are what I call “textbook lite” works,
which seek to teach a little math while recounting the more interesting
parts of undergraduate courses plus popular topics such as the Monty Hall
problem. These strike me as far too narrow. I adopt an intermediate policy
of quoting some mathematics – model descriptions and formulas – without
trying to teach readers how to do the math for themselves.

vii
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The second audience, of course, is students and their instructors. The
Berkeley lectures are to undergraduates majoring in Statistics or some sim-
ilar subject. These students already know the basic mathematics of prob-
ability, and a handful of standard textbook applications (games of chance,
opinion polls, etc). But the difficulty in teaching any sort of applied math is
that in practice the math takes over. Look at the actual content of any book
with a title like Applied Probability, and you will see it is overwhelmingly
devoted to developing the mathematics, with very scant discussion of the
significance (let alone the realism) of the mathematical conclusions. Ad-
vanced college courses lead to more specialized and mathematically oriented
topics, rather than to breadth. I doubt that any student anywhere else has
been exposed in college courses to more than half of the topics in this book.

My Berkeley course consists of 20 lectures, on topics chosen to be very
diverse. Here are my desiderata for an ideal topic.

• It is appropriate for the target audience: those interested in the re-
lation between mathematics and the real world, rather than those
interested in the mathematics itself1.

• There is some interesting data-set that one can show.

• There is some concrete bottom line conclusion, which can be said in
words . . .

• . . . but where some mathematics has been used to derive conclusions
. . .

• . . . . . . and where the mathematics leads to some theoretical quantita-
tive prediction that my students can test by gathering fresh data.

• There is available “further reading”, both non-technical and technical,
that I can recommend to students.

Very few topics permit all this, so many of the actual lectures fail to attain
the ideal. This book contains extended versions of 10 lectures, on the topics
for which I believe there are no comparable accounts elsewhere. The contents
of the other lectures are briefly described in chapter 10 and cross-referenced
in format “Lecture 10.1”: they tend to consist of material available else-
where, and to be less mathematical. The lectures are fairly independent of
each other, so the order is fairly arbitrary.

1For reasons peculiar to Berkeley, few undergraduate majors in (theoretical) mathe-
matics take any course in probability or statistics.



ix

I have used the word breadth many times, and this relates to another
part of the project, an attempt to categorize all the contexts where we per-
ceive chance in the real world into around 100 categories. I don’t know any
comparable attempt, and it provides a testbed for evaluating asserted gen-
eralizations, mathematical or philosophical or whatever, about the nature
and scope of probability.

A final Chapter ?? (which I do not lecture on) is called Some Conceptual
Issues in Probability. I am critical of typical discussions of the Philosophy
of Probability (in the popular sense, not narrow technical academic philos-
ophy). because of its reliance on unrealistic simplistic or fantasy examples,
its recycling of a small set of classical or fashionable issues and a general
lack of appreciation for the breadth of the subject. So Chapter ?? discusses a
less standard set of issues arising from thinking about substantive real-world
questions. On this theme, the practical distinction between frequentist and
Bayesian views is much less than many popular accounts suggest, and I use
one or other without comment. The rare contexts where there is a difference
are interesting for that reason, so I do comment there.

Most of these lectures are intended to be uncontroversial accounts of a
few aspects of some established academic topic, colored by my own taste in
what is interesting or significant. Note they are not intended as a descriptive
summary of the main points of the topic – that’s what Wikipedia is for. For
some topics, what I say in class is similar to material already written by
someone else. It is pointless to rewrite such material in one’s own words.
So I don’t – I refer the reader to the existing material (a policy which
would have spared many forests if systematically adopted by all authors).
Consequently, what appears in this write-up is intended to have little overlap
with any existing writings at the same length and technical level.

Let me reiterate my goal in more rhetorical fashion. We live in several
overlapping worlds. There’s the natural world that exists independently of
humans; the human social world; the world of human artifacts; the world
of ideas and perceptions and motivations. Outside the classroom, we know
that chance enters all these worlds in many ways. From the way we first
meet a future spouse to the spatial fluctuations in mass density of the early
universe that led to galaxy formation; from the chance of Scotland voting
for independence in September 2014 to the event that Kokura was covered
by clouds on August 9, 1945. Inside the classroom we forget all this, and
revert to the mathematical tradition that implicitly views probability as
about things that are similar to dice. So what is the connection?

http://www.stat.berkeley.edu/~aldous/Real-World/100.html
http://www.stat.berkeley.edu/~aldous/Real-World/100.html
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Some details. In writing up lectures2 I have stayed close to what I want to
say in an actual lecture. One issue is that what is acceptable as a brief spoken
explanation may look embarrassingly vague when written. So sometimes I
have added a more careful explanation in the text, sometimes in the Notes
at the end, and sometimes I’ve just left it vague.

Students in the course do a “course project”, preferably involving real
data. I give many suggestions for projects in lectures and post others online.
I have included some in this write up to give their flavor. “Small project”
means less substantial, and “research project” means more substantial, than
a course project. I tell students about many resources – books, papers, web
sites – that may be helpful; again, some are included here. The order of
lectures is different in the course, because I want the topics most amenable
to course projects to be done early.

I am a fan of Wikipedia as a basic factual reference, outside of sophis-
ticated mathematics, and many of the in-text links are to a Wikipedia
page which may be helpful or interesting. Occasionally I use the format
“Wikipedia Spatial network not helpful”, which is an implicit suggestion
to edit that entry. References to books are typically given in-text and to
papers3 as footnotes, but note these references are to “further reading for
the target audience”, not academic citations to the originators of ideas.

Students in my lecture course have taken a course in mathematical prob-
ability, so I do not explain the basic mathematics from first principles but
instead give “reminders” of theory. Students are inclined to view mathemat-
ics as symbolic manipulation of the (x−y)(x+y) = x2−y2 kind; throughout
I remind them that our mathematics is intended to refer to something in the
real world. So I emphasize conceptual aspects – what do the assumptions
mean, what do the conclusions mean – rather than the internal mathemat-
ical arguments leading from assumptions to conclusions.

Acknowledgements. Responding to criticism that in writing I, Claudius
he had merely run together Tacitus and Suetonius’s works and added his
own “vigorous fancy”, Robert Graves asserted that in fact he also borrowed
from the writings of Cassius Dio, Pliny, Varro, Valerius Maximus, Orosius,
Frontinus, . . . [26 in total]. This book of mine has some analogous cut-and-
paste material and also draws, consciously or unconsciously, on interactions
with many colleagues over many years, in particular Persi Diaconis.

2By LATEX default Lectures are set as Chapters, though I refer to them in the text as
lectures.

3In general I only cite papers that are readily available online.

http://en.wikipedia.org/wiki/Spatial_network


Chapter 1

Everyday perception of
chance

In what contexts do you think of elephants? I suspect you can’t answer very
confidently, partly because now I have put the idea of elephants into your
mind with this question, it’s hard to remember the previous times. Our
topic today is

In what everyday contexts do “ordinary people” perceive events
in terms of chance?

Just ask them! isn’t a helpful way to try to answer – we humans do forget.
There is substantial academic research relating to perception of proba-

bilities, which will be the topic of our Lecture 10.1 on “psychology” later.
But this typically studies responses when subjects are prompted to think
about chance by being asked some specific question which plainly involves
chance. Our topic today is: when do you think about chance, unprompted?

Of course it’s easy to imagine many contexts, but a main theme of this
course is to look at actual data, not imaginary data:

Don’t Make Stuff Up!

I will talk about two sources of actual data (and then, as evil fun, com-
pare with some imaginary data). The first is a data collection exercise done
by undergraduates that you could easily repeat yourself.

1.1 References to chance in blogs

In 2009 we did an online search through personal blogs – people writing
about their everyday life and thoughts – searching for the phrase one in

1



2 CHAPTER 1. EVERYDAY PERCEPTION OF CHANCE

a million chance. Below are the first 22 instances found (literal text itali-
cized, without correcting spelling or grammar). I have divided them into 4
categories.

1. Past events that happened to writer. (6)

Finding a romantic partner. There was this weird connection that I
felt when I first met him . . . Seeing how its like a one in a million chance to
find that one person you connect with.
(similar quote omitted).

Major life events. I have . . . syndrome. The fact that I ever became a
mother was a “one in a million chance”.

Unusual dramatic events. . . . and they [adults] all start talking about
how im too young to be going out by myself . . . But it’s not like im going to
listen to them, what happened [witnessing a mall shooting] was a once in a
million chance.

Unusual minor events.

(vacation went unexpectedly well: quote omitted)

(throwing chips in drunken party: quote omitted)

2. Possible future events that might affect writer. (8)

Minor pleasant possibilities. I’m somewhat hoping to meet friends there
. . . it’s a one in a million chance.

i’m waiting for the day they [upcoming movie/TV filming locations] say
my city which is one in a million chance

. . . got this contest. It’s a one in a million chance to get some people
. . . to tell me what they think of my work.

my greatest ambition is to see [a supernova] one day, though there’s
probably a one in a million chance that i will. smaller than that.

I’d only be satisfied with one particular scenario and there’s maybe a 1
in a million chance of that happening . . . no, less. I would get struck by
lightning before that happened, twice

Worries. Of course if I don’t go [to the doctor about certain symptoms],
there’s that one in a million chance that I’ll be sorry I didn’t.

(similar quote omitted)

There are things that we were never told that really end up happening
to most women [during pregnancy]. Instead we were told the things that we
had a one in a million chance of experiencing.
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3. Events affecting specific other people. (2)
On the one in a million chance that Christine actually gets hired to do

costumes for . . .
There is a one in a million chance that [a particular NHL player] gets

picked up on waivers

4. Impersonal speculation. (6)
On the other hand, if you chase after it [a volleyball spike by opponents],

who knows? It might just be one-in-a-million chance that you’ll get it, but
isn’t that a chance worth taking?

When you’re looking for the one in a million chance of getting a Beethoven
you could be overlooking an Einstein.

Becoming a successful actor, singer, or dancer is a one in a million shot
in the dark during a snowstorm.

(similar quote omitted)
. . . reflect on how [Valentine’s day] has brainwashed a whole lot of people

into believing that love could actually happen on that day, which is a one
in a million chance by the way (which they would argue is worth the risk
anyway, which is also bullshit, by the way).

First [one particular sperm] had to survive and beat out millions of other
sperm . . . that’s like winning the lotta right there . . . only one in a million,
and from that point, you got to survive . . .

Here are the results of searches on other phrases.
Once one sees this kind of data, it may seem obvious that “this is the

sort of data we expected to see”. But actually predicting such things is hard.
I challenge readers to stop after the first paragraph of the next section, and
try to predict what the data will show! The four particular categories above
were suggested by this particular data-set, and are not really useful ways to
categorize “contexts where we perceive chance”.

I suggest as a course project that students gather more data using other
search terms and other regions of the online world. For this I insist on a
repeatable experiment. You must show (a random sample of) results of a
specified search, not human-selected ones. The internet is so big that one
could invent examples and then search for similar ones, so selecting examples
is little different from inventing them. Specifying a search protocol that gives
the kind of “contexts where we perceive chance” examples is harder than it
sounds.

It is important to note that I are not claiming that what we find is a sta-
tistically accurate sample of “contexts where we perceive chance”, either in

http://www.stat.berkeley.edu/~aldous/Real-World/blogs.html


4 CHAPTER 1. EVERYDAY PERCEPTION OF CHANCE

general or specifically within the blogosphere. Our purpose, more modestly,
is to illustrate actual usage, as opposed to made-up examples.

1.2 Queries to the search engine Bing

In 2010 I obtained, from the Bing team, a file of all (around 100,000) queries
made to Bing containing the strings “chance of” or “probability of”. After
excluding those which were not actually looking for the chance of some-
thing (e.g. were seeking the movie Cloudy with a Chance of Meatballs) I
had enough patience to examine 675, sorting them into 66 groups of about
10 similar queries. Picking one from each group gives this sample of 66
“representative” queries. Here I prune down further to a representative 30.

Before turning the page, I challenge readers to predict what the data
will show!

http://www.stat.berkeley.edu/~aldous/Real-World/bing_chance_topics.html
http://www.stat.berkeley.edu/~aldous/Real-World/bing_chance_topics.html
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Query: what’s the chance of getting pregnant after tubal litigation?

Query: chance of pregnancy after intercourse

Query: how to improve chance of getting pregnant

Query: pecent chance of getting pregnant with clomid

Query: chance of getting pregnant while breastfeeding

Query: if twins run in my family whats my chance of having them?

Query: chance of having multiples using fertility

Query: chance of siblings both having autism

Query: chance of misscarage after 8 weeks

Query: chance of bleeding with placenta previa

Query: any chance of vaginal delivery if first ceaserian

Query: probability of having an adverse reaction to amoxicillin

Query: can aispirin reduce chance of a stroke

Query: does progesterone increas chance of breast cancer

Query: which treatment has the least chance of prostate cancer recur-
ring?

Query: chance of getting a brain tumor

Query: do chargers have a chance of making the playoffs

Query: probability of flopping a set with pocket pair

Query: does a ring of wealth affect the chance of the dragon pickaxe
drop in runescape?

Query: persent chance of getting shot if you run from an attacker

Query: chance of surviving severe head injury

Query: chance of having white christmas ontario

Query: chance of rain in september dallas texas

Query: what are the chance of becoming a golf pro

Query: chance of closing airports in mex because of swine flu

Query: chance of getting a short sale

Query: probability of winning a traffic ticket court case

Query: chance of food spoiling if left out over night

Query: probability of life and evolution

Query: wich technology has the least probability of a collision

Discussion. The best descriptive phrase I can devise for these examples of
queries is that they are personal and concrete: they typically concern near-
future events with substantial significance to the person involved. The ex-
amples from blogs are loosely similar, though (as “obvious” from the nature
of blogs) people also write about past personal events and general thoughts.
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It is striking that around half the queries concern medical matters, and
more than half of those concern pregnancy and birth control. Of course this
data derived from search queries is several steps removed from the conceptual
question “how do people think about chance in everyday life”. For instance
people may often be interested in the chance of rain tomorrow, but few of
them will type into a search box “what is the chance of rain . . . . . . ”. So
we certainly do not suggest a quantitative correspondence like “half of our
everyday perception of chance involves medical matters”. Indeed a further
data-set of examples from Twitter reveal a substantially different range of
topics of interest, with (for instance) only 3% concerning medical matters.
In retrospect such differences are to be expected, in that Twitter supports
casual comments on momentary concerns.

I used the three sources of “real data” above in compiling the “every-
day life” section (around contexts 10 - 20) of the list of contexts where we
perceive chance. Of course it would be good to find many more sets of data
with different origins; so please send me suggestions or do the data collection
yourself!

1.3 Comparison with imaginary data

I am confident it is easy to distinguish between real and imaginary examples.
Here is a small project. Find two friends who have not seen this material.
Ask one to imagine and write down ten instances of how one might use the
phrase “one in a million chance” in a blog, or ten instances of “chance of”
queries one might type into a search engine. Give this list, and a sample of
10 examples from our earlier lists, to the other friend. I bet the other friend
will unhesitantly identify the real list..

An intriguing source of imaginary examples is the book Luck: The Bril-
liant Randomness Of Everyday Life by Nicholas Rescher, a former President
of the American Philosophical Association. This short book could be viewed
as an unusually erudite blog, or as an unusually reader-friendly monograph.
And the content of his musings about Luck is perfectly reasonable. But
what interests me here is the examples he cites. Here is my list of all the
examples from the parts (Introduction; Chapters 1 and 3) closest to our
“everyday life” theme. I categorize them as

Specific historical events (11)

Iconic headlines (4)

Conventional examples of luck (20)

Notes for a historical novel? (23)

http://www.stat.berkeley.edu/~aldous/Real-World/twitter2.html
http://www.stat.berkeley.edu/~aldous/Real-World/100.html
http://www.stat.berkeley.edu/~aldous/Real-World/100.html
http://www.stat.berkeley.edu/~aldous/Real-World/rescher.html
http://www.stat.berkeley.edu/~aldous/Real-World/rescher.html
http://www.stat.berkeley.edu/~aldous/Real-World/rescher.html
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All except the first category consist of invented examples. Here are the
last 12 examples from the fourth category. Italics are exact quotes, others
are paraphrases.

potential victim saved because a would-be assassin missed the bus

being wounded by an assassin who mistakes one for someone else

injured as bystander in political demonstration

you were inadvertently delayed and just missed crossing on the Hinden-
berg

hit by falling icicle

fighter pilot hits ejector button instead of defroster

burglar who breaks into a house just before its owner returns well-armed
from a bear hunt

the painter who produces a [long-sought] effect . . . by throwing his brush
at the picture in a fit of rage . . .

coming down with a disease for which a cure has just been discovered

author whose biography of a celebrity hits the bookshops just as its pro-
tagonist is enmeshed in a highly publicized scandal ...

scam victim accidently profiting

the winner of a lottery who decides to build a dream cottage on Krakatoa

In class, I cannot resist saying “Wow, Everyday Life in a Philosophy
department sure seems more exciting than in a Statistics department” and
then comparing to the real “everyday life” revealed by the type of data in
the previous sections.

Now in one sense I am merely being humorous. You and I both know the
author did not intend his examples to be literally ”everyday life”; instead,
he was interested in the abstract ideas surrounding luck and just made up
illustrative hypothetical examples as he wrote.

But in another sense I am perfectly serious. The author is adopting a
style of intellectual enquiry where he starts with abstract ideas and then
invents hypothetical examples to justify the ideas. To what extent is this a
useful style of intellectual enquiry?

1.4 Mathematical probability textbook examples

Note: This section is here for the “popular science” reader, since it’s hardly news

to my students.

What is the picture of chance – that is, of the contexts where chance
arises – that one obtains from the examples and exercises in an undergrad-
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uate mathematical probability textbook? I would put them into 4 style
categories, below. Illustrative exercises are taken from Grinsted-Snell Intro-
duction to Probability, which I regard as one of the best textbooks.

1. Purely mathematical.

Let X1, X2, . . . , Xn be n mutually independent random vari-
ables, each of which is uniformly distributed on the integers from
1 to k. Let Y denote the minimum of the Xi’s. Find the distri-
bution of Y .

2. An (at least somewhat) interesting real-world question and an
(at least somewhat) realistic model.

A large number, N , of people are subjected to a blood test. This
can be administered in two ways: (1) Each person can be tested
separately, in this case N test are required, (2) the blood samples
of k persons can be pooled and analyzed together. If this test
is negative, this one test suffices for the k people. If the test is
positive, each of the k persons must be tested separately, and in
all, k + 1 tests are required for the k people. Assume that the
probability p that a test is positive is the same for all people and
that these events are independent.

For small p, show that the value of k which will minimize the
expected number of tests under the second plan is approximately
1/
√
p.

3. Actions one could do, but with no evident purpose.

A die is rolled 30 times. What is the probability that a 6 turns
up exactly 5 times?

4. A real-world story with invented data and/or a very unrealistic
model. This is my main concern, so let me give several examples.

a. A student must choose exactly two out of three electives: art, French,
and mathematics. He chooses art with probability 5/8, French with proba-
bility 5/8, and art and French together with probability 1/4. What is the
probability that he chooses mathematics? What is the probability that he
chooses either art or French?

b. A restaurant offers apple and blueberry pies and stocks an equal
number of each kind of pie. Each day ten customers request pie. They

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
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choose, with equal probabilities, one of the two kinds of pie. How many
pieces of each kind of pie should the owner provide so that the probability
is about .95 that each customer gets the pie of his or her own choice?

c. Take a stick of unit length and break it into two pieces, choosing the
break point at random. Now break the longer of the two pieces at a random
point. What is the probability that the three pieces can be used to form a
triangle?

d. Suppose you toss a dart at a circular target of radius 10 inches. Given
that the dart lands in the upper half of the target, find the probability that

1. it lands in the right half of the target.

2. its distance from the center is less than 5 inches.

3. its distance from the center is greater than 5 inches.

4. it lands within 5 inches of the point (0, 5).

e. You are in a casino and confronted by two slot machines. Each
machine pays off either 1 dollar or nothing. The probability that the first
machine pays off a dollar is x and that the second machine pays off a dollar
is y. We assume that x and y are random numbers chosen independently
from the interval [0, 1] and unknown to you. You are permitted to make
a series of ten plays, each time choosing one machine or the other. How
should you choose to maximize the number of times that you win?

f. A small boy is lost coming down Mount Washington. The leader of
the search team estimates that there is a probability p that he came down
on the east side and a probability 1−p that he came down on the west side.
He has n people in his search team who will search independently and, if
the boy is on the side being searched, each member will find the boy with
probability u. Determine how he should divide the n people into two groups
to search the two sides of the mountain so that he will have the highest
probability of finding the boy. How does this depend on u?

Discussion. My 4 categories are rather fuzzy – do “drawing balls from
urns” problems fit category 1 or 3? So I haven’t tried to examine textbooks
to find the percentages in each category. But I suspect every introductory
probability textbook has an extremely low percentage in category 2. Good
textbooks on statistics do rather better. For instance Freedman - Pisani -
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Purves - Adhikari Statistics has about 260 examples with cited sources and
another 100 for which one could easily find data of the given type1.

What’s unrealistic about the examples in category 4 is (I hope) clear
to the reader. In (a) people don’t choose at random, and (b) breaks the
commandment that should be given in a first class on probability: thou
shalt not assume different possibilities are equally likely, without some darn
good reason. In (c) I suspect it’s physically impossible to break at a uniform
random point, and in (d) the implied uniform distribution only applies if
you are very bad at throwing a dart. The casino in (e) would rapidly go
bankrupt, and in (f) it’s hard to justify independence.

And of course the authors know these exercises are unrealistic, just as
the philosopher author knew his examples weren’t really “everyday life”.

Now I must admit that in teaching such courses, I use the same style of
examples as do the textbooks. Indeed, part of the reason for teaching this
completely separate course is that it’s too hard to put realistic material into a
conventional mathematics-focused course. But what should one do in a first
course, ideally? Certainly one needs some purely mathematical examples
to illustrate math techniques, and the justification for phrasing examples in
terms of dice and urn is to provide a more concrete visualization than would
a purely mathematical formulation.

On the other hand, if you look at a textbook for a course being taught on
(say) history or biology, you will see page after page of declarative sentences,
and – amazingly enough – there is nothing that the author has “just made
up” in the style of our textbook examples.

Returning to our list of 100 contexts, in a typical probability textbook
you will find extensive occurrence of the context “explicit games of chance
based on artifacts with physical symmetry” and briefer occurrences of “ran-
dom sampling for representativeness” and a few others. This – in my opinion
– indicate the huge disconnect between introductory textbooks on probabil-
ity and the big picture of the role of chance.

On a positive note, the best instance I know of academics engaging broad
topics of popular interest is the web site Understanding Uncertainty from
Cambridge U.K. The site is centered around issues of health (recall our Bing
data showed that about half the searches were related to health) but covers
other popular angles (coincidences, lotteries etc) and gives commentaries
on risk and statistics items in the news. The latter is the focus of another
valuable site, Chance News.

1Though I am amazed how many introductory statistics texts have minimal and stereo-
typed real data.

http://www.stat.berkeley.edu/~aldous/Real-World/100.html
http://understandinguncertainty.org/
http://test.causeweb.org/wiki/chance/index.php/Main_Page
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1.5 Wrap-up: which side of the Looking-Glass is
the fantasy?

A common view amongst academics involved with probability is that ordi-
nary people are pretty dopey when it comes to understandng randomness.
They are superstitious about luck or coincidences. Under irresponsible me-
dia influence they have a completely distorted notion of which risks in ev-
eryday life are substantial and which are negligible. They gamble when the
odds are against them (horses, lotteries, casinos) but not when the odds are
in their favor (increase your insurance deductible). They waste billions on
useless stock market advice or managed mutual fund fees. They misconstrue
positive medical diagnostic test results for rare diseases. And so on.

Now all this is true. But it’s one side of a picture. What about the
academic side? I should clarify that I am discussing the impression given by
textbooks and papers written by academics, not what individual academics
think. The elements of fiction we have seen in the textbook math exercises
and in the examples of luck are mostly harmless in themselves, but set a
tone that invites one to approach the world with a suppose:

suppose these events are independent . . . .

This starts down a slippery slope, liable to end with the implicit belief one
can learn something about the real world primarily from setting up and
studying models, rather than primarily from data and experiment. We will
return to this theme several times during these lectures.
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Chapter 2

The Kelly criterion for
favorable games: stock
market investing for
individuals

Finance provides inexhaustible data and is a popular topic for student projects.
This lecture focusses on the Kelly criterion, a topic both intellectually in-
teresting and useful to you as a real-life amateur investor, but curiously
neglected in textbooks. In class I jump quickly to section 2.4; the previous
material is intended for the general reader.

2.1 Some semi-historical data

There are many web sites that provide combinations of historical data, hy-
pothetical data and (not so mathematical) theory relevant to this topic.
Figure 2.1, from the website of IFA (Index Funds Advisors) at which you
can find a current version1 and much more graphical data. IFA and similar
sites start out by trying to assess the individual’s subjective risk tolerance
using a questionnaire. The site then suggests one of a range of 21 portfolios,
represented on the slightly curved line in the figure. The horizontal axis
shows standard deviation of annual return, (3% to 16%), and the vertical
axis shows mean annual return (6% to 13%). Of course this must be histor-
ical data, in this case over the last 50 years. Notwithstanding the standard

1Of course I am not endorsing this outfit in particular; I just like their graphics.

13

http://www.ifa.com
https://www.ifa.com/portfolios/50#5
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Figure 2.1: Historical return vs volatility

“past performance does not guarantee future results” legal disclaimer, the
intended implication is that it is reasonable to expect similar performance
in future.

So how does this relate to any theory? Should you believe this implica-
tion if you invest your own money?

2.2 Some conceptual background

Games vs models. One of my 100 contexts where we perceive chance in
the real world is rather fussily called “explicit games of chance based on arti-
facts with physical symmetry” exemplified by dice, roulette, lotteries, play-
ing cards, etc. Textbooks for a first course in mathematical probability lean
heavily on such artifacts for examples. Amongst the vast literature, both el-
ementary and detailed game-specific, regarding probabilities in such games,
let me mention only Ethier’s 2010 monograph The Doctrine of Chances,
which gives an encyclopedic cross-section of less-elementary mathematics
for games of chance. Of course the mathematical attraction of these exam-

http://www.stat.berkeley.edu/~aldous/Real-World/100.html
http://www.stat.berkeley.edu/~aldous/Real-World/100.html
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ples is that we know underlying probabilities, and so for sufficiently simple
games with these devices (craps or roulette or lotteries, but not games like
poker involving complex strategy) we can calculate probabilities of winning
purely mathematically without any input from empirical data. Our “list of
contexts” spotlights how uncommon this is; I only know one other interest-
ing case where such calculations are possible (see Lecture 4).

As much as possible I avoid repeating such standard “games of chance”
material in these lectures. My point is that outside such settings, proba-
bility calculations depend on models. As Taleb wrote in The Black
Swan:

the sterilized randomness of games does not resemble random-
ness in real life;

another viewpoint is that

setting up a model presupposes you know the rules, but Life
(unlike games) does not come with a rule book.

Professional statisticians like to quote Box’s dictum

all models are wrong, but some are useful.

Let us recall here, as the most familiar general-purpose model we see in in-
troductory mathematical statistics, the IID model 2, in which observed past
data, or unobserved future variables, are modeled as independent realiza-
tions from the same chance process, analogous to throws of a die. In certain
textbook contexts (random sampling, randomized controlled trials) this is
true by fiat: the statistician supplied the randomness. But a generation or
two of 20th century statistics textbooks have left the impression (without
explicitly saying so) that any set of data can be modeled as IID. So many
people, faced with quantitative data, proceed to doing procedures (tests of
significance, confidence intervals etc) which only make sense under the IID
model (or some more complex explicit model) without ever asking whether
the IID assumption is conceptually reasonable or supported by the data. In
these lectures I try to be more careful.

Expectation and gambling. Recalling some basic mathematical setup,
write P(·) for probability and E[·] for expectation. Regarding gambling, any
bet has (to the gambler) some random profit X (a loss being a negative
profit), and we say that an available bet is (to the gambler)

2Independent and identically distributed.

http://en.wikipedia.org/wiki/The_Black_Swan_%282007_book%29
http://en.wikipedia.org/wiki/The_Black_Swan_%282007_book%29
http://en.wikiquote.org/wiki/George_E._P._Box
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favorable if E[X] > 0
unfavorable if E[X] < 0
and fair if E[X] = 0.

Note the word fair here has a specific meaning. In everyday language, the
rules of team sports are fair in the sense of being the same for both teams,
so the better team is more likely to win. For 1 unit bet on team B, that is
a bet where you gain some amount b units if B wins but lose the 1 unit if B
loses,

E[profit] = bp− (1− p); p = P(B wins)

and so to make the bet is fair we must have b = (1 − p)/p. (Confusingly,
mathematicians sometimes say “fair game” to mean each player has chance
1/2 to win, but this is sloppy language).

Several issues hidden beneath this terminology should be noted. Outside
of games we usually don’t know probabilities, so we may not know whether a
bet is favorable, aside from the common sense Sky Masterson principle that
most bets offered to us will be unfavorable to us. The terminology comes
from the law of large numbers fact that if one could repeat the same bet
with the same stake independently, then in the long run one would make
money on a favorable bet but lose money on an unfavorable bet. Such “long
run” arguments ignore the issues of (rational or irrational) risk aversion and
utility theory, a topic in Lecture 10.1 recalled briefly later in this lecture,
section 2.8. In essence, we are imagining settings where your possible gains
or losses are small, in your own perception.

Unfavorable bets. Roughly speaking, there are two contexts in which
we often encounter unfavorable bets. One concerns most activities we call
gambling, e.g. at a casino, and the other concerns insurance. Regarding the
former, mathematicians often say ridiculous things such as

Gambling against the house at a casino is foolish, because the
odds are against you and in the long run you will lose money.

What’s wrong is the because. Saying

Spending a day at Disneyland is foolish, because you will leave
with less money than you started with

is ridiculous, because people go to Disneyland for entertainment, and know
they have to pay for entertainment. And the first quote is equally ridiculous.
Casino gamblers may have irrational ideas about chance and luck, but in
the U.S. they typically regard it as entertainment with a chance of winning,
not as a plan to make money. So it’s worth being more careful and saying

http://akas.imdb.com/character/ch0024558/quotes
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Gambling against the house at a casino and expecting to make
money is foolish, because the odds are against you and in the
long run you will lose money.

The second context is that buying insurance is mathematically similar to
placing an unfavorable bet – your expected gain in negative, because the
insurance company wants to cover its costs and make a profit. But the
whole point of buying insurance is risk aversion, so this needs to be treated
in the setting of utility theory and psychology of probability (Lecture 10.1).

So where can I find a favorable bet? The wiseacre answer “start your
own casino or insurance company” is not so practical, but a variant of the
latter is. For those who can, following the advice

increase your insurance deductibles to the maximum you can
comfortably afford to lose

is a favorable bet, likely to save you money over a lifetime. In this lecture
we consider investing in the stock market as mathematically similar to mak-
ing a sequence of favorable bets (and letting your winnings ride). Exactly
why one could consider this a favorable bet could be debated endlessly –
standard economic theory asserts that investors need to be rewarded for
taking risk rather than using alternative risk-free investments, while em-
piricists observe that, in countries without anti-capitalist revolutions, the
historical performance of stock markets actually has been better than those
alternatives.

2.3 Probability and financial investment

As the reader surely knows, the huge growth of financial markets since the
1970s has been driven in part by a huge increase in the use of sophisticated
quantitative strategies for trading. There has been a parallel growth of the
associated academic field of mathematical finance, much of which involves
probability models. The most famous result in this field is the Black-Scholes
formula for option pricing, which we mention later (section 2.9). But this
result, and almost all of textbook mathematical finance, is simply irrelevant
to the typical individual investor, more specifically to my students who are
not considering a career in finance.

So what should such students know about financial investment? There
is a simple first answer: they should read Malkiel’s classic book A Random

http://en.wikipedia.org/wiki/Mathematical_finance
http://en.wikipedia.org/wiki/Black-Scholes#Black-Scholes_formula
http://en.wikipedia.org/wiki/Black-Scholes#Black-Scholes_formula
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Walk Down Wall Street. But rather than paraphrase all the useful advice
therein, this lecture will focus (after some more preliminaries) on a topic that
I find both mathematically interesting and actually useful to know, the Kelly
criterion for betting on a favorable game, as applied to financial investment.
Between short-term speculation (at the modern extreme, high-frequency
trading) and long-term investment lies a spectrum of intermediate activities
with no clear dividing line, but the ends of the spectrum are very different.
Novice investors are told to view the stock market as a place for long-term
investment. This excellent advice is unfortunately rather neglected in most
mathematically oriented discussions, but a great virtue of the Kelly approach
is that it both emphasizes the long term while saying something explicit
about the short term (section 2.7).

What is the long term? Because notions of long term versus short term
play an important role in investment, let’s start with a brief discussion. In
everyday language, a job which will only last six months is a short term
job; someone who has worked for a company for fifteen years is a long term
employee. Joining a softball team for a summer is a short term commitment;
raising children is a long term commitment. We judge these matters relative
to human lifetime; long term means some noticeable fraction of a lifetime.

Table 2.1: Effect of 7% interest, compounded annually.
year 0 4 8 12 16 20
simple interest 1000 1,280 1,560 1,840 2,120 2,400
compound interest 1000 1,311 1,718 2,252 2,952 3,870

Turning to money matters, consider the difference between simple inter-
est and compound interest. Table 2.1 compares the value, after increasing
numbers of years, of an initial $1,000 earning 7% interest. One of several
possible notions of long term in financial matters is “the time span over
which compounding has a noticeable effect”. Rather arbitrarily interpret-
ing “noticeable effect” as “10% more” and taking the 7% interest rate, this
suggests taking 8 years as the cut-off for long term. Being about 10% of
a human lifetime, this fortuitously matches reasonably well the “noticeable
fraction of a lifetime” criterion above. And indeed in matters pertaining to
individuals, financial or otherwise, most writers use a cut-off between 5 and
10 years for “long term”.

Aside: the one fact from freshman calculus of most substantial relevance to

http://en.wikipedia.org/wiki/High-frequency_trading
http://en.wikipedia.org/wiki/High-frequency_trading
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your personal life is the inequality

1 + ρ(ert − 1) > eρrt.

This shows the value of unit investment, with interest rate r and tax rate 1− ρ, is

greater when tax is deferred until the sale time t than if tax is paid as the interest

is earned.

2.4 A simulation demo

The stock market is really “a market of stocks”, but for most of this lecture I
use a conventional shorthand of representing the U.S. market by the S&P500
index (essentially an actual investment possibility, via a low-expense index
fund).

In class I ask students

Suppose you invest $1,000 today in the stock market, more pre-
cisely in an S&P500 index fund. What do you guess the invest-
ment will be worth in 10 years?

Converting their answers to annual percentage growth, the spread of their
guesses is indicated in Table 2.2.

Table 2.2: Student guesses annual S&P500 growth next 10 years

date 25th percentile median 75th percentile
9/17/2008 -0.5% 5.4% 8.4%
9/6/2011 -3.5% 4.1% 6.1%
9/3/2014 4.2% 7.8% 11.2%

This is consistent with the often-remarked observation that amateur in-
vestors tend to base their expectations on the pervious several years perfor-
mance.

I remind them that, on being asked what the stock market will do, J. P.
Morgan famously said

It will fluctuate.

I emphasize this point in class as follows. I have a deck of cards on which
are pasted the annual total returns of the S&P500 index over each of the
52 years 1956 through 2007. I say “let’s suppose the annual returns over

http://en.wikiquote.org/wiki/J._P._Morgan
http://en.wikiquote.org/wiki/J._P._Morgan
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the next ten years are statistically like random years from the past; we can
track our hypothetical investment value over the next ten years by shuffling
and dealing ten cards”. Doing this once in the 2008 class, the hypothetical
investment grew from $1,000 to $1,839, while fluctuating noticeably from
year to year. I then say “guess what will happen if I repeat this simulation”
and most guesses are within 20% of the first outcome. In fact different
realizations vary much more widely than students guess, so (at some risk to
the credibility of theory!) I do repeat, hoping that in fact the outcome is
indeed substantially different, as it likely will be.

We now start the mathematics, but let me summarize with some bullet
points.

• The theme of this lecture is the nature of compounding when gains
and losses are unpredictable.

• The relevant arithmetic is multiplication not addition: a 20% gain
followed by a 20% loss combine to a 4% loss, because 1.2× 0.8 = 0.96.

• Models assume the future will be statistically similar to the past.

2.5 The IID model and the Kelly criterion

Turning to mathematics, let us make explicit the type of model used implic-
itly above. A “return” x = 0.2 or x = −0.2 in a year means a 20% gain or
a 20% loss.

The IID model. Write Xi for the return in year i. Suppose the (Xi) are
IID random variables. Then the value Yn of your investment at the end of
year n is

Yn = Y0

n∏
i=1

(1 +Xi) (2.1)

where Y0 is your initial investment.
To analyze this model we take logs and divide by n:

n−1 log Yn = n−1 log Y0 + n−1
n∑
i=1

log(1 +Xi)

and the law of large numbers says that as n→∞ the right side converges to
E[log(1+X)]. We want to compare this to an investment with a non-random
return of r. For such an investment (interest rate r, compounded annually)
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we would have Yn = Y0(1 + r)n and therefore n−1 log Yn → log(1 + r).
Matching the two cases gives the conclusion

In the IID model, the long term growth rate is

exp(E[log(1 +X)]) − 1. (2.2)

The formula looks strange, because to compare with the IID annual model
we are working with the equivalent “compounded annually” interest rate. It
is mathematically nicer to use instead the “compounded instantaneously”
interest rate, which becomes just E[log(1 +X)].

The main impact of this result is that what matters about the random
return X is not precisely the mean E[X], but rather its “multiplicative”
analog E[log(1 +X)]. Let us note, but set aside for a while, the points

• Is the model realistic for stock market investing?

• The phrase long term here refers to the applicability of the law of
averages as an approximation to finite time behavior – this is a third
meaning of the phrase, logically quite distinct from the two previous
meanings in section 2.3.

We can jump to the main mathematical point

The Kelly Criterion. Given a range of possible investment
portfolios, that is a range of ways to allocate money to different
risky or safe assets, where way α will produce return Xα, choose
the way α that maximizes the long term growth rate (2.2), that
is the way that maximizes E[log(1 +Xα]).

Let us show some of the mathematics that can be done using the criterion.

2.6 Mathematics of the Kelly criterion: one risky
and one safe asset

Formula (2.2) applies if we invest all our money in “a stock” (meaning an
index fund, and assuming the multiplicative model for stock market returns).
But suppose there’s a risk-free alternative investment (a “bond”, in the usual
terminology) that pays a fixed interest rate r. Suppose we choose some
number 0 ≤ p ≤ 1 and at the start of each year we invest a proportion p
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Figure 2.2: Schematic for the growth rate G(p) at (2.4).

2δ 4δ

2δ2

growth rate

p

of our total “investment portfolio” in the stock market, and the remaining
proportion 1− p in the bond. In this case formula (2.1) becomes

Yn = Y0

n∏
i=1

(1 +X∗i )

where X∗i = pXi + (1− p)r. The long term growth rate is now a function of
p:

growth(p) = exp(E[log(1 + pX + (1− p)r)]) − 1. (2.3)

The Kelly criterion says: choose p to maximize growth(p). Let’s see two
examples. In the first X is large, and we end up with p small; in the second
X will be small, and we end up with large p. In these two examples we
take the time unit to be 1 day instead of 1 year (which doesn’t affect math
formulas).

Example: pure gambling. Imagine a hypothetical bet which is slightly
favorable. Suppose each day we can place a bet of any size s; we will
either gain s (with probability 0.5 + δ) or lose s (with probability 0.5− δ),
independently for different days (here δ is assumed small). Take r = 0 for
the moment. What proportion p of our portfolio do we want to bet each
day?

Here, for small δ,

E[log(1 + pX)] = (12 + δ) log(1 + p) + (12 − δ) log(1− p)
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≈ (12 + δ)(p− p2/2) + (12 − δ)(−p− p
2/2)

= 2δp− p2/2.

Thus the asymptotic growth rate is approximately the quadratic function of
p

G(p) = 2δp− p2/2 (2.4)

shown in Figure 2.2. The Kelly criterion says to choose p ≈ 2δ and then
your long term growth rate will be ≈ 2δ2.

Now recall that we simplified by taking r = 0; when r > 0, the fact that
a proportion 1 − p ≈ 1 of the portfolio not put at risk each day can earn
interest, brings up the optimal growth rate to r + 2δ2; the quantity 2δ2

represents the extra growth one can get by exploiting the favorable gambling
opportunity.

To give a more concrete mental picture, suppose δ = 1%. The model
matches either of the two following hypothetical scenarios.

(a) To attract customers, a casino offers (once a day) an opportunity to
make a roulette-type bet with a 51% chance of winning.

(b) You have done a statistical analysis of day-to-day correlations in
some corner of the stock market and have convinced yourself that a certain
strategy (buying a portfolio at the start of a day, and selling it at the end)
replicates the kind of favorable bet in (a).

In either scenario, the quantity 2δ2 = 2/10, 000 is the “extra” long term
growth rate available by taking advantage of the risky opportunity. Note
this growth rate is much smaller than 2% “expected gain” on one bet. On
the other hand we are working “per day”, and in the stock market case there
are about 250 days in a year, so the growth rate becomes about 5% per year;
recalling this is “5% above the risk-free interest rate”, it seems a rewarding
outcome. But if δ were instead 0.5% then the extra growth rate becomes
11
4%, and (taking into account transaction costs and our work) the strategy

hardly seems worth the effort.

Implicit in Figure 2.2 is a fact that at first strikes everyone as counter-
intuitive. The curve goes negative when p increases above approximately
4δ. So even though it is a favorable game, if you are too greedy then you
will lose in the long run!

Example: small X I first give a nicer algebraic way of dealing with the
interest rate r. Set

X = r + (1 + r)X∗
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and interpret X∗ = (X − r)/(1 + r) as “return relative to interest rate”.
Then a couple of lines of algebra let us rewrite (2.3) as

growth(p) = (1 + r) exp(E[log(1 + pX∗)]) − 1 (2.5)

and the optimization problem now doesn’t involve any r. If we imagine the
stock market on a daily time-scale and suppose changes X∗ are small, with
mean µ and variance σ2, then we can use the series approximation

log(1 + pX∗) ≈ pX∗ − 1
2(pX∗)2

to calculate

E[log(1 + pX∗)] ≈ pµ− 1
2p

2(µ2 + σ2) ≈ pµ− 1
2p

2σ2

(the latter because µ and σ2 are in practice of the same order, so µ2 is of
smaller order than σ2). So the Kelly criterion says: choose p to maximize
pµ− 1

2p
2σ2, that is choose

p = µ/σ2. (2.6)

This is another remarkable formula, and let us discuss some of its mathe-
matical implications.

1. The formula is (as it should be) time-scale free. That is, writing
µday, µyear, σ

2
day, σ

2
year for the means and variances over a day and a N -day

year, then (because compounding has negligible effect over a year) µyear ≈
Nµday and σ2year ≈ Nσ2day, so we get the same value for µ/σ2 whether we
work in days or years.

2. Even though we introduced the setup by stating that 0 ≤ p ≤ 1,
the model and its analysis make sense outside that range. Economic theory
and experience both say that the case µ < 0 doesn’t happen (investors are
risk averse and so would buy no stock; this would cause the current price of
stock to drop), but if it did then the formula p = µ/σ2 < 0 says that not
only should be invest 100% of our wealth in the bond, but also we should
“sell short” (i.e. borrow) stock and invest the proceeds in the bond.

3. More interesting is the case p > 1. Typical values given for the
S&P500 index (as noted later, stating meaningful historical values is much
harder than one might think) are µ = 5.6% and σ = 20%, in which case the
Kelly criterion says to invest a proportion p = 140% of your wealth in the
stock market, i.e. to borrow money (at fixed interest rate r) and invest your
own and the borrowed money in the stock market.
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2.7 What about the not-so-long term?

We started with the multiplicative model, which assumes that returns in
different time periods are IID. This is not too realistic, but the general idea
behind the Kelly criterion works without any such assumption, as we now
explain.

Going back to basics, the idea

to invest successfully in the stock market, you need to know
whether the market is going to go up or go down

is just wrong. Theory says you just need to know the probability distribution
of a future return. So suppose (a very big SUPPOSE, in practice!) at the
beginning of each year you could correctly assess the probability distribution
of the stock return over the coming year, then you can use the Kelly criterion
(2.3) to make your asset allocation. The fact that the distribution, and hence
your asset allocation, would be different in different years doesn’t make any
difference – this strategy is still optimal for long-term growth.

The numbers for growth rates that come out of the formula of course
depend on the distributions of each next year’s returns, but there’s one
aspect which is “universal”. In any situation where there are sensible risky
investments, following the Kelly strategy means that you accept a short-term
risk which is always of the same format:

40% chance that at some time your wealth will drop to only 40%
of what it you started with.

The magical feature of this formula is that the percents always match: so
there is a 10% chance that at some time your wealth will drop to only 10%
of what you started with.

For an individual investor, it is perfectly OK to be uncomfortable with
this level of medium-term risk and to be be less aggressive (in investment
jargon) by using a partial Kelly strategy, that is using some smaller value of

p = proportion of your assets invested in stocks

than given by the Kelly criterion. Theory predicts you will thereby get
slower long-term growth but with less short-term volatility.

How one might expect this theory (based on assuming known true prob-
ability distributions for the future, and on seeking to optimize long-term
growth rate) to relate to the actual stock market is not obvious, but one can
certainly look at what the actual percentages have been – Figure 2.3.
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Figure 2.3: Historical distribution (based on hypothetical purchase of
S&P500 index on first day of each year 1950-2009 and on subsequent monthly
closing data) of the minimum future value of a 100 investment.

0 50 60 70 80 90 100

This is obviously very different from the “Kelly” prediction of a flat his-
togram over [0, 100]. This data is not adjusted for inflation or for comparison
with a risk-free investment, and such adjustments (a possible small project)
would make the histogram flatter, but still not close to the Kelly prediction.
We mentioned before that over the historical long term it has been more
profitable to borrow to invest more than 100% of your assets in the market.
Both observations reflect the fact that the stock market fluctuates less than
would the fortune of a Kelly-optimizing speculator.

2.8 Can one execute this theory?

Relating the mathematical theory to actual stock market investing raises
many issues.

Understanding the past. The first is an issue you might not have ex-
pected:

it is very hard to pin down a credible and useful number for the
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historical long-term average growth rate of stock market invest-
ments.

Over the 60 years 1950-2009 the S&P500 index rose at (geometric) av-
erage rate3 7.2%. Aside from the (rather minor) point that we are using a
particular index to represent the market what could possibly be wrong with
using this figure? Well,

• it ignores dividends

• it ignores expenses

• it is sensitive to choice of start and end dates; starting in 1960 would
make the figure noticably lower, whereas ending in 1999 would make
it noticably higher.

• to interpret the figure we need to compare it to some alternative in-
vestment, by convention some “risk-free” investment.

• it ignores inflation

• it ignores taxes.

So one can get very different numbers, depending on which of these factors
is taken into account. For instance, taking two of these factors into account,
the same site gives, for the same period 1950-2009, annual averages

inflation-adjusted total return
= price change (7.2%) + dividends (3.6%) - inflation (3.8%)
= 7.0% .

The past as a guide to the future. Forests have been felled for paper
for philosophers to discuss the problem of induction. In the context of
investment, my take is

As a default, assume the future will be statistically similar to the
past. Not because this is true in any Platonic sense, but because
anyone who says different is trying to sell you something.

As often remarked, the four most dangerous words in finance are this time
it’s different.

Asking how long of a past time period to use for statistical purposes as a
guide for the future is a question with no right answer. Asking how far into
the future one should care about does have an answer – until you’re age 80
or so (that is, 60 years ahead for my students).

3Data here and below from this site

http://en.wikipedia.org/wiki/Problem_of_induction
http://www.simplestockinvesting.com/SP500-historical-real-total-returns.htm
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Psychology in executing Kelly. So if you do set up a historically-based
model for the stock market (and at least one alternative investment) and
assume the future will be statistically similar to the past, then the Kelly
criterion tells you how to divide your money between these investments
for maximum long term growth, assuming the model were correct. But
some practical issues still remain. What is your personal trade-off between
long term reward and short-term risk? How should this change with age –
typically one is advised to become more risk-averse as one ages. (In principle
one could introspect your utility function and then calculate your optimal
trade-off, but I suspect few people have ever done so.) In a different vein,
long term strategies can only work if you avoid changing your mind partway
through, so how does one plan to avoid changing one’s mind later?

Bottom line. Going through the procedures above by oneself will have
little appeal to a typical individual, so what is the closest practical option?
There are many internet sites that provide combinations of historical data,
hypothetical data and (not so mathematical) theory relevant to this topic,
though usually presented in the more conventional mean-variance format
of section 2.10. As mentioned in the opening section. IFA and other sites
start out by trying to assess the individual’s subjective risk tolerance using a
questionnaire. The site then suggests one of a range of 21 portfolios, roughly
0% to 100% Kelly in 5% increments, based on historic data.

2.9 Geometric Brownian motion and the Black-
Scholes formula

Most introductory accounts of mathematics related to the stock market do
not focus on the Kelly criterion, but instead on the (related) topics of this
and the next section. The IID model involved choosing a time unit – we chose
one year – and the resulting strategy involves rebalancing your portfolio at
the end of each year but not more frequently. But the choice of one year is
arbitrary – why not a month or a week or a day or an hour? It is perhaps
more natural to seek to model as a random process what you see in a stock
chart, the fluctuation of prices with time, regarding time as a continuous
variable. It turns out, as a remarkable mathematical fact, that the only
possible model one can use as the continuous analog of the IID model (and
have prices move continuously, without substantial instantaneous jumps) is
geometric Brownian motion. Instead of using data from the past directly
(as in my “deck of cards” class demonstration) this theoretical setup allows

http://en.wikipedia.org/wiki/Geometric_Brownian_motion
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and encourages you to assume that the probability distribution of a 1-year
return has the log-Normal distribution, then to estimate the two parameters
of that distribution, and then to use the associated geometric Brownian
motion model for making predictions about the future.

This geometric Brownian motion model captured the attention of math-
ematically inclined researchers in the early 1970s as a setting where it is
possible to write down formulas for aspects of the future price fluctuations
(assuming the model is correct). The prototype is the following Black-
Scholes formula. If a stock price is currently S0 and its future prices St are
assumed to follow geometric Brownian motion

dSt = µStdt+ σStdWt (2.7)

then the fair price of an option to buy at time t in the future at price K is

S0Φ(d1)−Ke−rtΦ(d2) (2.8)

where r is the risk-free interest rate, Φ(·) is the standard Normal distribution
function,

d1 =
log(S0/K) + (r + σ2/2)t

σ
√
t

, d2 =
log(S0/K) + (r − σ2/2)t

σ
√
t

.

This certainly belongs on our list of the top ten formulas in applied proba-
bility, but its interpretation is more subtle than the others. The fair price
in question is by definition

e−rtEmax(St −K, 0).

The formula for this quantity, applied to geometric Brownian motion (2.7),
depends on the drift µ, but the Black-Scholes formula (2.8) does not. The
key issue is that an extra “no arbitrage” assumption, loosely analogous to
the “martingale” assumption for prediction market prices in Lecture 4, is
used to establish (2.8), by imagining a portfolio consisting of time-varying
amounts of the stock and the option but with a total value that does not
vary with the fluctuations of the stock price.

2.10 Mean-variance analysis

We earlier discussed diversification in the very simple context of one safe and
one risky asset. The general case of diversifying over many assets is usu-
ally presented as mean-variance analysis, or (more pretentiously) as mod-
ern portfolio theory. This should be viewed as a medium-term theory – it

http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Black-Scholes
http://en.wikipedia.org/wiki/Black-Scholes
http://www.stat.berkeley.edu/~aldous/Real-World/models.html
http://www.stat.berkeley.edu/~aldous/Real-World/models.html
http://en.wikipedia.org/wiki/Modern_portfolio_theory
http://en.wikipedia.org/wiki/Modern_portfolio_theory
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doesn’t explicitly involve compounding – a viewpoint perhaps influenced by
traditional economics focus on medium term issues like the business cycle.

Here’s the conceptual setup. A portfolio has a reward, which is mean
annual return, and a risk, which is the s.d. of annual return. Different
investors have different risk tolerances; the goal of theory is to produce a
spectrum of portfolios which provide maximum reward for each given level
of risk.

The mathematics of mean-variance analysis involves the kind of matrix
algebra that one learns as an undergraduate Statistics or Economics ma-
jor. Rather than give the algebra I will illustrate with simple hypothetical
numbers and then jump to the bottom line.

Suppose there were only two stocks, and historical data for annual re-
turns showed

stock mean s.d.
A 8% 20%
B 8% 20%

One’s first thought is that there’s no difference between investing in A or in
B. But the point is that one can invest 50% of one’s portfolio in each; this
preserves the mean of 8% but reduces the s.d., that is reduces the risk. If
the stock price fluctuations were independent then the s.d. of the portfolio
would be reduced to around 14%, In practice stock returns are typically
positively correlated, so the reduction in s.d. is smaller, but still desirable.

For the next simplest hypothetical example, some the s.d.s are unequal

stock mean s.d.
A 8% 15% = σA
B 8% 20% = σB

Again one might first think that one should invest entirely in A. But a
mixture – proportion p in A and proportion 1 − p in B – has s.d. σ given
(in the independent case) by

σ2 = p2σ2A + (1− p)2σ2B

and this is minimized by taking p = σ2B/(σ
2
A + σ2B). With the numbers

shown, take p = 0.64 to get σ = 12%.
As a third hypothetical example consider

stock mean s.d.
A 8% 15% = σA
B 6% 20% = σB

Here a 50-50 mixture has µ = 7% and σ = 12.5%, and one might prefer that
trade-off to the stock A parameters.
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(In class I continue, discussing the efficient frontier, following Wikipedia’s
Capital asset pricing model).

Analogous to the Kelly criterion one can identify one of these as the
mean-variance optimal portfolio. By typing several stocks, e.g. apple exxon

coca-cola, into WolframAlpha one can see this portfolio on these stocks
plus S&P500, bonds and T-bills. (xxx not working 6/14 - 2/15).

Linking mean-variance analysis and the Kelly criterion Writing X
as before for return in one year, and writing log(1 +X) ≈ X−X2/2 so that
E log(1 +X) ≈ µ− (µ2 + σ2)/2, we see that the Kelly criterion corresponds
(approximately) to choosing, over possible portfolio combinations, the one
whose (µ, σ) value maximizes µ − (µ2 + σ2)/2. The approximation here is
that we are ignoring the possibility of unusually large changes.

2.11 On investment advice

A search on “diet” in amazon.com books produces4 a claim of 63,932 results,
though the listings actually stop at number 1201 (The Raw Secrets: The Raw
Vegan Diet in the Real World by Patenaude). Similarly, a search on “invest-
ment” produces a claim of 78,686 results, while these listings also stop at
number 1201 (evidently an Amazon policy). A naive visiting Martian might
think the former reflected a vast diversity of human dietary requirements
for some genetic, environmental or occupational reasons, and wonder what
analogous factors might require such a wide variety of investment strategies.
The reader, as a skeptical human, may suspect such books exist merely be-
cause enough people are willing to buy them. Here are two of the many
strategies.
Fundamental analysis of an individual stock seeks to assess the “intrin-
sic value” of the business by analyzing its likely future profits, and thereby
find stocks which the current market price overvalues or undervalues.
Market timing seeks to analyze aggregate economic data (business cycle,
inflation, unemployment, corporate profits) as well as sentiment (opinions
about the near future) to decide when to switch between stocks/bonds/cash
or between subsectors of the markets.

Almost all investment passes through some kind of “professional advisor”
(including mutual fund managers, analysts etc). So as a simple matter of
arithmetic, the average return to investors must equal the average return
of the markets, minus expenses and fees paid to the advisors. I shall not

4May 2011

http://en.wikipedia.org/wiki/Capital_asset_pricing_model
http://www.wolframalpha.com/
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go into details about the efficient-market hypothesis (EMH). Treating EMH
as an ideology or a law of physics strikes me as silly, but simply asserting
that it is at least very difficult to consistently beat the market – just as
it is very difficult to be one of the best people in the world at anything
substantial – is much more plausible. Concretely, what the EMH predicts is
that if you take any well-defined strategy that has been used by a group of
advisors, then over the long term, the average return to investors must again
equal the average return of the markets, minus expenses and fees. Numerous
academic studies of this prediction gave been done, and generally confirm
the prediction (reviewing such studies is a natural student project).

Even people who accept the simple logic and experience that most pro-
fessional advisors can’t beat the market are frequently seduced by the notion
that a few can. Here’s my take on this. Suppose someone comes up to me,
takes a coin out of their pocket, says “I’m going to toss the coin 10 times
and make it land heads every time”, and then does so. What’s my reaction?
Well, there are three possibilities. They might just have been very lucky.
They might be cheating (a two-headed coin, or a second concealed coin).
Or they might be exhibiting a rare and difficult skill, the ability to toss
a coin which in fact only rotates a specific few times in the air and lands
predictably. Analogously, if you look at the 5 best-performing advisors over
the last 5 or 10 or 15 years, then they might just have been lucky (some 5
people must be best), they might be exhibiting a rare and difficult skill of
actually being able to consistently beat the market (as does Warren Buffett,
in the opinion of many people) or they might be another Bernie Madoff.
Whether or not a few advisors will in the future be able to consistently beat
the market is an interesting intellectual question but it doesn’t matter to you
– you can’t reliably pick one of these few out of the pack, any better than
you can pick one the few future-best-performing stocks out of the pack.

2.12 Wrap-up

I have only touched upon a corner of a large topic, but within this corner
let me reiterate some key points.

1. Common sense says objects can be stationary or move slowly or
move fast or move very fast, and that there should be no theoretical limit
to speed – but physics says in fact you can’t go faster than the speed of
light. And that’s a very non-obvious fact. Similarly, we know there are
risk-free investments with low return; by taking a little risk (risk here equals
short-term fluctuations) we can get higher long-term reward. Common sense

http://en.wikipedia.org/wiki/Efficient-market_hypothesis
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says this risk-reward trade-off spectrum continues forever. But it doesn’t.
As a math fact, you can’t get a higher long-term growth rate than you get
from the ”100% Kelly strategy”. You’ve free to take more risk if you like
excitement but you don’t benefit from it.

2. Mathematics (section 2.10) not only confirms that diversification is
good but also shows it is even better than you might intuitively expect.

3. Any mathematics one can do, involving the stock market or wider
aspects of finance and risk, either assumes (as we have) that the future
will be statistically like the past, or makes an explicit assumption of some
ways in which it will be different. Now of course the rules of the game do
change with time, but the consensus view of such trends is already reflected
in current prices. To profit one would need to adopt some minority view of
the future, and be correct. Surely the majority of people who try to do so
get it wrong.

4. Popular opinion often says that stock market fluctuations are larger
than they “should be”, whereas mathematics says that the stock market has
historically fluctuated less than would the fortune of a Kelly-optimizing spec-
ulator. In fact no-one knows how large the short-term fluctuations “should
be”, under either a “rational” or a “psychological” theory of the market, and
a testable theoretical prediction relating market fluctuations to measurable
aspects of the real economy would surely win you a Nobel prize or enable
you to make a fortune (by speculating on volatility).

5. Geometric Brownian motion is a mathematically natural, and rea-
sonably accurate, model for the short term fluctuations of stocks. After
Bachtelier pointed this out in 1900, the model was mostly underused until
the 1970s, but subsequently overused and treated as more accurate than it
really is.

6. Unlikely things are going to happen over your 50-year investment life-
time, and thinking in terms of Kelly rather than mean-variance encourages
you to pay attention to small chances of dramatic losses.

7. To adapt Churchill’s comment on democracy,

The EMH is the worst way of thinking about the stock market,
except for all those other ways that have been tried from time
to time.

Or as John Bogle put it5

Sometimes markets are efficient, sometimes they are not, and it
is not possible to know which is which.

5letter to the Economist, November 2013.

http://en.wikipedia.org/wiki/John_Bogle
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2.13 Further reading

Poundstone’s Fortune’s Formula is a non-technical book on the Kelly crite-
rion. Much of the book is entertaining episodic anecdotal history of char-
acters like Shannon, Kelly, Thorp, Milken, Boesky and Long Term Capital
Management. It has an interesting account of the dispute between the pro-
ponents of Kelly (math types) and economists led by Samuelson who viewed
it as too risky even in the long run. His memorable slogan, in place of my
“speed of light” analogy, is

100% Kelly strategy marks the boundary between aggressive and
insane investing.

Aaron Brown’s 2011 Red-Blooded Risk discusses financial trading and risk
management as actually practiced over the last 35 years, in relation to un-
derlying ideas from mathematical probability. In particular his Chapter 5,
which everyone interested in the basic mathematics of finance should read,
compares and contrasts modern portfolio theory with Kelly. His memorable
quote is that using Kelly enables you to “get rich exponentially slowly”.

Malkiel’s classic A Random Walk Down Wall Street sets out in plain
language the academic view that seeking to beat the market via fundamental
analysis is a mug’s game. Taleb’s recent best-seller The Black Swan is hard
to describe in a few words (here is my lengthy review) but one of its main
points is that the geometric Brownian motion model, and formulas such
as Black-Scholes based on it, ignore small chances of unforseen events that
might have substantial effect. Reinert and Rogoff’s This Time Is Different:
Eight Centuries of Financial Folly is a quantitative academic study, pointing
out (to quote one reviewer) “the highly repetitive nature of financial crises
resulted from a dangerous mix of hubris, euphoria and amnesia”.

http://www.stat.berkeley.edu/~aldous/157/Books/taleb.html


Chapter 3

Coincidences, near misses
and one-in-a-million chances

These topics are staples of popular science style books on probability; in this
lecture we dig a little below the surface.

3.1 The birthday problem and its relatives

The birthday problem– often called the birthday paradox – is described in
almost every textbook and popular science account of probability. My stu-
dents know the conclusion

with 23 people in a room, there is roughly a 50% chance that
some two will have the same birthday.

Rather than repeat the usual “exact” calculation I will show how to do
some back-of-an-envelope calculations, in section 3.2 below. Starting from
this result there are many directions we could go, so let me point out five of
these.

It really is a good example of a quantitative prediction that one could
bet money on. In class, and in a popular talk, I show the active roster of
a baseball team1 which conveniently has 25 players and their birth dates.
The predicted chance of a birthday coincidence is about 57%. With 30 MLB
teams one expects around 17 teams to have the coincidence; and one can

1e.g. atlanta.braves.mlb.com/team/roster active.jsp?c id=atl; each MLB team has a
page in the same format

35

http://en.wikipedia.org/wiki/Birthday_problem
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readily check this prediction in class in a minute or so (print out the 30
pages and distribute among students).

It’s fun to ask students to suggest circumstances where the pre-
diction might not be accurate. This is, if you actually see a group of
strangers in a room and know roughly why they are there – people rarely
go into rooms “at random” – what might make you unsure of the validity
of the standard calculation? Two common suggestions are
(i) if you see identical twins
(ii) that the calculation in general may be inaccurate because of non-uniformity
of population birth dates over the year.
Point (i) is clear and point (ii) is discussed in the next section (plausible
levels of non-uniformity turn out to have negligible effect). Other circum-
stances involve very creative imagination or arcane knowledge (a party of
Canadian professional ice hockey players2). As mentioned above, it is a rare
example of a mathematically simple yet reliable model!

It illustrates the theme “coincidences are more likely than you
think”. This is an important theme as regards people’s intuitive percep-
tion of chance. But the birthday problem and other “small universe” set-
tings, where one can specify in advance all the possible coincidences and
their probabilities, are very remote from our notion of weird coincidences in
everyday life. A typical blurb for popular science books is “. . . explains how
coincidences are not surprising” while the author merely does the birthday
problem. This is surely not convincing to non-mathematicians. I will repeat
this critique more forcefully in section 3.9. My own (unsuccessful) attempt
to do better is recounted in section 3.5.

One can invent and solve a huge number of analogous math prob-
ability problems and I show a glimpse of such problems in section 3.2.
These can be engaging as recreational math and for illustrating mathemati-
cal techniques – but I find it almost impossible to produce novel interesting
data to complement such theory.

There is an opposite problem with sports data on “hot hands” for indi-
vidual players, or winning/losing streaks for teams. Here there is plenty of
data, but coming up with an accurate chance model is difficult; saying that

2who have substantial non-uniformity of birthdays. A 1985 paper Birthdate and success
in minor hockey by Roger Barnsley and A. H. Thompson and subsequent work, popularized
in Gladwell’s Outliers, attributes this to the annual age cutoff for starting minor hockey.
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we see streaks longer than predicted in an oversimplified chance model is
not telling us anything concrete about the world of sports.

3.2 Using the Poisson approximation in simple mod-
els

In this section I want to make the point

mathematicians know how to do calculations in “small universe”
settings, where one can specify in advance all the possible coin-
cidences and their probabilities.

In fact while mathematicians have put great ingenuity into finding exact
formulas, it is simpler and more informative to use approximate ones, based
on the informal Poisson approximation3.

If events A1, A2, . . . are roughly independent, and each has small proba-
bility, then the random number that occur has mean (exactly) µ =

∑
i P(Ai)

and distribution (approximately) Poisson(µ), so

P(none of the events occur) ≈ exp

(
−
∑
i

P(Ai)

)
. (3.1)

Consider the birthday problem with k people and non-uniform distribu-
tion

pi = P(born of day i of the year).

For each pair of people, the chance they have the same birthday is
∑

i p
2
i ,

and there are
(
k
2

)
pairs, so from (3.1)

P(no birthday coincidence) ≈ exp

(
−
(
k

2

)∑
i

p2i

)
.

Write median-k for the value of k that makes this probability close to 1/2
(and therefore makes the chance there is a coincidence close to 1/2). We
calculate

median-k ≈ 1
2 + 1.18/

√∑
i

p2i .

3My 1989 book Probability Approximations via the Poisson Clumping Heuristic consists
of 100 examples of such calculations, within somewhat more complicated models.
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For the uniform distribution over N categories this becomes

median-k ≈ 1
2 + 1.18

√
N

which for N = 365 gives the familiar answer 23.
To illustrate robustness to non-uniformity, imagine hypothetically that

half the categories were twice as likely as the other half, so pI = 4
3N or

2
3N . The approximation becomes 1

2 + 1.12
√
N which for N = 365 becomes

22. The smallness of the change might be considered another “paradox”,
and is in fact atypical of combinatorial problems in general. In the coupon
collector’s problem, for instance, the change would be much more noticable.

Let me quickly mention two variants. If we ask for the coincidence of
three people having the same birthday, then we can repeat the argument
above to get

P(no three-person birthday coincidence) ≈ exp

(
−
(
k

3

)∑
i

p3i

)
and then in the uniform case,

median-k ≈ 1 + 1.61N2/3

which for N = 365 gives the less familiar answer 83.
If instead of calendar days we have k events at independent uniform

times during a year, and regard a coincidence as seeing two of these events
within 24 hours (not necessarily the same calendar day), then the chance
that a particular two events are within 24 hours is 2/N for N = 365, and
we can repeat the calculation for the birthday problem to get

median-k ≈ 1
2 + 1.18

√
N/2 ≈ 16.

Finding real-world instances where such theoretical predictions are applica-
ble seems quite hard, in that the first instances one might think of – major
fires in a big city, say – have noticeably non-uniform distribution.

3.3 Coincidences in everyday life

This lengthy discussion is mostly omitted in the lecture.
As Figure 3.14 suggests, a long and continuing tradition outside main-

stream science5 assigns spiritual or paranormal significance to coincidences,

4Photo found online; the gentleman is not me.
5e.g. Arthur Koesler The Roots of Coincidence, 1972.

http://en.wikipedia.org/wiki/Coupon_collector%27s_problem
http://en.wikipedia.org/wiki/Coupon_collector%27s_problem
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Figure 3.1: Noticeboard outside a church.

by relating stories and implicitly or explicitly asserting that the observed
coincidences are immensely too unlikely to be explicable as “just chance”.
Self-described rationalists dispute this, firstly by pointing out that (as il-
lustrated by the birthday problem) untrained intuition about probabilities
of coincidences is unreliable, and secondly by asserting that (in everyday
language) observing events with a priori chances of one in a gazillion is
not surprising because there are a gazillion possible other such events which
might have occurred. While the authors (and most readers, we imagine) take
the rationalist view, it must be admitted that we know of no particularly
convincing studies giving evidence that interesting real-life coincidences oc-
cur no more frequently than is predictable by chance. The birthday problem
analysis is an instance of what we’ll call a small universe model, consisting
of an explicit probability model expressible in abstract terms (i.e. the fact
that the 365 categories are concretely “days of the year” is not used) and
in which we prespecify what will be counted as a coincidence. Certainly
mathematical probabilists can invent and analyze more elaborate small uni-
verse models: here is an example by G.J. Kirby concerning the probability of
meeting someone you know on a trip away from your home district, and not
somewhere where either of you would usually be found. But such exercises
miss what we regard as three essential features of real-life coincidences:
(i) coincidences are judged subjectively – different people will make different

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.393.9284&rep=rep1&type=pdf
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judgements;
(ii) if there really are gazillions of possible coincidences, then we’re not going
to be able to specify them all in advance; – we just recognize them as they
happen;
(iii) what constitutes a coincidence between two events depends very much
on the concrete nature of the events.

Can we take one tiny step away from small universe models by studying a
setting with these three features?

Almost the only serious discussion of the big picture of coincidences from
a statistical viewpoint is a 1989 paper by Persi Diaconis and Fred Mosteller.
Our “gazillions” explanation6, which they call the law of truly large numbers
and which is also called Littlewood’s law, is one of four principles they invoke
to explain coincidences (the others being hidden cause; memory, perception
or other psychological effects; and counting close events as if they were
identical). They summarize earlier data in several contexts such as ESP
and psychology experiments, show a few “small universe” calculations, and
end with the conclusion

In brief, we argue (perhaps along with Jung) that coincidences
occur in the mind of observers. To some extent we are handi-
capped by lack of empirical work. We do not have a notion of how
many coincidences occur per unit of time or how this rate might
change with training or heightened awareness. . . . Although Jung
and we are heavily invested in coincidences as a subjective mat-
ter, we can imagine some objective definitions of coincidences
and the possibility of empirical research to find out how fre-
quently they occur. Such information might help us.

Let’s take a paragraph to speculate what a mathematical theory of real-
life coincidences might look like, by analogy with familiar random walk/Brownian
motion models of the stock market. Daily fluctuations of the S&P500 index
have a s.d. (standard deviation) of a little less than 1%. Nobody has an
explanation, in terms of more fundamental quantities, of why this s.d. is 1%
instead of 3% or 0.3% (unlike physical Brownian motion, where diffusivity
rate of a macroscopic particle can be predicted from physical laws and the
other parameters of the system). But taking daily s.d. as an empirically-
observed parameter, the random walk model makes testable predictions of
other aspects of the market (fluctuations over different time scales; option
prices). By analogy, the observed rate of subjectively-judged coincidences in

6Further comments will be given in section 3.8.

http://www.stat.berkeley.edu/~aldous/157/Papers/diaconis_mosteller.pdf
http://en.wikipedia.org/wiki/Littlewood's_law
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some aspect of real life may not be practically predictable in terms of more
fundamental quantities, but one could still hope to develop a self-consistent
theory which gives testable predictions of varying aspects of coincidences.

The simplest aspect to study is surely single-affinity coincidences, exem-
plified in real life by stories such as

In talking with a stranger on a plane trip, you discover you both
attended the same elementary school, which is in a city not on
that plane route.

Call this (“same elementary school”) a specific coincidence; one might plau-
sibly estimate, within a factor of 2 or so, the a priori probability of such
a specific coincidence. Now a specific coincidence like this suggests a coin-
cidence type, in this case “having an affinity (both members of some rela-
tively small set of people) with the stranger”, where the number of possible
affinities (attended first ever Star Trek convention; grow orchids; mothers
named Chloe) is clearly very large and subjective. Nevertheless one could
try to estimate (within a factor of 10, say) the chance of some coincidence
within this coincidence type. Next one can think of many different specific
single-affinity coincidences (finding a dollar bill in the street, twice in one
day; seeing on television someone you know personally) which should be as-
signed to different types, and it is hard to imagine being able to write down
a comprehensive list of coincidence types, even within the very restricted
domain we’re calling “single affinity”. Finally, real life offers many different
domains of coincidence, in particular multiple affinity coincidences (exempli-
fied by the well known Lincoln-Kennedy coincidences urban legend); these
are the mainstay of anecdotes but are harder to contemplate mathematically.

To summarize: the usual rationalist analysis of coincidences starts out
by observing that estimating the a priori chance of some observed specific
coincidence isn’t the real issue; one has to think about the sum of chances of
all possible coincidences. But rationalists seem to have despaired of actually
doing this, and merely assert that in the end one would find that coincidences
occur no more frequently than “just chance” predicts. We think this is too
pessimistic an attitude; though one may not be able to prespecify all possible
coincidences, surely one can learn something from observed instances?

3.4 Coincidences in the news

Every time I teach the course I see relevant examples in current or recent
news or in my email inbox that I can use. Here are two examples from the
2014 course.

http://en.wikipedia.org/wiki/Lincoln%E2%80%93Kennedy_coincidences_urban_legend
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Plane crash cluster. There were 3 passenger jet crashes in 8 days in sum-
mer 2014 (Air Algerie July 24th, TransAsia July 23rd, Malaysian Airlines
July 17). How unusual is this?

The relevant data is that over the last 20 years, crashes with substantial
fatalities have occurred at rate 1/40 per day, so under the natural IID prob-
ability model the number N of crashes in a given 8 days has approximately
Poisson(0.2) distribution, for which

P(N = 3) ≈ 0.23/6 ≈ 1.33× 10−3.

A calculation outlined here, which accounts for overlaps of 8-day intervals,
shows that in the model such a cluster will occur “by chance” about once
every 10 years. So this coincidence is not terribly unlikely.

This setting provides a concrete context for the section 3.3 general dis-
cussion. We have a context – plane crashes – and we model an observed
coincidence as an instance of some “specific coincidence type” – here “3
crashes in 8 days”. But there are many other “specific coincidence types”
that might have occurred, in the context of plane crashes. We could consider
a longer window of time – a month or a year – and could consider coinci-
dences involving the same airline or the same region of the world or the
same airplane model. Even if a coincidence within any one “specific type”
were unlikely, the chance that there is a coincidence in some one of them
– somewhere within the context of plane crashes – may be large. In other
words, claims that “what happened is so unlikely that it couldn’t be just
chance” typically rely on an analysis of the specifics of what did happen,
but a meaningful analysis needs also to consider other types of coincidences
that didn’t happen.

Assignment of court cases. U.S. District Court Judge (Washington DC)
Richard Leon handled 3 cases involving the FDA and tobacco companies.

• In January 2010 he prevented the Food and Drug Administration from
blocking the importation of electronic cigarettes.

• In February, 2012 he blocked a move by the FDA to require tobacco
companies to display graphic warning labels on cigarette packages.

• In July 2014 he ruled in favor of tobacco companies and invalidated a
report prepared by an FDA advisory committee on menthol.

A journalist emailed me the question:

http://understandinguncertainty.org/another-tragic-cluster-how-surprised-should-we-be
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What are the chances that one judge would pull these major
cases when cases are supposedly assigned randomly?

In other words, is this just coincidence, or does it suggest maybe these cases
were not assigned randomly? Note that we are not discussing the merits of
the judgments – it would be nonsensical to model the judgements as random.

It turns out there are effectively7 17.5 judges in this court, so (if random
assignment) the chance all 3 cases go to the same judge is 1/17.5×1/17.5 ≈
1/300.

But there were over 10,000 cases in the period. Imagine looking at all
those cases and looking to see where there is a group of 3 cases which are
”very similar” in some sense. The sense might be “same plaintiff and same
issue”, as here, but one can imagine many other types of possible similarity.
Guessing wildly, suppose there are 100 such groups-of-3. Then because, for
each such group, there is the same 1/300 chance of all going to the same
judge, then the chance that this happens for some group amongst the 100
groups is a little smaller than 100/300 = 1/3, so would not be surprising.

Now of course the FDA-tobacco issue is unusually interesting. A more
precise analysis would to go through the 10,000+ cases and find out the
number of groups-of-3 that were “very similar” in some sense of interest to
a journalist. This is some (presumably not very large) number n, and the
chance that some group “of interest to a journalist” were all assigned to the
same judge (by pure chance) is around n/300. Now I have no idea what n
is, but

experience with other kinds of coincidence says that there are
many more occurrences and more types of ”very similar in an
interesting way” than you would imagine

and the next section provides a further illustration of this point.

3.5 Coincidences in Wikipedia

This section describes a project that we were unable to complete, but which
remains interesting to me. The project was to examine coincidences amongst
articles in Wikipedia obtained using the “random article” option. This is
less “real-life” than one would like, but has the advantages of possessing the
essential features (i-iii) mentioned in section 3.3, while also allowing data to
be gathered quickly and allowing independent replication by other people.

7some are part time.
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Table 3.1: Coincidences observed in our study. “Chance” is our estimate of
the chance that two random articles from Wikipedia would fit the specific
coincidence named. The left column is trial number and the right column
shows number of articles included in that trial. The total number of articles
read was 1, 413. The median number of articles per trial was 44.5.

article article specific coincidence chance
×10−8

1 Kannappa Vasishtha Hindu religious figures 12 56
2 Harrowby United F.C. Colney Heath F.C. Engl. am. Football Clubs 160 120
3 Delilah Paul of Tarsus Biblical figures 20 30
4 USS Bluegill (SS-242) SUBSAFE U.S. submarine topics 6 18
5 Kindersley-Lloydminster Cape Breton-Canso Canadian Fed. Elec. Dist. 110 23
6 Walter de Danyelston John de Stratford 14/15th C British bishops 1 81
7 Loppington Beckjay Shropshire villages 4 55
8 Delivery health Crystal, Nevada Prostitution 9 46
9 The Great Gildersleeve Radio Bergeijk Radio comedy programs 4 23

10 Al Del Greco Wayne Millner NFL players 3000 77
11 Tawero Point Tolaga Bay New Zealand coast 3 32
12 Evolutionary Linguistics Steven Pinker Cognitive science ??? 36
13 Brazilian battleship Sao Paulo Walter Spies Ironic ship sinkings < 1 28
14 Heap overflow Paretologic Computer security ??? 52
15 Werner Herzog Abe Osheroff Documentary filmmakers 1 92
16 Langtry, Texas Bertram, Texas Texas towns 180 53
17 Crotalus adamanteus Eryngium yuccifolium Rattlesnake/antidote < 1 80
18 French 61st Infantry Division Gebirgsjäger WW2 infantry 4 45
19 Mantrap Township, Minnesota Wykoff, Minnesota Minnesota town(ship)s 810 41
20 Lucius Marcius Philippus Marcus Junius Brutus Julius Caesar associate 4 91
21 Colin Hendry David Dunn Premier league players 150 62
22 Thomas Cronin Jehuda Reinharz U.S. College presidents 32 44
23 Gösta Knuttson Hugh Lofting Authors of children’s lit. 32 31
24 Sergei Nemchinov Steve Maltais NHL players 900 16
25 Cao Rui Hua Tuo Three Kingdoms people 37 18
26 Barcelona May Days Ion Moţa Spanish Civil War 5 116
27 GM 4L30-E transmission Transaxle Auto transmissions 3 37
28 Tex Ritter Reba McEntire Country music singers 8 24
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Design of study. We did 28 separate trials of the procedure:

read random articles online until noticing a first coincidence with
some earlier article; record the names of the two coinciding ar-
ticles and the number of articles read, and write down a phrase
describing the specific coincidence observed.

“Coincidence” means some subjectively noticeable close similarity in article
subject or content; of course your subjective judgements might be different
from mine. In principle the statistically efficient design would be to print
out (say) 500 articles and carefully search them for all coincidences, but we
are seeking to mimic real life where we notice coincidences without searching
for them. We explicitly did not backtrack to re-read material, except to find
the name of the earlier coincident article.

Why didn’t this project work out? If one repeated the procedure,
the next 28 “specific coincidences” would be almost all different from those
in the table. Our goal was to formulate and list higher-level “coincidence
types” so that most specific coincidences would fall into some “type”; then by
counting pages in Wikipedia (using its own lists and categories) we could give
a theoretical prediction of the rate of seeing coincident pages, to compare
with experimental data.

We were unable to finish, partly because of the “long tail” of both types
and specific coincidences within types, and partly because what a human
sees as a coincidence is broader than what is picked up via such lists.

3.6 Classifying coincidences in everyday life

This is only briefly mentioned in lecture as a potential student project.

David Hand’s 2014 book The Improbability Principle: Why Coincidences,
Miracles, and Rare Events Happen Every Day gives the standard rationalist
explanation of coincidence: there are a vast number of possible events, so
even if individual events are vastly unlikely, some such events will occur.
Like other discussions of coincidences, it describes real-world events and
anecdotes selected by the author in some unspecified way. In the spirit
of our Lecture 1 examples, I would prefer to study examples obtained in
some less subjective way. Fortunately there is a source of such examples.
The Cambridge Coincidences Collection page invites readers to post their
own coincidence stories. That site suggests typical types of coincidence, as
follows.

http://understandinguncertainty.org/coincidences
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• Surprising repetitions: for instance when youve had not contact
with someone for ages, then find two connections to them very close
together in time. Or when over several years multiple members of the
same family are born with the same birthday. Or even a repetition of
a really rare event like winning the lottery twice, or your life being
saved twice by the same person!

• Simultaneous events: for example when two people phone each
other at exactly the same time.

• Parallel lives: such as when two people in a small group find they
share a birthday or an unusual name, or when two people discover
their lives match each other in bizarre details.

• Uncanny patterns: imagine picking letters in Scrabble that spell
your name.

• Unlikely chains of events: perhaps you lost your false teeth over-
board and found them inside a fish you caught twenty years later?

From a somewhat different perspective Hand’s book concludes with the in-
vention of some “laws”:

• The law of inevitability (the lottery case),

• the law of truly large numbers (vast number of possible coincidences),

• the law of selection (“surgeons bury their failures”),

• the law of the probability lever (inaccurate modeling of probabilities,
as in the Sally Clark children’s SIDS case),

• the law of near enough (we count near misses as hits).

A student project is to study real-world examples and devise a more sys-
tematic classification of types of everyday coincidence.

3.7 Near misses

Closely related to coincidences are a range of events that one might view as
near-misses. That phrase originated in the setting a physically aiming at a
target (I’ll call that the geometric setting) but is also used in other settings
I will call combinatorial – see examples below. The message of this section
will be

http://en.wikipedia.org/wiki/Sally_Clark
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In combinatorial (rather than geometric) settings, near-misses
may be much more likely than exact hits, and this phenomenon
is exploited by designers of Lotto-like games.

Here is our exemplar, which will be familiar to players of Scrabble-like word
games. If we pick 5 letters of the alphabet, what are the chances that
(a) The letters can be arranged to form an English word?
(b) The letters can be arranged to form an English word, if we are allowed
to change one letter (our choice of letter) into any other letter we choose?
As intuition suggests, (a) is unlikely but (b) is likely. The numerical chances
depend on how exactly you pick the random letters and how large your
vocabulary or dictionary is, but in our small experiment chance (a) was
about 18% and chance (b) was about 94%.

Near misses in geometric settings. Before trying to explain what
“combinatorial settings” means, it may help (and is easier) to illustrate
the opposite notion of “geometric setting”. On a dartboard there is a small
“bulls eye” (scoring 50 points in the traditional British game) surrounded
by a ring (scoring 25 points) of twice the radius. If you have some small
probability p of hitting the 50, then you will have probability about 3p of hit-
ting the 25, because the area is three times larger. Similarly in the asteroid
example from (xxx) section 8.7, the chance an asteroid comes within 4,000
miles (the Earth’s radius) of the Earth’s surface will be about three times
the chance of actually hitting the Earth. This is just the local uniformity
principle from Lecture 8, the point being that the ratio “3” of probabil-
ities depends only on the fact that we’re dealing with a problem in two
dimensions. In contrast, if we view 10 out of 10 Heads in coin tossing as a
“coincidence” and 9 out of 10 as a near miss, then the ratio of probabilities
is 10. But here, “10” isn’t a magic number associated with coin-tossing; if
we had chosen a different, rarer coincidence we would get a larger ratio.

Near-misses in Lotto picks. Instead of Scrabble or coin tossing, a more
common occurrence of “combinatorial” near-misses is in Lotto-type games.
If you pick 6 numbers out of 51, then when the lottery picks 6 numbers,
the chance you get 5 out of 6, relative to 6 out of 6, is now 6 × 45 = 270
to 1. This is dramatically different from the ratio “3” we saw in geometric
examples. And indeed, part of the reason for designing lotteries in this
“pick k numbers out of n” format is to ensure many near-misses, on the
reasonable assumption that observing near-misses will encourage gamblers
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to continue playing8 If, instead, lottery tickets simply represented each of
the 18 million possibilities as a number like 12, 704, 922 between 1 and 18
million, then (counting a near-miss as one digit off) there would be only
around 64 near-misses.

A typical student project is to study near-misses in bingo with many
players – when one person wins, how many others will have lines with 4 out
of 5 filled?

Manipulation of near-misses. Exploiting mathematics to design games
with many near-misses is generally considered to be within ethical bound-
aries (every game has rules designed to make it interesting), but other
schemes have arguably crossed the boundary. The 2005 book License to
Steal by Jeff Burbank devotes a chapter to the following story, (summary
from an amazon.com review).

. . . a slot machine manufacturer had programmed its machines
to make it look as if losing spins had just missed being winners
– “near misses.” The owners claimed that the machine wheels
would spin randomly, as they are supposed to, but that once the
spin had randomly been determined to be a loser, the wheels
would re-adjust to show a near miss. This made it more exciting
for the player, who would play more. But the regulators thought
it might compromise the appearance of randomness. They de-
cided the near miss feature would not be allowed, but when the
company appealed on the grounds that retrofitting thousands of
machines would be too expensive, the [Nevada Gaming] Com-
mission cut them some slack. They still went bankrupt.

3.8 What really has a 1 in a million chance?

This is fun to do in class, or in a Statistics Dept’s open day for the public,
First I ask students

If you overheard the phrase ”1 in a million chance” in someone
else’s casual conversation, what might they be talking about?

and students typically offer both iconic examples (winning the lottery, struck
by lightning) and more imaginative suggestions. Then I ask

8See e.g. a 1986 paper by R.L. Reid The psychology of the near miss for discussion.

http://www.stat.berkeley.edu/~aldous/157/Old_Projects/chon.pdf
http://www.stat.berkeley.edu/~aldous/157/Old_Projects/chon.pdf
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How could we get data on actual casual usage of the phrase ”1
in a million chance”?

and neither the students nor I can think of anything much more practical
than searching in blogs, some results of which were shown at the start of
Lecture 1. Finally I ask for suggestions for

events that we can convince ourselves really do have a 1 in a
million chance

(up to a factor of 2, let’s say). Then I go through the students’ suggestions;
can we quantify the chances, and (if so) are they around 1 in a million?

Here are just a few examples. The classroom is a few hundred yards
from the faultline, so consider

(i) A major (> 6.7 magnitude) earthquake on the Hayward fault in the
next 50 minutes.
A 2007 estimate puts the chance at about 1% per year, so the chance (i) is
indeed around 1 in a million. Next consider

(ii) One of the next 25 babies born in the U.S. will become President.
The U.S. birth rate is currently about 4.3 million per year. If we guess a
President will serve on average about 6 years, then it is reasonable to figure
that about 1 in 6 times 4.3 million = 25 million babies will someday be
President.

For many other examples one would need to rely on population percent-
age data. Using such data as estimates for individuals is a big topic that
might be discussed in more detail in another lecture. If “you” is interpreted
as “a randomly-picked 20-year-old in the U.S.” then the chance

(iii) you will die (sometime) by being struck by lightning
is roughly 1 in 100,000, from population statistics. But if I point to one of
my students as “you”, it is not true – the chance depends so much on that
individual’s behavior that I cannot assess the chance, just like I can’t assess
the chance of you-the-reader winning the lottery sometime (I guess you buy
fewer lottery tickets than the average person, but have no idea how many).

As a practical matter one can use common sense to guess how variable
the chance is between individuals, and use population data when you guess
it’s not greatly variable (recall we are allowing a factor of two error). In this
sense

(iv) being killed during a 150 mile auto trip in California
has a 1 in a million chance.

Finally, for a memorable instance where people underestimate a chance,
I point to a male student and ask for the chance

http://pubs.usgs.gov/of/2007/1437/
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(v) you get breast cancer sometime.

it’s rare in men, but not so rare as they think, about 1 in 1,000 lifetime
incidence. It may well be greatly variable with family history, so I can’t say
that 1 in 1000 is the chance for “you”, but it’s way more than 1 in a million.

3.9 How not to explain coincidences

Being a professional mathematician, [Littlewood] . . . defined a
miracle as an event that has special significance when it occurs,
but occurs with a probability of one in a million. This definition
agrees with our common-sense understanding of the word “mira-
cle. Littlewood’s Law of Miracles states that in the course of any
normal person’s life, miracles happen at a rate of roughly one
per month. The proof of the law is simple. During the time that
we are awake and actively engaged in living our lives, roughly
for eight hours each day, we see and hear things happening at a
rate of about one per second. So the total number of events that
happen to us is about thirty thousand per day, or about a million
per month. With few exceptions, these events are not miracles
because they are insignificant. The chance of a miracle is about
one per million events. Therefore we should expect about one
miracle to happen, on the average, every month. Broch tells
stories of some amazing coincidences that happened to him and
his friends, all of them easily explained as consequences of Lit-
tlewood’s Law.

Freeman Dyson, in a review in the New York Review of Books.

To me, this is mind-bogglingly awful prose – an exemplar of how not to
write for the public. That is not the usual meaning of the word miracle
(“an effect or extraordinary event in the physical world that surpasses all
known human or natural powers and is ascribed to a supernatural cause”),
so using that word creates needless confusion. It is difficult to determine
which real events have a 1 in a million chance, so invoking unspecified hy-
pothetical events is hardly convincing. But the main point is that we are
discussing a quantitative issue – those who assign spiritual or paranormal
significance to some coincidences would hardly deny that “ordinary” coin-
cidences also happen, but assert that some occur that are so very unlikely
that they cannot be explained as just chance. One may believe, as part
of a rationalist world-view, the assertion “amazing coincidences might be
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explicable as consequences of Littlewood’s Law”. But to demonstrate they
are thus explicable, rather than merely assert it, would require an actual
quantitative argument from real-world data.

3.10 Hot hands

There has been considerable study of hot hands and streaks; this is the topic
of Chapter 1 of Grinstead-Peterson-Snell’s Probability Tales, which could be
used as a lecture in this course. A blog by Alan Reifman discusses ongoing
streaks, and it’s a good topic for student projects. The overwhelming con-
clusion of many statistical analyses is that in almost all sports the hot hand
phenomenon is nonexistent or of negligible size. But as Amos Tversky once
said

I’ve been in a thousand arguments over this topic. I’ve won them
all, and I’ve convinced no one.

One analogous setting concerns cricket, in which there is a concept “getting
your eye in” meaning that a batsman is more likely to be dismissed early in
his innings, and this “cold hand” analog does stand up to statistical analysis.

http://thehothand.blogspot.com/
http://arxiv.org/abs/0801.4408
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Chapter 4

Prediction markets, fair
games and martingales

Prediction markets are in some ways analogous to stock markets but lead to
simpler mathematics. This chapter overlaps substantially with a published
write-up of the 2011 lecture1.

4.1 What is a prediction market?

As usual is is hard to better the following Wikipedia description.

Prediction markets . . . . . . are speculative markets created for the
purpose of making predictions. The current market prices can
then be interpreted as predictions of the probability of the event
. . . . . . . People who buy low and sell high are rewarded for im-
proving the market prediction, while those who buy high and sell
low are punished for degrading the market prediction. Evidence
so far suggests that prediction markets are at least as accurate
as other institutions predicting the same events with a similar
pool of participants.

1 Using prediction market data to illustrate undergraduate probability. American Math
Monthly 120 (2013) 583–393.

53

http://en.wikipedia.org/wiki/Prediction_market
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Figure 4.1: Times and prices of trades on a particular baseball match.

4.2 Some data: baseball and elections

First I describe some data collected from Tradesports2 in 2008. Figure
4.1 refers to a baseball match between the New York Yankees and the Los
Angeles Angels. There is a contract, which expires (at match end) at 100 if
a specified team (in this case, the Angels) win, and expires at 0 if this team
loses. The units are arbitrary; the non-arbitrary aspect is that one contract
expiring at 100 is worth $10. So to buy one contract at the opening “offer”
price of 57 would cost $5.70. You can bet on the other team by selling the
contract. So you could sell one contract at the opening “bid” price of 56.

This setting differs from traditional gambling in that there isn’t a book-
maker; you are trading with other participants. What you see on the web
site is the bid and asked prices and quantities; you can either accept some-
one’s posted offer, or post your own offer. Tradesports made its money from
a 4% fee on net winnings. So in the two cases above (buy or sell one contract
at opening bid/offer prices), when the Angels won the match, your profit or
loss would have been

[buy]: profit of (100− 57)%× $10× 96% = $4.13
[sell] loss of (100− 56)%× $10 = $4.40.

2Tradesports ceased business in October 2008. It was based in Ireland and showed IST
time; the match time was really 7 - 10 pm in Los Angeles.



4.3. FAIR GAMES AND MARTINGALES 55

Figure 4.2: A long-running prediction market contract

Of course most trades involve a larger number of contracts, just as most stock
market trades involve more than one share of the stock. During summer
2008, Tradesports emphasized three baseball games each day, and typically
around 4,000 contracts were traded on each game.

Next is data from Intrade, which was the largest political/economic pre-
diction market in the world until being closed under U.S. regulatory pressure
around the end of 2012. Figure 4.2 shows the prediction market price, over
December 2010 - November 2012, for Obama to win the U.S. Presidential
Election.

Prediction markets constitute one of the very few cases, outside of “games
of chance based on artifacts with physical symmetry”, where one can make
quantitative predictions without needing much input data from the real
world. More precisely, even though there is usually no relevant mathemat-
ical theory to tell you what the current price should be, given the current
price there is theory concerning future fluctuations. We will develop this
theory and then return to data.

4.3 Fair games and martingales

Let me use the phrase known pure chance for a setting where probabilities
and payoffs are explicitly known. Roulette is the iconic example, or black-
jack using a specified strategy. Mathematical probability textbooks teach
you how to calculate pretty much anything you want in such settings. As

http://en.wikipedia.org/wiki/Intrade
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much as possible I avoid repeating such standard material in these lectures,
whose focus is on understanding the real world outside the casino, where we
generally do not have reliable prior knowledge of probabilities.

Recalling material from section 2.2, in the known pure chance setting,
a bet is called favorable to a player if that player’s mean gain is positive,
unfavorable if the mean gain is negative (i.e. a loss) and fair if the mean
gain is zero. (Here mean is mathematical expectation). Note the word fair
here has a different meaning from its everyday one. The rules of team sports
are fair in the sense of being the same for both teams, so the more skillful
team is more likely to win, so a bet at even odds is not a fair bet.

The iconic example of a fair game is to bet on a sequence of coin tosses,
winning or losing one dollar each time depending on whether you predict
correctly. Of course this is too boring for anyone to actually do! In the
corresponding mathematical model (often called simple symmetric random
walk) write Xn for your “fortune” (amount of money) after n tosses.

Martingales. Before stating the definition, let me distinguish between
two settings. The first is exemplified by the simple symmetric random walk
model above, and the second by prices in a prediction market.

• Within a specified math model, a sequence (Xn) either is or isn’t a
martingale, depending on whether it satisfies the definition below.

• When Xn denotes some real-world quantity at “time n”, we could
model (Xn) as some unspecified martingale. In some contexts there
are compelling reasons why this is reasonable; in some other contexts
there are plausible but vague arguments why this is reasonable. In
contexts where one has enough data, one can check empirically whether
quantitative predictions from martingale theory are correct.

This parallels closely the situation with stationary process to be treated
in Lecture 7. There we will give plausible but vague arguments why it is
reasonable to model English text as some (unspecified) stationary process.

The formal definition of martingale is a process satisfying

E(Xn+1|Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = xn, all x0, x1, . . . , xn.

This (and the Wikipedia Martingale page) are hard to appreciate if you
haven’t taken a course in mathematical probability, so let me try to explain
in words, in the context of gambling. What makes a single bet fair is that,
starting with a known fortune x0, you will get a random fortune X1, and

http://en.wikipedia.org/wiki/Martingale_%28probability_theory%29
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your gain X1−x0 has mean zero, that is EX1 = x0. The martingale property
is saying that at each time the expectation of your next gain, conditional
on what has happened so far, has mean zero. If the odds offered to you are
fair, then however much you choose to bet, this will be true.

For any underlying fair game, if you bet repeatedly, choosing
how much to bet each time using some arbitrary strategy of your
choice, which you may change and which may depend on what
has happened so far, then the progress of your fortune Xn is a
martingale.

What makes martingale a useful concept for doing calculations is a result
known formally as the optional stopping theorem but more informatively
called the conservation of fairness theorem3. Ignoring some technical re-
strictions, this says

Conservation of fairness theorem. In the context of betting
on a fair game using an arbitrary strategy, however you choose
the time T to leave the game, your final fortune XT will be such
that EXT equals your initial fortune, that is the same as some
single fair bet.

To illustrate how this is useful, here is a

Basic Formula for Fair Games. Start betting on a fair game
with x0 dollars and continue until your fortune reaches either
0 or a target value B > x0, whichever comes first, and without
making any bet whose success would cause you to overshoot B.
Then the probability of reaching B is exactly x0/B.

To derive this formula, the mean value of your final fortune is pB, where
p is the probability above, and by the conservation of fairness theorem this
must equal x0.

4.4 Prediction markets and martingales: concep-
tual issues.

I don’t emphasize this material in the lecture.

3This name is used in Ethier’s The Doctrine of Chances: Probabilistic Aspects of Gam-
bling book, for instance.

http://en.wikipedia.org/wiki/Optional_stopping_theorem
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The axiomatic setup of mathematical probability assumes there are “true
probabilities” for events, which depend on the “information” known. Within
this setup one can consider, in a sports match setting,

Xn = probability team A wins, given the information available at time n

and this is a martingale, as a mathematical theorem. How does this apply
to an actual baseball game? One view – a common default view, I believe –
is that the set-up is conceptually correct, but that in complex settings like
baseball or elections there is just no automatic procedure to assign numerical
values to these probabilities4. Another view is that in the axiomatic set-up,
“information” is represented as follows.

There was some previously specified collection of events whose
outcomes (happen or not) would be known at time n, and now
we do know these outcomes.

But this is so far removed from the way we actually perceive and act upon
information, in the context of baseball and elections, that (in this view) its
conceptual utility is dubious.

Deferring such conceptual questions to Chapter ??, it is natural to view
prediction market prices as “consensus probabilities”; a price of 63 on a con-
tract for team A to win represents a “consensus opinion” that there is a 63%
for A to win. The point, of course, is that a person confidently assessing the
chance as higher than 63% would buy the contract as a perceived “favorable
bet”, pushing the price higher; another person assessing the chance as lower
than 63% would sell the contract as a perceived “favorable bet”, pushing the
price lower; so the price we observe represents the balance of opinions. How
such a process actually works in detail is hard to say without introducing
an awful lot of supposes. But the approximate identifications

prices ↔ consensus probabilities ↔ probabilities within axiomatic setup

suggest as a plausible hypothesis that

(H) prices in a prediction market should behave (that is, fluctu-
ate in time) approximately as a martingale.

Rather than examine further the assumptions or logic that went into stating
this hypothesis, let us consider how to study it empirically. The mathematics
of martingales, which we introduced in the previous section and will continue
in the next section, provides a wide variety of theoretical predictions. Are

4This is not a frequentist vs. Bayesian issue – both use the same mathematics.
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they correct, in real prediction markets? This makes an interesting topic
for student course projects, to gather data and test theory for oneself, or to
read academic papers which have done so.

4.5 Theoretical predictions for the behavior of pre-
diction markets

Given a historical database of prediction market price fluctuations until
the contracts expire, the most obvious prediction to test is that, out of all
contracts starting at price around 40, about 40% do in fact end with the
event happening. For this purpose, “around 60” is the same as “around 40”
by considering the opposite event, and we can make more efficient use of
data by considering each contract that ever crosses 40 or 60, taking the first
such crossing as our initial time. Such data generally agrees with the theory,
except in the case of very small initial prices (see section 4.9).

A skeptic might argue “maybe the real probabilities were sometimes 50%
and sometimes 30% and these just averaged out to the predicted 40%”. The
slightly more elaborate calculations below give predictions which allow one
to distinguish between “a wide spread around 40%” and “a small spread
around 40%”, given enough data.

Write a for some price less than the current price x (maybe a = 0, maybe
0 < a < x) and write b for some price more than the current price x (maybe
b = 100, maybe x < b < 100). Write px(a, b) for the probability that the
price reaches b before reaching a. By the same argument as for the Basic
Formula5

px(a, b) =
x− a
b− a

. (4.1)

Formula (4.1) can be used to get various interesting formulas, and we will
give two of them.

Crossings of an interval. Fix a price interval, say [40, 60]. If the price is
ever in this interval, then there is some first time the price crosses 40 or 60 –
suppose it crosses 40. Either it sometime later crosses 60, or it expires at 0
without crossing 60, and from formula (4.1) the chance it reaches 60 equals
2/3. If it reaches 60, call this a first “crossing”. From 60, it may (with chance
2/3) cross 40 again (a second “crossing”) or it may expire at 100 without

5More precisely, this would be exact if prices varied continuously; it’s only an approxi-
mation when prices can jump, but in the present context it’s usually a good approximation.
However it ignores the possibility of sudden events having large impact.
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crossing 40. So there is some random number C ≥ 0 of crossings, and from
the argument above this number has the (shifted Geometric) distribution

P(C = i) = 1
3(23)i, i = 0, 1, 2, . . . . (4.2)

Remember this is all under the assumption that the price reaches 40 or 60
sometime. I have a collection of charts for 103 baseball matches like that in
Figure 1 earlier. Of these, 89 reached 40 or 60, and here is the data for the
observed number of crossings of the interval [40, 60].

0 1 2 3 4 5 6 7+
observed 33 29 14 8 2 1 1 1
predicted 29.7 19.8 13.2 8.8 5.9 3.9 2.6 5.2

The discrepancy for large values can perhaps be explained by lack of con-
tinuity (near the end of a close game a single hit may have a substantial
effect, and there may be no trades between hits).

Maximum and minimum prices. For a contract starting at price x,
either
(i) team A wins, the contract expires at 100, and there is some overall
minimum price Lx such that Lx ≤ x;
(ii) or team A loses, the contract expires at 0, and there is some overall
maximum price Lx such that Lx ≥ x.
The formula for the distribution of Lx is

P(Lx < a) =
a(100− x)

100(100− a)
, 0 < a < x (4.3)

P(Lx > b) =
x(100− b)

100b
, x < b < 100. (4.4)

Here’s how to derive these formulas. With starting price x, consider the first
time T that the price reaches a or b, whichever happens first. The chance
b is reached first is p = px(a, b), in which case the price at T is b, and with
chance 1− p the price is a. So the optional sampling theorem says

x = E(price at time t) = pb+ (1− p)a

and solving this equation for p gives formula (4.1).
For 0 ≤ a ≤ x,

P(Lx < a,A wins) = P(price hits a before 100|initial price 100)×P(A wins|current price = a)

= (1− px(a, 100))× a

100
=

100− x
100− a

× a

100

which is formula (4.3); and formula (4.4) is derived similarly.
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4.6 Were there improbably many candidates for
the 2012 Republican nomination whose for-
tunes rose and fell?

Figure 4.3: Intrade price for Gingrich nomination.

In the race for the 2012 Republican Presidential nomination there were
many candidates whose popularity rose and then fell noticeably – Donald
Trump, Newt Gingrich (whose prediction market price is shown in Figure
4.3, Sarah Palin, Rick Perry, Michelle Bachmann, for instance. Many dis-
cussions of the race have shared the presumption that the number of such
candidates was much larger than usual, and speculated on the reasons, e.g.
an “anyone but Romney” sentiment. But is that presumption true?

We need to distinguish between two meanings. Opinion polls ask ques-
tions in a format “if you were voting tomorrow, who would you vote for?”.
Mathematics says nothing about how much such opinions may fluctuate over
a year-long campaign, just as mathematics says nothing about how much
fashions in popular music may fluctuate. One could devise some statistic
to measure these fluctuations and compare it empirically with the statistics
from previous races, but one cannot compare it to any theoretical prediction.

On the other hand, the theoretical argument that every prediction mar-
ket price should be a martingale is not affected by fashion or opinion poll
results. So we can examine whether the prediction market prices in this
particular race behaved differently from how theory says prediction market
prices should behave, which would be an indication of some unusual aspect
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of the 2012 race. Here is one interesting prediction of theory, which I call
the serious candidates principle.6

Consider an upcoming election with several candidates, and a
(prediction market) price for each candidate, and suppose ini-
tially all these prices are below b, for given 0 < b < 100. Theory
says that the mean number of candidates whose price ever exceeds
b equals 100/b.

Here is the mathematical argument, based on a hypothetical betting system.
For each candidate, buy a contract on that candidate if and when their price
reaches b. The total cost of these contracts is bNb, where Nb is the random
number of candidates whose price ever reaches level b. Exactly one candidate
is elected, and your contract on that candidate earns you 100. So your gain
is 100 − bNb. The conservation of fairness theorem says the expected gain
equals zero, and the equation E[100− bNb] = 0 rearranges to ENb] = 100/b.

Some data. Table 4.1 shows the maximum (over time) Intrade prediction
market price for each of the 16 leading candidates for the 2012 Republican
Presidential Nomination.

Table 4.1: Maximum prediction market prices.

Romney 100 Perry 39 Gingrich 38 Palin 28
Pawlenty 25 Santorum 18 Huntsman 18 Bachmann 18
Huckabee 17 Daniels 14 Christie 10 Giuliani 10
Bush 9 Cain 9 Trump 8.7 Paul 8.5

These numbers might well suggest to a non-mathematician that the number
of sometime-serious candidates was unusually large. But look at Table 4.2
below, which compares observed data with the mathematical prediction for
“number of candidate with maximum price ≥ b” for several values of b.

Table 4.2 indicates that the number of candidates whose fortunes rose
and fell in this “probability of winning” sense was scarcely more than would
be expected on mathematical grounds.

6As in previous formulas, the only assumption we need is that each candidate’s price
is a continuous-path martingale. This corresponds to the idea of a “liquid market” with
small spread between bid and ask prices, which is reasonably accurate for the election
markets under consideration.
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Table 4.2: Observed and expected numbers exceeding threshold prices.

expected observed
b = 33.3 3 3
b = 20 5 5
b = 16.6 6 9
b = 12.5 8 10

Two technical points. In Table 2 we used 100/b as “expected”, without
considering whether some initial prices might have been greater than b. Data
on initial prices is somewhat unreliable (because the contract may initially
be thinly traded) but the only candidate whose initial price was clearly
above 10 was Romney at about 23. Correcting for this would make the
“expected” numbers slightly smaller for small b. Of course for a campaign
where two candidates started with price 40 the “expected” numbers would
be very different. Another important general point is that, for long-duration
contracts, low prediction market prices overstate the true consensus proba-
bility because of the “covering your position” requirement. That is, even if
you were certain an event would not happen, you might not be willing to
sell a contract for 3 because your sure gain of 3 is offset by the opportunity
or interest cost of the market requirement that you deposit 97 to cover a
possible loss. Correcting for this effect would make the “expected” numbers
in Table 2 larger than shown for small b.

A bottom line conclusion. To the extent that mathematics can say
anything relevant, it says that the fundamental driving feature of the 2012
nominee campaign was that it started without any clear favorite. The subse-
quent fluctuations were then consistent with what theory predicts. In other
words, even if it is actually true that the month-to-month fluctuations in
opinion poll standings were greater than usual, we can see no sign that this
unduly influenced the smart money being wagered on the prediction market.

Another check of theory and data. A mathematician familiar with
martingale theory might look at the Figure 4.3 chart for Newt Gingrich
and wonder if it shows too many fluctuations to be plausibly a martingale.
For instance, the chart shows two separate downcrossings from 20 to 10, in
December 2011 and in late January 2012. This mathematician has in mind
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the upcrossing inequality7 which limits the likely number of such crossings.
We can conduct another check of theory versus data by considering crossings.
The relevant theory turns out to be:

Consider a price interval 0 < a < b < 100, and consider an up-
coming election with several candidates, and a (prediction mar-
ket) price for each candidate, where initially all these prices are
below b. Theory says that the expected total number of down-
crossings of prices (sum the numbers for each candidate) over
the interval [a, b] equals (100− b)/(b− a).

To gather data for the interval [10, 20], we need only look at the five candi-
dates in Table 4.1 whose maximum price exceeded 20, and their numbers of
downcrossings of [10, 20] were:

Palin (2); Romney (0); Perry (1); Pawlenty (2); Gingrich (2).

So the observed total 7 is in fact close to the theoretical expectation of
8. To derive the formula quoted, we again consider a hypothetical betting
system. For each candidate, buy a contract on that candidate if and when
their price reaches b. If the price subsequently falls to a then sell; but buy
again if the price reaches b, and continue. Exactly one of these contracts
will expire at 100, and the others will be sold at price a, the number Da,b

of these others being the number of downcrossings of [a, b]. So your gain
is (100 − b) − Da,b(b − a). The conservation of fairness theorem says the
expected gain equals zero, and the equation E[(100 − b) −Da,b(b − a)] = 0
rearranges to E[Da,b] = (100− b)/(b− a).

4.7 The halftime price principle.

Here we detour away from martingales to see a more elementary pice of
theory which can be checked against data.

The halftime price principle. In a sports match between
equally good teams, at halftime there is some (prediction market)
price for the home team winning. This price varies from match to
match, depending largely on the scoring in the first half of the
match. Theory says its distribution should be approximately
uniform on [0, 100].

7See any textbook with a chapter on martingales.
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To elaborate this principle we imagine a sport in which (like almost all
team sports) the result is decided by point difference, and for simplicity
imagine a sport like baseball or American football where there is a definite
winner (ties are impossible or rare). Also for simplicity we assume the teams
are equally good, in the sense that there is initially a 50% probability of the
home team winning (that is, equally good after taking home field advantage
into account). Write Z1 for the point difference (points scored by home
team, minus points scored by visiting team) in the first half, and Z2 for the
point difference in the second half.

A fairly realistic mathematical model of this scenario is to assume:
(i) Z1 and Z2 are independent random variables, with the same distribution;
(ii) their distribution is symmetric about zero; that is, their distribution
function F (z) satisfies F (z) = 1− F (−z).
For mathematical ease we add an unrealistic assumption (to be discussed
later):
(iii) the distribution is continuous.

Under these assumptions we can do a calculation, though we first recall
the slightly sophisticated notation that treats conditional probabilities as
random variables. For an event A and a random variable Y , the elementary
notation for conditional probabilities

P(A|Y = y) = g(y) for all y

(the left side is always some function of y) can be rewritten as

P(A|Y ) = g(Y ). (4.5)

The following calculation exemplifies the usefulness of this notation.

The probability that the home team wins, given the first half point dif-
ference is z, is

P(Z1 + Z2 > 0|Z1 = z) = P(Z2 > −z) by independence

= F (z) by symmetry

and therefore the price at halftime, which is the conditional probability of
the home team winning, given the observed value of Z1, is

P(Z1 + Z2 > 0|Z1) = F (Z1). (4.6)

But as a textbook fact, for a continuous distribution it is always true that
F (Z1) has uniform distribution on (0%, 100%).
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That is the mathematical justification for the principle. One can think
of various defects in the model, most obviously the fact that in real sports
the points are integer-valued, but for reasons explained below, we suspect
this does not make a huge difference, even in the worst case of a low-scoring
sport like soccer.

A little data.

Errors using inadequate data are much less than those using no
data at all. [Charles Babbage]

In the Figure 4.1 baseball match chart, the initial price was near 50 and the
price at half-time (for baseball we simply used halfway through the match
duration) was around 62.

In 30 baseball games from 2008 for which we have the prediction market
prices as in Figure 4.1 , and for which the initial price was around 50%, the
prices (as percentages) halfway through the match were as follows:

07, 10, 12, 16, 23, 27, 31, 32, 33, 35, 36, 38, 40, 44, 46

50, 55, 57, 62, 65, 70, 70, 71, 73, 74, 74, 76, 79, 89, 93.

Figure 4.4 (left) compares the distribution function of this data to the
(straight line) distribution function of the uniform distribution. The data
appears roughly consistent with our halftime price principle.

Caveat. The simplicity of the stated halftime price principle depends on
the teams being equally good. For unequal teams the distribution of halftime
price will depend on the distribution of the point differences Zi as well as
the initial price.

4.8 Other martingale calculations

One can sometimes do mathematical calculations which are not directly
about gambling by considering hypothetical bets. This is sufficiently striking
that in the example I will break my rule of not discussing unmotivated coin-
tossing type problems.

Waiting times for patterns in coin-tossing. If you toss a fair coin
repeatedly, how long before you see the pattern HTHT? It turns out the
mean number of tosses equals 20.
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Figure 4.4: The left diagram shows the empirical distribution function for
the baseball data, compared with the uniform distribution. The right dia-
gram shows the theoretical distribution function in the soccer model, again
compared with the uniform distribution.
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Here’s the “gambling” argument we wish to spotlight (there are several
other ways to solve this problem). Imagine a casino where you can bet at
fair odds on the coin tosses. For each toss, say toss 7, imagine a gambler
following the strategy

bet 1 that toss 7 is H

if win, bet all (now 2) that toss 8 is T

if win, bet all (now 4) that toss 9 is H

if win, bet all (now 8) that toss 10 is T

If win, walk away with your 16. If lose sometime, walk away with 0.

Recall that for each toss a different gambler starts this strategy. Look at
what happens from the casino’s viewpoint, up to and including the random
toss (number S) on which the pattern HTHT is first completed. The casino
has taken in 1 from each of S gamblers. It has paid out 16 to the gambler
whose first bet was on toss S−3. It has paid out 4 to the gambler whose first
bet was on toss S − 1, but nothing to the other gamblers. So the casino’s
gain is S−20. But by the Fair Game Principle, the mean gain must be zero.
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4.9 Stock markets and prediction markets

Lecture 2 discussed long term stock market investment, as the prime real-
world instance of “gambling on a favorable game”. Let me compare and
contrast the two.

• A prediction market is conceptually simpler than a stock market be-
cause the final value corresponds to a definite event. Saying a stock
index ends the year at 1321 says nothing other than it ends at 1321.

• A prediction market is mathematically simpler because we need no
empirical data to make the theoretical predictions; for the analogous
predictions in a stock market one needs an estimate of variance rate.

• Compared to stock markets, prediction markets are very thinly traded,
suggesting they will be less efficent and less martingale-like. In partic-
ular, for a year-duration contract with a small price (say 5) on Intrade,
the true probability might be much smaller, because to make the “sure
thing” profit of 5 by betting against the event requires you to cover
the contract and tie up 95 capital for a year.

• Standard economic theory asserts that long-term gains in a stock mar-
ket will exceed long-term rewards in a non-risky investment, because
inverstors’ risk-taking must be rewarded. In this picture, a stock mar-
ket is a “positive sum game” benefiting both investors and corpo-
rations seeking capital; financial intermediaries and speculators earn
their share of the gain by providing liquidity and convenient diversifi-
cation for investors.

• In contrast a prediction market is a zero-sum game, in fact a slightly
negative-sum game because of transaction costs.

The recent history of financial markets might provoke skepticism about
“standard economic theory” in general, and in particular the efficient market
hypothesis which appears in Lecture 2.

Prediction markets could in principle serve a non-gambling function via
hedging real-world risks, but currently do not provide enough liquidity to
do so.

4.10 Wrap-up

In lectures and public talks I used to choose some current event on the
Intrade prediction market trading around 50, ask the audience for their



4.11. FURTHER READING 69

opinions, and buy or sell a few shares based on the majority opinion. And
then track the price. The results of 9 such investments can be found here.

The realization that
(a) the general notion (as opposed to specific bets on specific games) of
“results of bets at fair odds” has a precise formalization as martingale,
(b) the way the current probability of a future event changes with time, as
new information comes in, also behaves mathematically as a martingale

was one of the triumphs of twentieth century mathematical probability. Pre-
diction markets provide the most concrete real-world instance of observable
quantities (prices, here) that can be directly interpreted as probabilities.
The mathematical theory of martingales can be used to make testable pre-
dictions about the behavior of prices in prediction markets.

On the other hand, the mathematical setup does not correspond well
to our intuitive sense of how we actually make decisions under uncertainty.
It is easy to make the assertion that the prediction market price obtained
via different agents’ choices to act on their probability assessments gives a
“consensus probability” that will behave as in the mathematical model of
“information”. But hard to expand upon an argument for how this happens
in detail.

4.11 Further reading

Broader ideas underlying prediction markets are often discussed under the
phrase The Wisdom of Crowds, from the title of a 2004 book by James
Surowiecki. Though a cute title for a book, it is another example of an
ill-chosen name for a concept. A prediction algorithm, whether based on
software or wetware, does not constitute wisdom.

As I have already mentioned several times, these lectures do not focus
on games of pure chance, which are treated in many existing works. Two
books I recommend are Haigh’s Taking Chances at an elementary mathe-
matical level, and Ethier’s The Doctrine of Chances: Probabilistic Aspects
of Gambling for material going beyond typical textbook material.

A World of Chance: Betting on Religion, Games, Wall Street by Bren-
ner, Brenner and Brown contains an interesting, mainly historical, account
of the relation between the laws and culture surrounding gambling and the
laws and culture surrounding business and market activity. Probability with
Martingales by David Williams shows one can teach an advanced course on
mathematical probability centered around martingales as a technical tool.

http://www.stat.berkeley.edu/~aldous/Real-World/wisdom_crowds.html
http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
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Chapter 5

Game Theory: Introducing
Nash equilibria via some
actual data

This lecture is rather more mathematical and more narrowly focussed than
others. Berkeley has an entire course on Game Theory that some of my
students take. Rather than give a 1-lecture overview, I jump quickly into the
concept of Nash Equilibria and focus on an example where one can join a
game in real time and also carry through some mathematical analysis. Here
is a link to an extended version of this write-up. Finally I talk briefly about
the Least Unique Positive Integer game, which is fun to play in class.

There are many introductory textbooks on Game Theory, and I imagine
all my students have heard of the subject, so let me start with only a quick
bullet point overview.

1. Setting: players each separately choose from a menu of actions, and
get a payoff depending (in a known way) on all players’ actions.

2. Rock-paper-scissors illustrates why one should use randomized strat-
egy, and why we assume a player’s goal is to maximize their expected
payoff. There is a complete theory of such two-person zero-sum games.

3. For other games, a fundamental concept is a Nash equilibrium strategy:
one such that, if all other players play that strategy, then you cannot do
better by choosing some other strategy. This concept can be motivated
mathematically by the idea that, if players adjust their strategies in a
selfish way to maximize their own payoff, and if the strategies converge
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http://www.stat.berkeley.edu/~aldous/Unpub/DCR_draft_2014.pdf
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Nash_equilibrium


72CHAPTER 5. GAME THEORY: INTRODUCING NASH EQUILIBRIA VIA SOMEACTUAL DATA

to some limit strategy from which a player cannot improve by further
adjustment, then by definition the limit strategy is a Nash equilibrium.

4. More advanced theory is often devoted to settings where Nash equi-
libria are not optimal in some sense, as with Prisoners’ Dilemma, and
to understanding why human behavior is not always selfish.

This lecture will focus on point 3. We will briefly play, and then analyze,
a specific game which, to a game theorist, fits exactly into the setting of
point 3. The “learning-adjust” theory predicts that players who play re-
peatedly and play selfishly – being unable or unwilling to collaborate with
other players – will tend to adjust their strategies to approximate the Nash
equilibrium (which we now abbreviate to NE) strategy. Further discussion
of NE can be found in many textbooks. Instead of general discussion, what
I will do in this lecture is

• calculate the NE strategy in somewhat simplified versions of the real
game;

• compare this with the data on what players actually do.

I do not seek to introduce and explain much standard game-theory terminol-
ogy – for instance, the concept of NE refers, strictly speaking, to a strategy
profile, that is a strategy for each player, but in our “symmetric over play-
ers” context we look only for NE strategy profiles in which each player uses
the same strategy.

5.1 The specific game: Dice City Roller

The game is pogo.com’s Dice City Roller (DCR).
In class, I start by spending a couple of minutes demonstrating the game

by actually participating in it, in real time. In this write-up the written
description of the DCR game is deferred to section 5.5; readers may wish to
read it now, or go online and play it themselves, before reading further.

For our mathematical analysis, the following abstracted model of the
game is sufficient, with italicized comments on actual play.

• There are M items of somewhat different known values, say b1 ≥ b2 ≥
. . . bM (always M = 5, but the values vary between instances of the
game).

• There are N players (N varies but 5− 12 is typical).

http://en.wikipedia.org/wiki/Prisoner%27s_dilemma
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• A player can place a sealed bid for (only) one item, during a window
of time (20 seconds).

• During the time window, players see how many bids have already been
placed on each item, but do not see the bid amounts.

Of course when time expires each item is awarded to the highest bidder on
that item. We assume players are seeking to maximize their expected gain.
So a player has to decide three things; when to bid, which item to bid on,
and how much to bid.

It turns out that without the time element (that is, if players make sealed
bids without any information about other players’ bids) the game above is
completely analyzable, as regards Nash equilibria. This is the mathematical
content of this lecture, and the results are broadly in line with intuition.

The time element makes the game more interesting, because various
strategies suggest themselves: bid late on an item that few or no others
have bid on, seeking to obtain it cheaply, or bid early on a valuable item
to discourage others from bidding on it. Alas theoretical analysis seems
intractable, at least at an undergraduate level.

We obtained data from 300 instances of the DCR game, and various
statistical aspects of the data are shown in section 5.4. As mentioned above
we do not have a precise formula for the NE strategy in the real game, but
nevertheless we can formulate plausible approximations to the NE strategy.
And the bottom line, discussed in section 5.4, is rather ambiguous. On one
hand the “ordinary people” playing this game are not bidding in a way that
is close to the NE strategy, but their deviations are not “foolish” in any
specific way.

5.2 Analysis of the simplest case

We study the simplified version without the time window – each player
just places a sealed bid without knowledge of other players’ actions. We
first study the simplest setting: 2 players, 2 items of values 1 and b, where
0 < b < 1.

A player’s strategy is a pair of functions (F1, Fb):

F1(x) = P( bid an amount ≤ x on the first item), 0 ≤ x ≤ 1 (5.1)

Fb(y) = P( bid an amount ≤ y on the second item), 0 ≤ y ≤ b(5.2)

where
F1(1) + Fb(b) = 1. (5.3)
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We can equivalently work with the associated densities

f1(x) = F ′1(x), fb(y) = F ′b(y).

Suppose your opponent’s strategy is some function (f1, fb) and your strategy
is some function (g1, gb). The formula for your expected gain is∫ 1

0
(1−x)g1(x)[F1(x) +Fb(b)] dx+

∫ b

0
(b− y)gb(y)[Fb(y) +F1(1)] dy. (5.4)

We need the following fact, which is obvious when you sketch a diagram.

Given a payoff function h(x) ≥ 0 with h∗ = maxx h(x), consider
the expected payoff

∫
h(x)g(x)dx when we draw x from a proba-

bility density g which we may choose. Then we get the maximum
expected payoff if and only if we choose g with the properties

h(x) = c for all x ∈ support(g)

h(x) ≤ c for all x 6∈ support(g)

for some c (which is in fact h∗).

Now our expected gain (5.4) is of this form, thinking of (g1, gb) as a single
probability density function. Applying the “obvious fact” above we deduce
the following. Given your opponent’s strategy (f1, fb), your expected gain
is maximized by choosing a strategy (g1, gb) satisfying, for some constant c

(1− x)[F1(x) + Fb(b)] = c on support(g1)

≤ c off support(g1)

(b− y)[Fb(y) + F1(1)] = c on support(gb)

≤ c off support(gb)

Now the definition of (f1, fb) being a Nash equilibrium strategy is precisely
the assertion that these relations hold for (g1, gb) = (f1, fb). So now we have
a set of relations for the NE strategy

(1− x)[F1(x) + Fb(b)] = c on support(f1) (5.5)

≤ c off support(f1) (5.6)

(b− y)[Fb(y) + F1(1)] = c on support(fb) (5.7)

≤ c off support(fb) (5.8)
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with “boundary conditions”

F1(0) = Fb(0) = 0; F1(1) + Fb(b) = 1.

To digress for a moment, note that in any game we can do some similar
argument to get equations for a NE. Most introductory game theory focusses
on a discrete menu of actions – our example is continuous. Theory talks
about existence and uniqueness of solutions, for general games. But we can
just go ahead and solve these particular equations without using their game-
theoretic origin (see the extended version of this write-up for details) and
the result is quoted below, though we will see in section 5.3 that it’s easier
to solve them using game-theoretic principles. The solutions are

F1(x) = b
1+b(

1
1−x − 1) on 0 ≤ x ≤ 1

1+b (5.9)

Fb(y) = 1
1+b(

b
b−y − 1) on 0 ≤ y ≤ b2

1+b . (5.10)

The corresponding densities are

f1(x) = b
1+b(1− x)−2 on 0 ≤ x ≤ 1

1+b (5.11)

fb(y) = b
1+b(b− y)−2 on 0 ≤ y ≤ b2

1+b (5.12)

and the expected gain for each player works out as

E[gain] = b
1+b .

In the 2014 course I had each student “play this game once” by making a
single bid, in the case b = 1/2, so we can now compare their bids to the
NE distribution. The top two frames in Figure 5.1 compare the NE distri-
bution functions F1 and Fb at (5.9,5.10) with the corresponding empirical
distribution functions G1 and Gb from the data. The bottom two frames in
Figure 5.1 compare the NE expected gain from bidding different amounts
with the corresponding empirical mean gain from the amounts bid by stu-
dents. That is, a bid of 49 cents on the $1 item had, when matched against a
random other bid, mean gain of 29 cents, and this is represented by a point
at (49, 29).

Here the data is not close to the NE. Students had some apparent intu-
ition to bid around 50 cents on the $1, and those who bid on the 50 cent
items tended to overbid. But recall that the NE concept is motivated by
the idea that, if players play repeatedly and adjust their strategies in a self-
ish way, then strategies should typically converge to some NE. So it is not
reasonable to expect NE behavior the first time a game is played.

In contrast, the actual DCR game is played repeatedly and so it is more
meaningful to ask whether players’ strategies do in fact approximate the
NE.

http://www.stat.berkeley.edu/~aldous/Unpub/DCR_draft_2014.pdf
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Figure 5.1: Class data compared with the NE.
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The form of the NE exhibits one general principle about NE and another
feature special to this model. The former is what I will call

The constant expected gain principle. If opponents play
the NE strategy then any non-random choice of action you make
in the support of the NE strategy will give you the same expected
gain (which equals the expected gain if you play the random NE
strategy), and any other choice will give you smaller expected
gain.

This is true because the NE expected gain is an average gain over the differ-
ent choices in its support; if these gains were not constant then one would
be larger than the NE gain, contradicting the definition of NE. In our game,
if you bid x on item 1, where x is in the support 0 ≤ x ≤ 1

1+b , then your

chance of winning is (by calculation) b
1+b(1− x)−1, so your expected gain is

(1− x)× b
1+b(1− x)−1 = b

1+b as the constant expected gain principle says.
Now note that the gap between your maximum bid and the item’s value

is the same for both items;

1− 1/(1 + b) = b− b2/(1 + b) = b/(1 + b).

This follows from the “constant expected gain” principle above; if you bid
the maximum value in the support the you are certain to win the item, so
your gain must be the same for both items. This fact – call it the equal
gap principle – is special to the structure of this particular game, but is
true for general numbers of players and items.

5.3 General numbers of players and items

Perhaps surprisingly, armed with the two principles above we can rather
easily calculate explicitly the NE in the general case of N ≥ 2 players and
M ≥ 2 items of values b1 ≥ b2 ≥ . . . ≥ bM > 0. The bottom line (with a
side condition I’ll explain) is the formula

E ( gain to a player at NE) = c =

(
M − 1∑
i b
−1/(N−1)
i

)N−1
(5.13)

and the NE strategy is defined by the density functions

fi(x) =
M − 1

N − 1

1∑
j b
−1/(N−1)
j

(bi − x)−N/(N−1), 0 ≤ x ≤ bi − c (5.14)
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for bids on prize i.

Here are the main steps in the calculation. Writing out the expression for
the expected gain when you bid xi on the i’th item, the “constant expected
gain” property says

(bi − x) (1− (Fi(x
∗
i )− Fi(x)))N−1 = c, 0 ≤ x ≤ x∗i := bi − c (5.15)

where c = expected gain to a player at NE. Because a strategy is a proba-
bility distribution we have

∑
i Fi(x

∗
i ) = 1 and so∑

i

(1− Fi(x∗i )) = M − 1.

Now using (5.15) with x = 0 we have

1− Fi(x∗i ) = (c/bi)
1/(N−1) (5.16)

and so ∑
i

(c/bi)
1/(N−1) = M − 1

identifying c.

The side condition. In the analysis above we implicitly assumed that
the NE strategy included a bid on each item (include means “assigns non-
zero probability to”). This may not be correct if, for instance, there was
one prize with very small value. To take care of this issue, recall we order
item values as b1 ≥ b2 ≥ . . . ≥ bM > 0. Inductively for m = 2, 3, . . . ,M − 1
calculate the NE and the expected gain assuming we have only the first m
items available. If the expected gain is greater than bm+1 then stop and
use this NE strategy which does not include a bid on any of bm+1, . . . , bM .
Otherwise continue to m+ 1. However, we only need to do this procedure if
the original formula (5.13) for expected gain is manifestly wrong, in giving
a value greater than the smallest value bM .

5.4 Comparing data from the DCR game with NE
theory

Several complications arise when we seek to compare data from the DCR
game with NE theory; we mention them briefly here and at greater length
in the extended version of this write-up.

http://www.stat.berkeley.edu/~aldous/Unpub/DCR_draft_2014.pdf
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1. In the DCR game there is a minimum allowed bid on each item, but
fortunately the NE analysis extends easily to this case.

2. In each auction there are 5 items, from a set of 12 different items, and
the prizes, if you win a bid, are a random number of points, depending on
which of the 12 items. In our mathematical analysis we will take the prizes
to be the (non-random) expected value for each item. Our assumption is
that players learn by experience the approximate value of these expected
values (by observation one can calculate them exactly).

3. Strategic effects, mentioned earlier, resulting from the time window
are not taking into account, except in a minor way indicated below.

4. The observable data in the DCR game is the number of bids, and
the value of the winning bid, on each item – but we cannot see the values
of losing bids. So, for a given pair (N, i) of (number of players, item), the
data we have available is the empirical distribution of values of winning bids
over auctions where there was at least one bid. This is plotted, for 4 of
the items, as a distribution function G∗ in Figure 5.2. We want to compare
that to a “NE theory” distribution, and we obtain this by assuming that the
amounts of bids follow the NE distribution ((5.14) modified for minimum
allowed bid), but (to allow for strategic effects) we use the true empirical
distribution for the number of bids. Then we can numerically calculate
a “NE theory” distribution function for value of winning bid, and this is
plotted as a distribution function G in Figure 5.2.

Figure 5.2 shows the comparison between data and NE theory. The
labels “150 match” etc are our names for some of the items (explained in
section 5.5), and this data is for N = 8 players.

One’s first reaction to the Figure 5.2 data is that the players’ bids are
not very close to what NE theory would predict. One could imagine many
reasons for this discrepancy. A typical player self-description is “age 63,
retired nurse: interests church, crafts, grandkids”; on this basis we suppose
the typical player is not a student of game theory, so might not consider the
idea of conscious randomization. The fact that the winning bid is, in roughly
a third of these cases, the minimum allowed bid is clearly a consequence of
time-window strategy (making a last-second bid on an item no-one else has
bid on) not taken into account in our theory, so the data might be closer to
the true NE than to our approximate NE.
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Figure 5.2: Comparison of winning bid distribution from data and from NE
theory.
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Figure 5.3: Screenshot of basic play of the underlying game in DCR.

5.5 Dice City Roller

The game Dice City Roller (DCR) motivating this article is found on pogo.com,
a free online casual gaming website offering over 150 different games. At a
typical time there may be about 10 different active “rooms” each containing
typically having 5 - 15 competing players – other rooms with 1 or 2 players
do not concern us. The underlying game is illustrated by the screenshot
in Figure 5.3 (details below not relevant to our mathematics, until further
notice). An instance of the game consists of 12 repetitions of the following
“turn”. The player is shown five rolled dice, allocates them onto “cards” to
fill out specified combinations (over several turns); when a card is completed
the player earns points and a new card is offered.

For instance, in Figure 5.3 the rolled dice show 1, 6, 2, 4, 1. The player could
place a 1 on the Full House, place a 2 and 6 on the Straight and place a 1
on the 3 Of A Kind, to complete 3 cards, placing the remaining 4 on one
of the other cards. The player has 15 seconds to decide upon and execute
these placements.

This underlying game is more subtle than it may appear, because there
is a bonus for completing several cards on the same turn, so a simple greedy
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Figure 5.4: Screenshot of auction in progress.

scheme for filling cards is not optimal. However this activity is not game-
theoretic, because there is no interaction between players – one simply seeks
to maximize one’s score, that is one’s total number of points at the end of
the game.

What is relevant to us is the “auction” version which adds the following
step, 3 times during the game. Players are allowed to use some of their
points to bid for one of 5 prizes, a prize being the chance to earn extra
points. The bidding proceeds as described earlier:

During a 20 second time window, players see how many bids
have already been placed on each item, but do not see the bid
amounts.

The screenshot in Figure 5.4 shows a situation 5 seconds before the window
closes. Three players have placed bids, on different cards – these numbers
of bids are shown in the disc at the cards’ bottom left corner. Three other
players had not yet placed bids. In the 5 seconds remaining after the screen-
shot, it happened that two players bid on the top right card (with 0 earlier
bids) and one player bid on the bottom left card (with 1 earlier bid).

In each auction there are 5 cards, from a set of 12 different cards. The prizes,
if you win a bid, are a random number of points. As mentioned earlier, in our
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mathematical analysis we took the prizes to be the (non-random) expected
value for each card.

More details. As seen in Figure 5.4 , each card shows the minimum
bid allowed, the maximum possible prize and the “type” which is mostly
match or scratch: our names like “150 match” refer to type and maximum
prize. In “150 match” there are 6 covered numbers, and the winning bidder
uncovers each until finding two equal numbers, and that number becomes
the prize. One can learn that the 6 covered numbers are 50, 100 and 150,
with two copies of each. So the prize is equally likely to be 50, 100, 150,
with expectation 100. In a “scratch” card there are also 6 covered numbers;
except that one is a bomb; the player uncovers numbers until reaching the
bomb, and the prize is the sum of the values uncovered. For such a “scratch”
card the maximum prize is the sum of the 5 numbers and the expected
value is exactly half of this maximum. Learning all these numerical values
requires careful observation, and we suspect typical players do not explicitly
know these expected values. In particular, for “match” cards the expected
value is always more than half of the maximum prize shown on the card.
A player unaware of this distinction is liable to underbid on the “match”
cards or overbid on the “scratch” card, which appears to be happening in
the Figure 5.2 data.

5.6 The Least Unique Positive Integer game

This is another game for which we expect a unique NE, and which is easy
and quick to play in a lecture class, needing only pen and paper.

Least Unique Positive Integer game. Each of N players
chooses a number from 1, 2, 3, . . .. The winner is the person who
chooses the smallest number that no-one else chooses.

There might be no winner, but this is very unlikely except for very small N .

Here a player’s strategy is a probability distribution p = (p1, p2, . . .),
where pi is the probability of choosing i. Let me outline the easy approxi-
mate analysis of the NE, for reasonably large N .

We expect the support of the NE to be 1 ≤ i ≤ K for some K depending
on N . If other players use p then

Xi = number others choosing i ≈ Poisson(λi = (N − 1)pi)
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The “constant expected gain” principle says that, whatever your choice of i
in the support [1,K], your chance of winning is c ≈ N−1. Choosing i, you
win if no-one else chooses i and there is no unique chooser of any j < i,
giving approximate equations

P(Xi = 0, Xj 6= 1 ∀j < i) = 1/N, 1 ≤ i ≤ K.

For the left side there is a (complicated) formula in terms of p, which can
be solved numerically. In particular, for i = 1 we see

exp(−(N − 1)p1) ≈ 1/N

and so
p1 ≈ logN

N−1 .

Then pi decreases, slowly at first – the reader can find graphics in the paper
cited below. Playing this in class with around 30 students, the winning
number is typically in the 3 - 7 range, consistent with NE theory.

This game was played on a large scale (around 50,000 players) for money
prizes in Sweden, 7 times in 2007. Analysis in this 2010 paper Testing
game theory in the field: Swedish LUPI lottery games. shows data roughly
consistent with NE theory. However, both theory and actual results show
the winning number is likely to be at most 7,000. Knowing that, one could
buy (or form a coalition of players to buy) a ticket with each number in the 1
- 7000 range and almost guarantee a win. For this reason (presumably) the
game was stopped after 7 weeks. Note that a “buy all the tickets” strategy is
rarely advantageous in a usual lotto game because all winning combinations
share the prize; what is different about this game is the unique winner.

5.7 Further reading

Game theory is an appealing mathematical topic, and there are perhaps a
hundred books giving introductory accounts in different styles. Styles using
minimal mathematics range from “popular science” (Len Fisher’s Rock, Pa-
per, Scissors: Game Theory in Everyday Life) to airport bookstore Business
section bestseller (Dixit - Nalebuff Thinking Strategically: The Competitive
Edge in Business, Politics, and Everyday Life). A wide-ranging account
with a modicum of mathematics is provided in The Complete Idiots Guide
to Game Theory while careful rigorous expositions at a lower division math-
ematical level can be found in Saul Stahl’s A Gentle Introduction to Game
Theory or Philip Straffin’s Game Theory and Strategy or the recent e-book

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1007181
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1007181
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Game Theory Through Examples by Erich Prisner. A representative of the
numerous textbooks aimed at students of Economics is Robert Gibbons’s
Game Theory for Applied Economists, and an erudite overview from that
viewpoint is given in David Kreps’s Game Theory and Economic Modelling.
But such books either contain no real data, or occasionally quote data ob-
tained by others.
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Chapter 6

Short and medium term
predictions and risks in
global politics and
economics.

I have no crystal ball for making accurate predictions, but we can look at
how well others have done. To get started, what does “prediction” mean and
how do we assess its accuracy?

In this lecture I am not thinking of “routine” issues – predicting election
results or macroeconomic indicators in a particular country a few months
ahead – but of more substantial or unique geopolitical issues. Things that
are not just continuations of current trends. For instance, 5 years ago as I
write1, few people imagined that Russia would annex Crimea or that Scot-
land would almost become independent, and 10 years ago even fewer would
have predicted that, according to this week’s Economist (explicitly) and to
most people I see in everyday life (implicitly), the defining artifact of our
age is . . . . . . the smartphone.

It may be tempting to just throw up one’s hands and say such matters
are completely unpredictable, but that is hardly helpful. Where is the line
between “predictable” and “completely unpredictable”, and what do these
concepts actually mean? The latter will be our first topic. Because there is
no magic formula that will give reliable predictions for unique events, this
lecture’s focus is on how to assess how good other people’s past predictions

1March 2015

87
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have been, and in particular we will look at

• The Good Judgment Project

• The annual World Economic Forum Global Risks Survey.

6.1 Some conceptual issues.

Over the last 20 years I have often read assertions of the form2

nobody predicted the peaceful ending of Soviet control of Eastern
Europe (1989) and the subsequent breakup of the Soviet Union
(1991).

But what exactly does that mean? A scholarly analysis of literature in
the International Relations discipline was given in a 1993 paper by Gaddis.
What’s relevant to this lecture is his underlying premise

for a theory of International Relations to be regarded as success-
ful, it should have been able to predict (in say 1985) that the end
of the Cold War (before say 1995) was likely (page 18, edited).

Such an “unlikely events don’t happen” attitude strikes me as very strange.
To me it’s self-evident that, in most cases of future uncertainty, instead of
saying “this will or will not happen” one should think of alternative outcomes
and assign probabilities. I happen to have a 1985 book (Dunnigan – Bay
A Quick and Dirty Guide to War, 1st edition) which actually does this
(list alternative outcomes and assign probabilities) for 15 potential future
conflicts in different parts of the world. On the topic of the Cold War in
Europe, their assessed probabilities for 1985-1995 were

65% status quo
25% internal revolts in Eastern Europe lead to decrease in Soviet
control
5% military attack by Soviet Union on West Germany
5% Soviet Union falls apart for internal reasons

2Tracking down such assertions illustrates the difficulties of searching for pre-internet
material. A quick search finds the Wikipedia page Predictions of the dissolution of the
Soviet Union but no opposite page! And those predictions were of the style “it’s a bad
system that can’t last forever” rather than any testable prediction.

http://www.jstor.org/discover/10.2307/2539129?sid=21105509996191&uid=4&uid=2
http://en.wikipedia.org/wiki/Predictions_of_the_dissolution_of_the_Soviet_Union
http://en.wikipedia.org/wiki/Predictions_of_the_dissolution_of_the_Soviet_Union
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and their phrase “the empire crumbles” for that final alternative proved
rather accurate. Surely anyone else who seriously considered possibilities
in 1985 would also assign some small probability to “the empire crumbles”.
Living through and subsequently reading the actual history of this time
period, my view (unprovable, of course) is that the outcome we saw really
was a priori unlikely. Whenever we speculate about the future, we need to
remember that unlikely events do sometimes happen!

Terminology: predict vs forecast. It is important to distinguish be-
tween between the two activities

• asserting “X will happen”

• listing some alternative possible future events and assigning probabil-
ities to these alternatives.

English language is unhelpful, because the word predict invariably carries
the former meaning, and forecast usually does: there is no standard word
or phrase for the latter activity. Because the phrase weather forecast has
some probability associations (“the chance of rain tomorrow is . . . . . . ), in
this lecture I will use the word forecast for the second activity, in contrast
to predict for the first activity. Thus “prediction markets” (the subject of
Lecture 4) provide consensus forecasts, that is probabilities of the future
event in question.

To me it seems self-evident that, in thinking about future uncertainties,
one should think in terms of forecasts rather than predictions. My specula-
tions on why this is not done more widely are deferred to Chapter ??.

6.2 The annual WEF Global Risks assessment

Where can we find some recent past forecasts, in order to try to assess their
accuracy in retrospect? Here is the most interesting source that I know.
At the end of each January you may see news reports involving the World
Economic Forum (WEF) annual meeting in Davos. The WEF meeting itself
is often criticized from various ideological perspectives, a debate I have no
wish to enter. But somewhat paradoxically, by having no official status it
is beholden to no-one and therefore is able to solicit background briefings
written by a more extensive international and interdisciplinary group of ex-
perts than would be obtained by any governmental or academic sponsor. In

http://en.wikipedia.org/wiki/World_Economic_Forum
http://en.wikipedia.org/wiki/World_Economic_Forum
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particular, each year since 2006 it has produced a “global risks” report3. A
summary of each report is provided by a graphic indicating perceived likeli-
hood and seriousness of about 30 major risks which might affect substantial
parts of the world. Figures 6.1 - 6.3 show these graphics for the years 2007,
2011 and 2014 in similar (but with intriguing detailed differences – see point
4 below) format: the horizontal axis shows relative probabilities and the
vertical scale shows relative economic effects.

Some details regarding these graphics. 1. Each phrase on the graphic
is expanded to a sentence in the report. For instance “asset price collapse”
is expanded to

A collapse of real and financial asset prices leading to the de-
struction of wealth, deleveraging, reduced household spending
and impaired aggregate demand.

2. The reports are presumably written over the quarter before the Jan-
uary meeting, so the “2007” report would be based on knowledge and opin-
ions from Fall 2006.

3. The future time period involved is not specified very consistently, but
is apparently 5-10 years.

4. The labeling on the axes has changed over the years, as follows.

• In 2007 there are numerical probabilities (called “likelihood”) and nu-
merical dollar economic effects.

• In 2010 the former is called “perceived likelihood” on a qualitative
(unlikely to very likely) scale; the effects are still in dollars and called
“perceived impact”.

• In 2014 respondents were asked to assess both likelihood and impact on
a 1-7 scale with only verbal descriptions (very unlikely to very likely;
low impact to high impact) of their meaning.

This backoff from quantitative forecasts is puzzling to me – perhaps it was
intended to emphasize that the forecasts are based on subjective opinions
of surveyed respondents, or perhaps as part of a legal disclaimer of liability
for errors?

3Current and recent ones should be available via this site.

http://www.weforum.org/reports
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Figure 6.1: Global Risks Perception 2007

8
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Note: Likelihood was based on actuarial principles where possible. For most risks, however, qualitative assessment was used. 
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Figure 6.2: Global Risks Perception 2011

Figure 1 | Global Risks Landscape 2011: 
Perception data from the World Economic Forum’s Global Risks Survey 
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Figure 6.3: Global Risks Perception 2014
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In class I show the graphic from about 3 years ago and talk briefly about
which of those risks have subsequently manifested. Then I ask the students
what risks do they think are most prominent in the latest report, and then I
show the latest year graphic. Below are a few such remarks.

Over the period I have given this lecture, the natural major “nobody
foresaw . . . ” event is surely the Financial crisis of 2007-08. 4 A cynical
view of retrospective analysis of this event is that commentators say either
“no-one saw it coming” or “I saw it coming”, depending on whether they
can exhibit evidence of the latter! Is such cynicism justified? The 2007
WEF Global Risks report was compiled in late 2006, at which time there
were concerns about the worldwide boom in house prices, and some con-
cerns about U.S. subprime mortgages, but nothing dramatic had happened
in other markets. In that report we see (Figure 6.1) that the most serious
risk (in a rough likelihood times severity sense) was “asset price collapse”,
defined earlier, and this is almost precisely what subsequently happened. So
although the severity of the subsequent Great Recession was undoubtedly
underestimated, the oft-repeated “nobody saw it coming” view of the finan-
cial crisis is just plain wrong, in that it was widely viewed as a substantial
risk.

Looking at the 2014 report and comparing with subsequent events during
2014, the two major relevant events are surely

(i) the annexation of Crimea by Russia together with the subsequent Russian
military intervention in Ukraine

(ii) the emergence of ISIL as a military force controlling territory in Iraq
and Syria.

These would fall into the risk categories interstate conflict and state col-
lapse. Such risks were assessed (January 2014) as having low and medium
(respectively) likelihood and medium impact. Unsurprisingly, the January
2015 report has reassessed interstate conflict as essentially the most serious
of all the risks, while state collapse is assigned increased likelihood but not
increased impact.

Is there a bottom line? While it is interesting to continue discussing
particular examples – did this particular risk eventuate? – such politi-
cal/economic history is not the subject of these lectures. The examples
above underscore the difficulty in placing events on some predictable–unpredictable
spectrum; one can recognize the general possibility of state collapse or inter-
state conflict without specifying particular states. Also recall that the WEF

4Remember this is ancient history to my current students.

http://en.wikipedia.org/wiki/Financial_crisis_of_2007%E2%80%9308
http://en.wikipedia.org/wiki/Great_Recession
http://en.wikipedia.org/wiki/Annexation_of_Crimea_by_the_Russian_Federation
http://en.wikipedia.org/wiki/2014%E2%80%9315_Russian_military_intervention_in_Ukraine
http://en.wikipedia.org/wiki/2014%E2%80%9315_Russian_military_intervention_in_Ukraine
http://en.wikipedia.org/wiki/Islamic_State_of_Iraq_and_the_Levant
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reports are addressing total likelihood and impact over the next 5-10 years,
rather than trying to predict specific events over the coming 12 months. For
many reasons it is hard to make any quantitative assessment of the accuracy
of these past risk assessments, so we will turn to a setting designed to allow
such quantitative assessment.

A final philosophical point is that history pays much more attention to
events that did happen than to events that didn’t happen, but to make any
inference about causality – does action A typically cause a war? – you need
to know how often A happened but a war did not result. These reports
provide a rare instance where one can check for events that didn’t happen
as easily as those that did.

6.3 The Good Judgment Project

In the Good Judgment Project 5, non-expert individuals in teams are asked
to assess the probabilities of selected future events best described as “near-
term geopolitics and economics” with explicit deadlines. For instance, four
of the 64 questions open as I write6 are

• Will there be a lethal confrontation between Chinese and Indian na-
tional military forces before 1 June 2015?

• Before 1 June 2015, will SWIFT restrict any Russian banks from ac-
cessing its services?

• Will negotiations on the Transatlantic Trade and Investment Partner-
ship (TTIP) be completed before 10 June 2015?

• Will a unity government be formed in Libya before 1 June 2015?

More details about the Project will be provided as needed. To the reader
who feels it is ridiculous to pose such questions to non-experts we would
reply: do you feel that trial by jury is ridiculous? In both cases the point is
to listen to evidence and to expert opinion and then deliberate before giving
an answer.

We emphasize that contestants are not asked to give a Yes/No predic-
tion, but instead are asked to give a numerical probability. We also empha-
size that we are not going to propose any mathematical way for deciding on
such probabilities. Instead, in this section we focus on how to measure, after

5Currently scheduled to end in mid-2015. I was an ordinary participant in 2014-5.
6March 2015

http://www.goodjudgmentproject.com
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outcomes are known, the relative or absolute accuracy of such probability
assessments made by others. Mathematically inclined readers will find the
following discussion rather obvious and may skip to the next section. My
point is to emphasize the distinction between predicting and forecasting, as
defined in section 6.1.

Consider for a moment a scenario where two people, A and B, are asked
to predict the outcome of each of 100 events. Eventually we know all the
actual outcomes – suppose A gets 80 correct, and B gets 70 correct. There is
no great subtlety in interpreting this data; either A is genuinely better than
B at predicting the kind of events under study, or one person was unusually
lucky or unlucky. In this lecture we consider the other scenario, where A
and B are asked to give a forecast probability for each event. Now our data
is of the form

event A’s forecast B’s forecast occurs?
. . . . . . . . . . . .
63 0.7 0.8 yes
64 0.5 0.6 no
. . . . . . . . . . . .

Here it is less obvious what to do with this data – which person is better
at assessing probabilities, and how good are they in absolute terms? To
analyze such data, a basic method is to assign a score to each forecast, given
by a formula involving the assessed probability p and the actual outcome.
A mathematically natural choice of formula is

score = (1− p)2 if event occurs

= p2 if not. (6.1)

As in golf, you are trying to get a low score. For instance if you forecast p
= 0.8 then your score will be 0.04 if the event occurs but will be 0.64 if it
does not occur.

This particular scoring formula has two nice features. Suppose you ac-
tually believe the probability is q. What p should you announce as your
forecast? Under your belief, your mean score (by the rules of elementary
mathematical probability) equals q(1− p)2 + (1− q)p2 and a line of algebra
shows this can be rewritten as

(p− q)2 + q(1− q). (6.2)

Because you seek to minimize the score, you should announce p = q, your
honest belief – with this scoring rule you cannot “game the system” by being
dishonest in that way.
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Now write q for the true probability of the event occurring (recall we are
dealing with future real-world events for which the true value q is unknown),
and write p for the probability that you forecast. Then your (true) mean
score, by exactly the same calculation, is also given by (6.2). The term
(p− q)2 is the “squared error” in your assessment of the probability. When
contestants A and B forecasts the same event as probabilities pA and pB,
(6.2) implies that the mean difference between their scores equals the differ-
ence between their squared errors. When A and B assess probabilities of the
same long sequence of events, we can calculate their average (over events)
scores sA and sB. We cannot know the corresponding mean-squared-errors
MSE(A) and MSE(B), defined as the average (over events) of the squared
errors (pA−q)2 and (pB−q)2, because we do not know the true probabilities
q. But (6.2) implies that

sA − sB is a sample estimate of MSE(A)−MSE(B) (6.3)

in the law of large numbers sense, that as the number of events gets larger
and larger, the difference between sA − sB and MSE(A) − MSE(B) gets
smaller and smaller. In the golf analogy, 4 fewer strokes on one round is not
convincing evidence that one player is better than another, but an average
of 4 fewer over many rounds is.

The setting discussed above is called a prediction tournament7, and the
Good Judgment Project is an example of a prediction tournament. The
bottom line of the discussion above is

in a prediction tournament, the differences in scores indicate
differences in forecasting skill, but one cannot assess the quality
of forecasts in absolute terms.

In the golf analogy, it’s like having no given “par” score for a course.

Scores in the Good Judgment Project. Figure 6.4 shows a histogram
of scores of individuals in the 2013-14 season. Interpretation of the numerical
values is rather infeasible, for reasons explained later. The season scores were
based on 144 questions, and a back-of-an-envelope calculation gives the SE
due to intrinsic randomness of outcomes as around 0.02, which is much
smaller than the spread observed in the histogram. The key conclusion is
that there is wide variability between players – as in golf, some people are
just much better than others at forecasting these geopolitical events.

7This name is unfortunately inconsistent with my usage of prediction and forecast.
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Figure 6.4: Some scores in the Good Judgment Project (ignore the black
bar).

6.4 More about the GJP

The Good Judgment Project (GJP) has roots in Philip Tetlock’s
work, described in his 2005 book Expert Political Judgment,
which may be best known for its conclusion that the “expert”
forecasters he studied were often hard-pressed to do better than
the proverbial dart-throwing chimp. Tetlock and colleagues be-
lieve that forecasting tournaments are the best way to compare
forecasting ability; and that participants can improve their fore-
casting skills through a combination of training and practice,
with frequent feedback on their accuracy. Combining training
and practice with what GJP’s research suggests is a stable trait
of forecasting skill seems to produce the phenomenon that GJP
calls “superforecasters”. These have been so accurate that, ac-
cording to a recent report by Washington Post columnist David
Ignatius, they even outperformed the forecasts of intelligence an-
alysts who have access to classified information. Extracts from
the (public) Project blog, with minor edits.

The book is well worth reading, with undergraduate-level mathematical
statistics arising from serious conceptual issues. Just for fun, I quote his
categorization of excuses that experts make when their predictions turn out

http://goodjudgmentproject.com/blog/
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wrong. I have changed some of his titles.

1: Implicit conditions not satisfied. For instance, you predict that
implementing a certain policy will have good results; if not then you say the
policy must have been implemented badly.

2: Exogeneous shocks. Nobody could have expected . . . . . . 8.

3: Close call counterfactual. I was almost right.

4: Just off on timing. The war lasted a bit longer than the question
deadline.

5: Politics is unpredictable, anyway. So my mistake wasn’t really
a mistake.

6: I made the right mistake. An error in the other direction would
have been more serious.

7. Unlikely events sometimes happen.

Details of GJP scoring. A major aspect of the GJP is that, instead of
making a single forecast on a question, participants update their forecasts
over time as new information is acquired; the “score” on a question is then
the average (over days) of the scores for each day’s forecast. Scoring actually
uses Brier score, which for yes/no questions is twice the score 6.1 but which
extends to the minority of questions with more than two alternatives. Teams
consist of 8-15 people; with typically 50+ questions. Typically 3-4 people
make forecasts on a given question; an individual who does not forecast is
given the team median score. All these effects make it hard to interpret the
numbers in Figure 6.4.

Finally there are two technical issues caused by the participants (and
organizers!) not paying attention to fine details of scoring. First, if no
team member makes a forecast then a 0.5 probability is imputed; because
at opening most event probabilities seem not close to 0.5 a team that delays
making a first forecast (e.g. because of no hard news) is penalized. Second,
if the event occurs before the deadline then the question is closed and the
scores are averaged over days until closing. But this allows one (in theory) to
“game the system”. If you believe an event will either occur quickly or not
at all, then9 (if that belief is correct) it is advantageous to you to overstate
the probability of the event at the start of the time window So some of the
variability in scores might be due to such scoring artifacts rather than actual
forecasting skill.

8the Spanish Inquisition
9This is an exercise for the mathematically-inclined reader.

http://en.wikipedia.org/wiki/Brier_score
https://www.youtube.com/watch?v=vt0Y39eMvpI
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6.5 The cost of errors in assessing probabilities

Here we digress somewhat to a general issue, surprisingly not much discussed
in either textbook or popular accounts. Suppose you believe an event has
probability q = 42% whereas it really has probability p = 57%. What is
your error? Well, the size of your error could be measured in several ways,
most simply by the difference |p− q| = 15%. But what is the cost of such an
error? This is a very vague question, and clearly the answer is very context-
dependent. In our prediction tournament context we used cost (p − q)2

as being mathematically convenient. Is there some justification other than
mathematical convenience?

In this section I describe two contexts in which this cost function arises
naturally, at last as a first-order approximation for small |p − q|. I am
implicitly not considering “highly asymmetric” cases where probabilities are
close to 0 or 1, or where the consequences of occurrence and non-occurrence
are dramaatically different.

The simplest decision problem. We consider a very simple model of a
decision under uncertainty, which we could view as a bet against Nature, an
opponent who is indifferent to our actions and wishes.

Model. An event F will occur with unknown probability p. You have
a choice of action A, which you would take if you knew F would occur, or
action B, which you would take if you knew F would not occur. So we
suppose there is a payoff table
• (action A): payoff = a if F occurs, payoff = b if F does not occur
• (action B): payoff = c if F occurs, payoff = d if F does not occur

where a > c and d > b. (If payoffs are random we can just take their
expectations. We assume the classical setting of linear utility, not being
risk-averse). Now we calculate the mean payoffs
• (action A): mean payoff = pa+ (1− p)b
• (action B): mean payoff = pc+ (1− p)d

There is a critical value pcrit where these mean payoffs are equal, and this is
the solution of

pcrit

1− pcrit

=
d− b
a− c

.

If we knew p our best strategy is

do action A if p > pcrit, do action B if p < pcrit.

Instead all we have is our guess pguess, so we use this strategy but based on
pguess instead of p.
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What is the cost of not knowing p? If pguess and p are on the same side
of pcrit then we take the optimal action and there is zero cost; if they are on
opposite sides we take the sub-optimal action and the cost is

|p− pcrit|z where z = a− b− c+ d > 0. (6.4)

Now consider what happens in many repeated different games of this type.
Assume the different payoffs are all of order 1 and are independent (over
games) of the probabilities, and hence pcrit is independent of p and pguess.
Then the proportion of times that pcrit happens to be in the interval between
p and pguess should be of order |p− pguess|, assuming the latter is small; and
when this occurs the mean cost is also, by (6.4), of order |p − pguess|. So
in this particular “decision under uncertainty” context the cost of errors is
indeed of order (p− pguess)

2.

Gambling at favorable odds. Suppose someone offers you a bet (in
either direction) at fair odds based on their belief the probability of the
event is p, and suppose you know the probability is really q, where |p − q|
is small. You can now make a favorable bet, with profit of order |p− q| per
unit bet. And the Kelly criterion from section 2.6 tells you that, presented
with repeated bets of this type, the proportion of your fortune to bet each
time is also order |p − q|. So the rate of growth of your fortune is order
(p− q)2, representing the “cost” of your counterpart’s error.
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Chapter 7

Coding and entropy

Note. At Berkeley, information theory is taught in a graduate course but not an

undergraduate one, so I assume my students have not seen any of this material.

The final section summary should be comprehensible even if all the math is skipped.

Figure 7.1: xkcd.com/936

103
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7.1 Introduction

In an earlier survey I asked students to write down a common five-letter
English word. I start this lecture by showing the xkcd cartoon in Figure
7.1 and then demonstrate the cartoon’s essential truth by using a password
strength checker to assess the strengths of
• a concatenation of 4 of the students’ words
• a volunteer student’s password.
Invariably the former is judged “strong” or “very strong” and the latter
“weak” or “medium”.

This lecture introduces a few topics from a big field known misleadingly
as Information Theory – see the “further reading” section 7.10. Each of the
words coding and entropy have rather specific meanings in this lecture, so I
first must explain these meanings.

7.2 Entropy as a measure of unpredictability

For a probability distribution over numbers – Binomial or Poisson, Normal or
Exponential – the mean or standard distribution are examples of “statistics”
– numbers that provide partial information about the distribution. Consider
instead a probability distribution over an arbitrary finite set S. Simple
concrete examples we have in mind for S are

(i) Relative frequencies of given names (Table 7.1)1.

(ii) Relative frequencies of letters in the English language (Figure 7.2)

Table 7.1: 2013 U.S. births given names.

Rank Male name Percent of total males Female name Percent of total females
1 Noah 0.9043% Sophia 1.1039%
2 Liam 0.8999% Emma 1.0888%
3 Jacob 0.8986% Olivia 0.9562%
4 Mason 0.8793% Isabella 0.9161%
5 William 0.8246% Ava 0.7924%
6 Ethan 0.8062% Mia 0.6844%

(iii) Relative frequencies of words in the English language.

1The extensive such data from the Social security site is an interesting source for
student projects.

https://www.microsoft.com/security/pc-security/password-checker.aspx
https://www.microsoft.com/security/pc-security/password-checker.aspx
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG/2006/04/1-10000
http://www.socialsecurity.gov/cgi-bin/popularnames.cgi
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Figure 7.2: Relative frequencies of letters in the English language (from
Wikipedia)

(iv) Relative frequencies of phrases in the English language2.

For a probability distribution p = (ps, s ∈ S) on such sets S it does not
make sense to talk about mean or standard deviation. But it does make
sense to devise statistics that involve only the unordered set of values {ps},
and the particular statistic relevant to this lecture is

E(p) := −
∑
s

ps log ps

which is called the entropy of the probability distribution p. This terminol-
ogy is confusing, patly because “entropy” is often used for what is properly
called entropy rate (section 7.4), and partly because of the only indirectly
related notion of entropy in statistical physics.

A basic fact is that the uniform distribution on an n-element set has
entropy = log n whereas the “degenerate” distribution concentrated at a
single element has entropy zero. The entropy statistic serves to place a
distribution on the spectrum from degenerate to uniform; entropy is of de-
scribed as “amount of randomness” but for our purposes is better regarded
as a measure of unpredictability. Note that many other statistics serve the
same general purpose, as discussed further in Lecture xxx under the phrase
diversity statistic.

2See the Google Books Ngram Viewer, which has various interesting uses. To see usage
of data as singular or plural, compare frequencies of “the data is” and “the data are”.

http://en.wikipedia.org/wiki/Diversity_index
https://books.google.com/ngrams/
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A good way to interpret the numerical value of E(p) is via the “effective
number” Neff – the number3 such that the uniform distribution on Neff ele-
ments has the same statistic. See section xxx for an illustration concerning
the changes over time in the diversity of given names (Table 7.1).

Entropy in physics. The reader has likely seen a statement of the second
law of thermodynamics in a verbal form such as

the total entropy of any isolated thermodynamic system increases
over time, approaching a maximum value

and the informal description of entropy as a measure of disorder. When
expressed in mathematical terms one can indeed see connections between
this physics formulation of entropy and our definition of E(p), but this con-
nection is not particularly helpful for an introductory treatment of the topic
of this lecture.

7.3 Coding, compression and encryption

The word coding nowadays primarily means “writing computer code” but
here we are concerned with representing data in some convenient form. A
simple example is the original ASCII scheme (section 7.6) for representing
letters and typewriter symbols in binary. In choosing how to code a partic-
ular type of data there are several issues one might consider.

• Compression: coding to make a text shorter

is useful both in data storage and in data transmission, because there is
some “cost” both to storage space and transmission time.

• Encryption: coding for secrecy

is familiar from old spy novels and from modern concerns about security of
information sent over the internet. These differ in an obvious way. Com-
pressing files on your computer will produce, say, a .zip file, and the al-
gorithms for compressing and decompressing are public. Encryption algo-
rithms in widespread use are commonly like public-key cryptography in that
the logical form of the algorithms for encryption and decryption are public,
but a private key (like a password) is required to actually perform decryp-
tion. In contrast, intelligence agencies presumably use algorithms whose

3The solution of E(p) = logNeff, typically not actually an integer.

http://en.wikipedia.org/wiki/Second_law_of_thermodynamics
http://en.wikipedia.org/wiki/Second_law_of_thermodynamics
http://en.wikipedia.org/wiki/Public-key_cryptography
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form is secret. For concreteness, in this lecture I talk in terms of coding
English language text, but the issues are the same for any kind of data.

A third issue I will not discuss is

• robustness under errors in data transmission: error-correcting code

Intuitively there seems no particular connection between encryption and
compression – if anything, they seem opposites, involving secrecy and open-
ness. But a consequence of the mathematical theory outlined in this lecture
is that

(*) finding good codes for encryption is the same as finding good
codes for compression.

Here is a verbal argument for (*). A code or cipher transforms plaintext
into ciphertext. The simplest substitution cipher transforms each letter into
another letter. Such codes – often featured as puzzles in magazines – are
easy to break using the fact that different letters and letter-pairs occur in
English (and other natural languages) with different frequencies. A more ab-
stract viewpoint is that there are 26! possible “codebooks” but that, given a
moderately long ciphertext, only one codebook corresponds to a meaningful
plaintext message.

Now imagine a hypothetical language in which every string of letters like
QHSKUUC . . . had a meaning. In such a language, a substitution cipher
would be unbreakable, because an adversary seeing the ciphertext would
know only that it came from of 26! possible plaintexts, and if all these are
meaningful then there would be no way to pick out the true plaintext. Even
though the context of secrecy would give hints about the general nature of a
message – say it has military significance, and only one in a million messages
has military significance – that still leaves 10−6 × 26! possible plaintexts.

Returning to English language plaintext, let us think about what makes
a compression code good. It is intuitively clear that for an ideal coding
we want each possible sequence of ciphertext to arise from some meaningful
plaintext (otherwise we are wasting an opportunity); and it is also intuitively
plausible that we want the possible ciphertexts to be approximately equally
likely (this is the key issue that the mathematics deals with).

Suppose there are 21000 possible messages, and we’re equally likely to
want to communicate each of them. Then an ideal code would encode each as
a different 1000-bit (binary digit) string, and this could be a public algorithm
for encoding and decoding. Now consider a substitution code based on the
32 word “alphabet” of 5-bit strings. Then we could encrypt a message by

http://en.wikipedia.org/wiki/Substitution_cipher
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(i) apply the public algorithm to get a 1000-bit string;
(ii) then use the substitution code, separately on each 5-bit block.
An adversary would know we had used one of the 32! possible codebooks
and hence know that the message was one of a certain set of 32! plaintext
messages. But, by the “approximately equally likely” part of the ideal coding
scheme, these would be approximately equally likely, and again the adversary
has no practical way to pick out the true plaintext.

Conclusion: given a good public code for compression, one can easily
convert it to a good code for encryption.

7.4 The asymptotic equipartition property

We now jump into math theory to state a non-elementary result, and accom-
pany it with some discussion. The basis of the mathematical theory is that
we model the source of plaintext as random “characters” X1, X2, X3, . . .
in some “alphabet”. It is important to note that we do not model them
as independent (even though I use independence as the simplest case for
mathematical calculation later) since real English plaintext obviously lacks
independence. Instead we model the sequence (Xi) as a stationary process,
which implies that there is some probability that three consecutive char-
acters are CHE, but this probability does not depend on position in the
sequence, and we don’t make any assumptions about what the probability
is.

To say the setup more carefully, for any sequence of characters (x1, . . . , xn)
there is a likelihood

`(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn).

The stationarity assumption is that for each time t and each sequence
(x1, . . . , xn)

P(Xt+1 = x1, . . . , Xt+n = xn) = P(X1 = x1, . . . , Xn = xn). (7.1)

Consider the empirical likelihood

Ln = `(X1, . . . , Xn)

which is the prior chance of seeing the sequence that actually turned up.
The central result (non-elementary; I teach it in a graduate course as the
Shannon-McMillan-Breiman theorem) is
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The asymptotic equipartition property (AEP) . For a stationary er-
godic4 source, there is a number Ent, called the entropy rate of the source,
such that for large n, with high probability

− log2 Ln ≈ n× Ent.

The rest of this section is the mathematical discussion of the theorem that I
say in class. I’m not going to attempt to translate it for the general reader,
who should skip to the next section to see the relevance to coding. It is
conventional to use base 2 logarithms in this context, to fit nicely with the
idea of coding into bits.

For n tosses of a hypothetical biased coin with P(H) = 2/3,P(T ) =
1/3, the most likely sequence is HHHHHH . . .HHH, which has likelihood
(2/3)n, but a typical sequence will have about 2n/3 H’s and about n/3 T’s,
and such a sequence has likelihood ≈ (2/3)2n/3(1/3)n/3. So

log2 Ln ≈ n(23 log2
2
3 + 1

3 log2
1
3).

Note in particular that log-likelihood behaves differently from the behavior
of sums, where the CLT implies that a “typical value” of a sum is close to
the most likely individual value.

Recall that the entropy of a probability distribution q = (qj) is defined
as the number

E(q) = −
∑
j

qj log2 qj . (7.2)

The AEP provides one of the nicer motivations for the definition, as follows.
If the sequence (Xi) is IID with marginal distribution (pa) then for x =
(x1, . . . , xn) we have

`(x) =
∏
a

pna(x)
a

where na(x) is the number of appearances of a in x. Because na(X1, . . . , Xn) ≈
npa we find

Ln ≈
∏
a

pnpaa

− log2 Ln ≈ n

(
−
∑
a

pa log2 pa

)
.

4The formal definition of ergodic is hard to understand; basically we exclude a source
that flips a coin to choose between “all English” and “all Russian”.

http://en.wikipedia.org/wiki/Asymptotic_equipartition_property
http://en.wikipedia.org/wiki/Ergodicity
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So the AEP identifies the entropy rate of the IID sequence with the entropy
E = −

∑
a pa log2 pa of the marginal distributions X.

Let me mention three technical facts.

Fact 1. (easy). For a 1-1 function C (that is, a code that can be be
decoded precisely), the distributions of a random item X and the coded
item C(X) have equal entropy.

Fact 2. (easy). Amongst probability distributions on an alphabet of
size B, entropy is maximized by the uniform distribution, whose entropy is
log2B. So for any distribution on binary strings of length m, the entropy is
at most log2 2m = m.

Fact 3. (less easy). Think of a string (X1, . . . , Xn) as a single random
object. It has some entropy Ek. In the setting of the AEP,

k−1Ek → Ent as k →∞.

Finally a conceptual comment. Identifying the entropy rate of an IID
sequence with the entropy of its marginal distribution indicates that entropy
is the relevant summary statistic for the non-uniformness of a distribution
when we are in some kind of multiplicative context. This is loosely analogous
to the topic of Lecture 2, the Kelly criterion, which is tied to “multiplicative”
investment.

7.5 Entropy rate and minimum code length

Here we will outline in words the statement and proof of the fundamental
result in the whole field. The case of an IID source (recall section 2.2) is
Shannon’s source coding theorem from 1948. The “approximation” is as
n→∞.

A string of length n from a source with entropy rate Ent can be coded
as a binary string of length ≈ n× Ent but not of shorter length.

More briefly, the optimal coding rate is Ent bits per letter.

Why not shorter? Think of the entire message (X1, . . . , Xn) as a single
random object. The AEP says the entropy of its distribution is approxi-
mately n × Ent. Suppose we can code it as a binary string (Y1, . . . , Ym) of
some length m. By Fact 1, the entropy of the distribution of (Y1, . . . , Ym)
also ≈ n × Ent, whereas by Fact 2 the entropy is at most m. Thus m is
approximately ≥ n× Ent as asserted.

http://en.wikipedia.org/wiki/Shannon's_source_coding_theorem
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How to code this short. We give an easy to describe but completely
impractical scheme. Saying that a typical plaintext string has chance about
1 in a million implies there must be around 1 million such strings (if more
then the total probability would be > 1; if less then with some non-negligible
chance a string has likelihood not near 1 in a million). So the AEP implies
that a typical length-n string is one of the set of about 2n×Ent strings which
have likelihood about 2−n×Ent (and this is the origin of the phrase asymptotic
equipartition property). So in principle we could devise a codebook which
first lists all these strings as integers 1, 2, . . . , 2n×Ent, and then the com-
pressed message is just the binary expansion of this integer, whose length is
log2 2n×Ent = n × Ent. So a typical message can be compressed to length
about n×Ent; atypical messages (which could be coded in some non-efficient
way) don’t affect the limit assertion.

The second argument is really exploiting a loophole in the statement. View-
ing the procedure as transmission, we imagine that transmitter and receiver
are using some codebook, but we placed no restriction on the size of the
codebook, and the code described above uses a ridiculously large and im-
practical codebook,

The classical way to get more practical codes is by fixing some small k
and coding blocks of length k, Thus requires a codebook of size Ak, where
A is the underlying alphabet size. However, making an optimal codebook
of this type requires knowing the frequencies of blocks that will be pro-
duced by the source. Rather than explain further, we shall jump (after a
brief historical digression) to more modern codes that don’t assume such
knowledge..

7.6 Morse code and ASCII

Invented around 1840, Morse code codes each letter and numeral as a se-
quence of dots and dashes: for instance T is − and Z is −−••. Logically this
is like coding into a three-letter alphabet, because one also needs to indicate
(by a pause) the spaces between letters. As is intuitively natural, common
letters (like T) are coded as short sequences and uncommon letters (like Z)
are coded as longer sequences. Given frequencies of letters, there is a the-
oretical optimal way (Huffman coding) to implement such a variable length
code, and this has the same intuitive feature. But it’s important to note
that Huffman coding is optimal only amongst codes applied to individual
letters, and depends on known fixed frequencies for letters.

Developed in the 1960s, ASCII codes letters, numerals and other symbols

http://en.wikipedia.org/wiki/Morse_code
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/ASCII
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into 128 7-bit strings: for instance T is 101 0100 and Z is 101 1010. At first
sight it may seem surprising that ASCII, and its current extension unicode,
don’t use variable length codes as did Morse code. But the modern idea is
that with any kind of original data one can first digitize into binary in some
simple way, and then compress later if needed.

7.7 Lempel-Ziv algorithms

In the 1970s it was realized that with computing power you don’t need a
fixed codebook at all – there are schemes that are (asymptotically) optimal
for any source. Such schemes are known as Lempel-Ziv style5 algorithms,
though the specific version described below, chosen as easy to describe, is
not the textbook form.

Suppose we want to transmit the message

010110111010|011001000 . . . . . .

and that we have transmitted the part up to |, and this has been decoded by
the receiver. We will next code some initial segment of the subsequent text
011001000 . . . . . .. To do this, first find the longest initial segment that has
appeared in the already-transmitted text. In this example it is 0110 which
appeared in the position shown.

010110111010|011001000 . . . . . .

Writing n for the position of the current (first not transmitted) bit, let
n− k be the position of the start of the closest previous appearance of this
segment, and ` for the length of the segment. In the example, (k, `) = (10, 4).
We transmit the pair (k, `); the receiver knows where to look to find the
desired segment and append it to the previously decoded text. Now we just
repeat the procedure:

0101101110100110|01000 . . . . . .

the next maximal segment is 0100 and we transmit this as (7, 4).
How efficient is this scheme? We argue informally as follows. When we’re

a long way into the text – position n say – we will be transmitting segments
of some typical length ` = `(n) which grows with n (in fact it grows as order
log n but that isn’t needed for this argument). By the AEP the likelihood

5The current Wikipedia article is not so helpful for the general reader.

http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Lempel-Ziv-Welch
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of a particular typical such segment is about 2−`×Ent and so the distance
k we need to look back to find the same segment is order 2+`×Ent. So to
transmit the pair (k, `) we need log2 `+ log2 k ≈ `× Ent bits. Because this
is transmitting ` letters of the text, we are transmitting at rate Ent bits per
letter, which is the optimal rate.

7.8 Checking for yourself

On my Mac I can use the Unix compress command, which implements one
version of the Lempel-Ziv algorithm. A simple theoretical prediction is that
if you take a long piece of text, split it into two halves of equal uncompressed
length, and compress each half separately, then the two compressed halves
will be approximately the same length. It takes only a few minutes to
check an example. I used a text of Don Quixote, in English translation,
downloaded from Project Gutenberg.

Table 7.2: Bytes in Don Quixote

uncompressed compressed
first half 1109963 444456

second half 1109901 451336
whole 2219864 895223

The prediction works pretty well. Further predictions can be made based on
the notion that the algorithm incurs some “start-up cost” before the coding
becomes efficient, implying

• The compressed size of a complete text will be shorter than the sums
of compressed sizes of its parts. (We see this in the example above,
though the difference is very small).

• For a text broken into pieces of different sizes, the compression ratio
for the pieces will be roughly constant but also will tend to decrease
slightly as size increases.

To illustrate the latter, I used the LATEX text of the Grinsted-Snell textbook
Introduction to Probability.
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Table 7.3: Bytes in Grinsted-Snell

chapter uncompressed compressed ratio
1 101082 46029 .465
2 73966 32130 .434
3 139490 61571 .441
4 123784 53962 .436
5 100155 43076 .430
6 134256 57577 .429
7 39975 18021 .451
8 39955 18759 .470
9 90019 39853 .443

10 79560 35058 .441
11 166626 69181 .415
12 56463 25299 .448

7.9 . . . but English text is not random

So one could just demonstrate that compression algorithms work in practice
on natural English text, and stop. But this doesn’t address a conceptual
issue.

(B) If you designed a vehicle to work well as an airplane, you
wouldn’t expect it to work well as a submarine. So why do al-
gorithms, designed to work well on random data, in fact work
well in the completely opposite realm of meaningful English lan-
guage?

A standard explanation goes as follows. Do we expect that the frequency
of any common word (e.g. “the”) in the second half of a book should be
about the same as in the first half? Such “stabilization of frequencies” seems
plausible – we are not looking at meaning, just syntax, which doesn’t change
through the book. This idea of “the rules are not changing” suggests the
analogy between written text and a deterministic physical system. An iconic
mental picture of the latter is “frictionless billiard balls” which, once set in
motion, continue bouncing off each other and the table sides forever. For
certain kinds of such physical systems, ergodic theory predicts “stabilization
of frequencies” – e.g. the proportion of time a ball spends near a corner
should be about the same in the first hour as in the second hour. One can

http://en.wikipedia.org/wiki/Ergodic_theory
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introduce randomness into the story by taking, for the physical system, a
random time as “time 0”, or a random page as “page 0” in a text, and
then counting time relative to this start. And the notion of “stabilization
of frequencies” turns out to be mathematically equivalent to saying that
by a special choice of a random initial state (e.g. what we would see at a
time chosen at random from a very long time interval) one sees a stationary
random process in the sense (7.1). Granted this as a model for English text,
we get both “stabilization of frequencies” and the theory for coding that we
described earlier, as mathematical consequences.

What is unsatisfactory about that explanation? Well, we are asked to
accept, in this particular setting of writing text, the analogy between con-
scious decisions and a physical system. But it is hard to think of another
setting where conscious decisions of a single individual can reasonably be
modeled probabilistically, so it begs the question of what is so special about
writing text.

7.10 Wrap-up and further reading

For the topic of this lecture

• There is extensive mathematical theory, and algorithms based on the
theory are used widely.

• Some consequences of theory are readily checkable.

• The use of probability is conceptually subtle. We don’t think of speech
or writing as random in everyday life, not does it fit naturally into neat
philosophical categories like “intrinsic randomness” or “opinion/lack
of knowledge randomness”.

• But there is no explanation of why algorithms work except via a model
of randomness.

In Lecture 4 we saw a context (prediction markets and strategies for fair
games) where one can make numerical predictions without needing a very
specific model but only assuming a structural property (martingale). This
lecture shows the same for the context of data compression, the structural
property being stationarity. A third such context is spatial networks (section
9.4 later), the structural property being scale-invariance.
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Further reading. This lecture’s topic grew from a 1948 Shannon paper
with the title “a mathematical theory of communication” and the broad
academic field subsequently acquired the name Information Theory. This
is an unfortunate name – the thought-provoking book Information: A Very
Short Introduction by Floridi gives one view of how this field fits into the
much bigger picture of what “information” really is. The Wikipedia arti-
cle Information Theory outlines the scope of this academic field, and the
Cover - Thomas textbook Elements of information theory is a standard first
mathematical treatment.

http://en.wikipedia.org/wiki/Information_theory


Chapter 8

From physical randomness to
the local uniformity principle

The presumption that observed quantitative data should typically follow some
smooth distribution, absent some specific reason otherwise, is widely used but
rarely discussed, and indeed has no standard name. I will call it the local
uniformity principle, and illustrate contexts where it is implicitly used.

8.1 A glance at physical randomness

Although it is more mathematical than is appropriate for these lectures, I
cannot resist advertising a little known book, The Physics of Chance by
Charles Ruhla, which I once reviewed as follows.

It takes a selection of standard topics but treats them in a seri-
ous, careful and well written way, via a ”horizontal integration”
of math theory, its meaning within physics and its experimen-
tal verification. Topics include measurement error, the Maxwell
velocity distribution for an ideal gas, Boltzmann’s statistical
physics, deterministic chaos illustrated by a compass needle un-
dergoing forced oscillations, a detailed account of the quantum
theory of interference and an ”inseparable photons” experiment.

One of my desiderata for a lecture topic was that the mathematics leads to
some theoretical quantitative prediction that my students can test by gath-
ering fresh data. So because I don’t expect them to be able to do physics
experiments, the uses of probability within physics are downplayed in these

117
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Figure 8.1: Experimental equipment to check the Maxwell velocity distri-
bution.

lectures. In particular, in talking about the course I say that the three-
dimensional-Gaussian velocity distribution for an ideal gas predicted by
Maxwell is a paradigm example of an established uncontroversial theory.
but one that my students cannot check. So let me digress to show how
experimental physicists have actually verified the prediction, via an over-
simplified explanation illustrated in Figure 8.1. The apparatus is within an
evacuated space. There is a detector which can measure how many molecules
hit it1, and a container of gas molecules with an aperture aligned toward the
detector. In between are two spinning discs with small sectors cut out. For
given rotation speeds of the discs, there is essentially only one small interval
of velocities at which molecules (moving in a straight line at constant speed
because they are in a near-vacuum) will reach the detector, and therefore
by varying disc rotation speeds one can measure the relative frequencies of
different speeds of molecules.

1In relative terms, not a count of molecules.
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8.2 Dart throws as a simple example of physical
randomness

I use “throwing a dart at a target” as a paradigm example of one kind of
“physical” randomness. Figure 8.2 shows the result of 100 throws2 at a
dartboard – the kind of experiment you could easily repeat yourself. To
show scale, we draw an imaginary playing card centered at the center of
the board. Textbooks are apt (cf. section 1.4) to give examples of the kind
“suppose the throws land uniformly (or as bivariate Normal)” but neither
supposition is remotely accurate.

The following comments are rather trite in the context of darts, but
provide starting points for discussion within other contexts, as I will try to
show in the rest of the lecture.

Darts are not dice. As the next point says, the result of dart throws are
a combination of skill and chance, rather than the “pure chance” of a die
roll, and so the chances vary between individual throwers, unlike dice. And
the “physical symmetry” of a die or analogous gaming artifact allows one to
assert that different outcomes are equally likely, which has no counterpart
for dart throws.

Darts provide a vivid and quantifiable instance of the luck-skill
combination. Whether one can quantify the relative contributions of skill
and luck to observed success, in some particular field of human endeavor or
for some individual person, is one of the most intriguing aspects of proba-
bility in the real world3. For darts one can quantify skill as, for instance,
mean-square deviation from target point, and presumably there is strong
correlation between that statistic and success at traditional games based on
dart throws. In mnay professional team sports there are statistics for in-
dividual player (e.g. pitcher or quarterback) performance, which again are
presumably correlated with the player’s contribution to team success. But
moving on to entrepreneurs or movie stars, it is hard to know what “skill”
statistic can be measured, to compare with some quantitative measure of
success.

2By a student Beau La Mont, who was aiming at the center of the board. One missed
the board.

3But I haven’t managed to write a satisfactory lecture on this topic.
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Figure 8.2: 99 dart throws, centered on a 2.25” × 3.5” playing card.
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It seems perfectly reasonable to model dart throws via density
functions. A dart throw is a textbook example of a random point in two
dimensions whose distribution is assumed to be described by some density
function. What this means, in words, is that for any two points z and z′ that
are sufficiently close, the chance of the dart landing very close to z is almost
the same as the chance of landing very close to z′. This seems so reasonable
that it is rarely commented upon. A main point of this lecture is that in fact
this kind of assumption, which is made in many contexts and which I will
call the local uniformity principle, has more consequences than one might
imagine. Let me contrast with contexts where one assumes independence, in
which case we are fully aware that independence is an assumption (maybe
justifiable on intuitive or empirical grounds) and that the reliability of any
mathematical consequence we might derive is linked to the reliability of the
assumption.

It seems perfectly reasonable to model dart throws as IID. One
can think of several reasons the IID model might not be accurate. The first
few throws may involve learning adjustments, and eventually the thrower
might get tired or bored. But aside from such specific effects, the IID model
seems conceptually reasonable. Now freshman textbooks seem to leave the
impression (amongst non-professional statisticians) that any list of data4 can
be regarded as IID samples from some probability distribution – if you do
a textbook test of significance or confidence interval, then you are modeling
them as IID. But consider for instance the areas of the 50 U.S. States, or the
unemployment rates in each State next year, or the change in unemployment
rate between this year and next year. To me there is no reason to think these
are independent (in the sense of probability theory) between States. I will
return to this issue in section 8.6.

8.3 County fair

This section treats a concrete setting which will seem very special, but in the
next two sections I will show that the abstract idea applies more broadly.

There is a fairground game in which playing cards5 are stuck to a large
board in a regular pattern, with space between cards. See Figure 8.3. You

4Implicitly, the same attribute of different “individuals”.
5The game is also played with balloons as targets. The balloons are squashed together

without empty spaces, making the game appear easier. But you soon learn that to burst
a balloon, the dart needs to hit it head-on; a hit on the side just bounces off.
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Figure 8.3: Playing cards on a wall. The playing cards on the left are
“bridge size” 2.25 by 3.5 inches, with spacing 1 inch between rows. The wall
is much larger than shown, with hundreds of cards attached. In the center
is the “basic unit” of the repeating pattern. On the right is the pattern
shrunk by a factor of 3.

0 1 2 3 4 5 6 inches

pay your dollar, get three darts, and if you can throw the darts and make
them stick into three different cards then you win a small prize.

One could conduct time-consuming experiments with throwers of differ-
ent skills and different patterns. But – for the point I want to make – I
can be lazier and work with the previous data set of 100 throws by Beau,
and see what would have happened with differently scaled cards. 36 throws
would have hit a normal sized card as target, so we estimate the probabil-
ity as 0.36. The • in Figure 8.4 show how this probability increases with
the card size. As one expects, this probability is near zero for a postage
stamp size and near one for a paperback size. If we repeated the experiment
with a different person we would confidently expect a curve of • which was
qualitatively similar but shifted left or right according to skill at darts.

Returning to the fairground game, we imagine scaling the pattern (as
on the right of Figure 8.3). For normal size cards, Beau would have 58 hits
(that is, 36 on the aimed-at card and 22 fortuitously on a different card)
and these probabilities are shown as ◦ in Figure 8.4. As we explain in a
moment, without looking at data we can make a theoretical prediction that,
regardless of skill level, when the “pattern repeat distance” becomes small
the probability of hitting some card will become about 0.54. And the data
shows this is indeed true for Beau on scales smaller than a playing card.

What does theory say about this example? The key point underlying
the theory is that there is a regular repeating pattern on the wallboard,
consisting of repeats of the basic unit in the center of Figure 8.3; the basic
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Figure 8.4: In the setting of Figure 8.2, Beau’s estimated probability of hitting a

specific card • and the probability of hitting some card ◦, as a function of width.

A small postage stamp has width about 0.75, a playing card 2.25, and a cheap

paperback book 4.2.
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unit is a rectangle of board, partly occupied by a card. Since the space
between cards is 1 inch, this rectangle has size 3.25 by 4.5 inches. So the
proportion of the area of the basic unit which is occupied by the card equals
(2.25× 3.5)/(3.25× 4.5) = 54%. Because the pattern just repeats the basic
unit, this means that a proportion 54% of the wallboard is covered by cards.
And this proportion is unchanged by shrinking cards and spaces together.
So a dart hitting a region of the board, without propensity to hit or to miss
cards, should have a 54% chance to hit a card. So the underlying theory
is that, when the cards are small relative to the variability of our throws,
we have little chance of hitting the particular aimed-at card, and instead
our hit is essentially like hitting a purely random point. I will restate this
theory idea in the next section as the fine-grain principle.

8.4 The physics of coin-tossing and the fine-grain
principle

At first sight the notion of “regular repeated pattern” may seem special to
the example above, but let me show that it occurs somewhat more broadly.

The physics of coin-tossing. Why do we think that a tossed coin should
land Heads with probability 1/2? Well, the usual argument by symmetry
goes something like this.
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• There is some chance, p say, of landing Heads.

• By symmetry, there is the same chance p of landing Tails.

• Neglecting implausible possibilities (landing on edge, being eaten by
passing bird, . . . ) these are the only possible outcomes.

• Since some outcome must happen, i.e. has probability 1, it must be
true that p+ p = 1.

• So p = 1/2.

Like most people, I find this argument (and the corresponding argument
for dice, roulette etc) convincing. But such an argument by logic doesn’t
give much insight into where physically the number 1/2 comes from. After
a moment’s thought, in this case the physics is actually quite simple, if we
over-simplify matters a little. Suppose you toss a coin straight up, that
it spins end-over-end relative to a horizontal axis, and that you catch the
coin at the same height as you tossed it. Then the coin leaves your hand
with some vertical speed v and some spin rate of r rotations per second.
And there’s no randomness – it either lands Heads for sure, or lands Tails
for sure, depending on the values of v and r via a certain formula. Now
we can’t see v or r, but we can see the height h that the coin rises before
starting to fall. Figure 8.5 shows the result of the coin toss in terms of h
and r, for a certain interval of values.

At the instant we toss the coin, we are at some point in the phase space
illustrated in the figure, and this point determines whether the coin lands
Heads or Tails. I don’t have any honest data for the points in phase space
determined by an actual series of tosses. But if you practice tossing a coin
24 inches high, you will find it very difficult to be more accurate than 24±3
inches, and so we may envisage a series of tosses as creating a collection of
points in phase space scattered in some unstructured fashion in the spirit
of Figure 8.3. The symmetry of the coin is reflected in the fact that the
bands determining Heads or Tails have equal width; 50% of the phase space
determines Heads. A machine can make tosses in such a consistent way that
the spread in phase space was small compared to the width of the bands, but
a person cannot. A person tossing a coin is like a person throwing darts at
stamp-sized cards – without any bias toward any particular band, we have
50% chance to hit a point in phase space which determines Heads.

How can we abstract this idea to other settings? A mixture of peanuts
and cashews is coarse-grained, in that you can pick and choose an individual
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Figure 8.5: Phase space for coin tossing. The shaded bands are where
an initially Heads-up coin will land Heads, as determined by the height and
rotation rate of the toss. Each band indicates a specific number of rotations,
from 7 to 27 over the region shown. The formula underlying Figure 4 is as
follows. The height h and time-in-air t are determined by h = v2/(2g) and
v = gt/2 where g = 32 feet per sec2. So t =

√
8h/g. If the coin starts

Heads-up, then it lands Heads after n rotations if n − 1
4 < rt < n + 1

4 . So

the curves in the figure are the curves r
√
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nut, while a mixture of salt and pepper is fine-grained, in that you can’t
avoid picking a mixture. This provides a nice metaphor.

The fine-grain principle. Many instances of physical randomness can be
regarded as outcomes of deterministic processes with uncertain initial condi-
tions: the randomness comes only from the initial uncertainty. A particular
outcome corresponds to the initial conditions being in some particular sub-
set of phase space, which we visualize as a collection of clumps such as the
rectangles in Figure 8.3 or the curved bands in Figure 8.5. If the subset of
phase space has a certain kind of regularity – that the local proportion of
phase space that lies in the subset is approximately the same proportion p
regardless of global position within phase space – then we can confidently
predict that the probability of the outcome is about p, provided the spread
of the distribution of the initial point is at least somewhat large relative to
the distance between clumps. The numerical value p comes from the pattern
in phase space, not from any details of the uncertainty in initial conditions.

The fine-grain principle is one of those good news/bad news deals. As
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a conceptual idea it’s very nice; throwing a die6 to roll on a table is a
much more complicated deterministic process than coin-tossing, but one can
imagine a high-dimensional phase space which is divided into six regions in
some complicated way analogous to Figures 8.3 and 8.5. As a concrete
tool it’s terrible, because for die-throwing (or just about any real-world
example more complicated than the two we’ve discussed) one can’t actually
work out what is the pattern in phase space. The actual reason we all
believe that a die lands 5 with probability 1/6 is the argument by symmetry
(and a supposition that other people have checked it empirically). We can’t
honestly “do the physics” to confirm this via the fine-grain principle, but
we have a world-view (i.e. a belief) that it would be confirmed if we could7

To digress, there is also a “proof by economics”. If the fine-grain principle
were false for die-throwing. then there would be a way of throwing a die so
that the landing probabilities were non-uniform – and some gambler would
already have discovered this.

8.5 The smooth density idealization for data and
Benford’s law

We turn to an idea that is much more broadly applicable, though less dra-
matic in its consequences. We first illustrate the idea with artificial data,
then with real data. Consider the simplest kind of data-set, a list of num-
bers, say 40 numbers between 0 and 20; to have a convenient language think
of these as exam scores for 40 students. Figure 8.6 illustrates several such
artificial data sets. 40 scores are picked IID according to the probability
distribution on the left, and the empirical histogram in shown on the right.

In the second case the model is deliberately biasing likely values toward
the center, and in the third case toward the left, and this non-uniformity
is readily visible in the data. But the aspect I want to emphasize here is
a similarity between all three cases. Each model is “smooth” in the sense
that probabilities do not change much from one possible score to the next,
whereas in each case the data is “locally irregular”. That is, in the first
model we expect each score to come up “on average” about twice, but the
exact number of times is often 1 or 3 (rather than 2) and sometimes 0 or 4;
the observed frequencies of successive scores switch unpredictably between

6I humorously tell students to write on the blackboard 100 times: the singular of dice
is die.

7Analogous to the world-view that coincidences happen no more often than is explain-
able by chance.
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Figure 8.6: Each right side shows a data histogram for 40 random picks from
the probability histogram on the left side.
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these values. The average frequency varies between models and between
different parts of the range of scores, but always has this local irregularity.

Moving quickly on to real data, Figure 8.7 is a histogram of actual scores
for a class of 71 students.

With large data sets authors often accompany the real data histogram
with a smoothed curve – in technical language, an estimated density function
– such as Figure 8.8 below.

Let me invent a name for what we are doing here.

The smooth density idealization. Many statisticians implicitly believe
that it is helpful to associate with actual data (such as in Figure 8.7) some
theoretical smooth histogram (such as in Figure 8.8). Textbooks and prac-
titioners rarely discuss what the smooth curve is intended to represent. In
a case where it is reasonable to regard the data as IID random samples
from some unknown smooth distribution, then of course we can regard the
curve as an estimate of the unknown density function; there is mathemati-
cal theory on how to do the estimate, and computer packages will draw the
estimated density function curve for you.
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Figure 8.7: Scores for a class of 71 students. The maximum possible score
was 92.

20 30 40 50 60 70 80

Figure 8.8: A possible theoretical histogram one might associate with the
Figure 8.7 data.
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But data like exam scores, the areas of the 50 States, or the wine-case
data in Figure 8.9 later, are in fact not random samples of anything. In
such cases – surely the majority of cases where density estimates are used
– I find it hard to articulate exactly what the associated smooth density
is intended to mean. In the particular context of exam scores, one might
say it represents what one might expect the scores to be based on some
qualitative information. That is, there is no reason to think that a score
of 47 will be substantially more or less frequent than a score of 51 – so
the theoretical histogram will be smooth – but good reason to believe that
either of those scores will appear more frequently than a score of 2 or 89 –
so it’s not uniform over the entire range. But such interpretations seem too
context dependent.

Let me emphasize that in the smooth density idealization we are appeal-
ing to some vague notion of “associated with” – the conceptual question
(which I cannot answer) is to say more clearly what is meant. This is dis-
tinct from the precise, thought stronger and harder to justify, notion of “IID
samples from . . . . . . ”. I will revisit this kind of conceptual issue in section
8.6.
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Checking predictions of the smooth density idealization. Instead
of worrying a priori about whether it is reasonable to model data as being
associated with some unknown smooth distribution, we could ask whether
observed data is consistent with this assumption. To do this we need to find
some quantitative theoretical predictions for such data, which (to be useful)
should not depend on the unknown distribution. Let me give two simple
examples of such quantitative predictions, described in the context of our
exam data. A course project is to repeat this analysis for other data sets.

Prediction 1: Coincidences and near misses. For a given pair of
students, they might get the same score (call this a coincidence) or they
might get consecutive scores (call this a near-miss). So we can count the
number of coincidences (that is, the number of pairs of students with the
same score) and we can count the number of near-misses. The theoretical
prediction is

if a data set is associated with a smooth distribution, then the
number of near-misses will be about twice the number of coinci-
dences.

In the data of Figure 8.7 there are 49 pairs representing coincidences and 86
pairs representing near-misses. So the prediction works pretty well.

The math argument. If student A scores (say) 45 then (by supposition
of smooth distribution) the chances of student B scoring 44 or 45 or 46 are
approximately equal, so the chance of a near miss is approximately twice
the chance of a coincidence.

Prediction 2: Least significant digit. For a score of 57 the “most sig-
nificant” first digit is 5 and the “least significant” second digit is 7. Looking
at the most significant digit of the Figure 6 data (as one might do for as-
signing letter grades) we clearly are going to see substantial non-uniformity,
and indeed we do

first digit 1 2 3 4 5 6 7 8
frequency 1 3 10 15 18 17 6 1

If (with less motivation) we look at the second digit, there is a theoretical
prediction:

if a data set is associated with a smooth distribution, then the
distribution of least significant digits will be approximately uni-
form.
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In this data set it is:

second digit 0 1 2 3 4 5 6 7 8 9
frequency 6 8 10 6 4 11 10 7 3 6

The math argument. For 3 we add the frequencies of . . . 43, 53, 63,
. . . and for 4 we add the frequencies of . . . 44, 54, 64, . . . ; by supposition the
probabilities being added are approximately equal.

The small print. As above, the supposition of a smooth theoretical
distribution must be plausible. And obviously if all data values are within 7
of each other the prediction can’t be correct, so we need a condition of the
form “the spread of data is not small relative to 10”. Measures of spread are
a textbook topic; let’s use the interquartile range (the difference between
the 25th percentile and the 75th percentile), which in this data set is 62 - 43
= 19. Rather arbitrarily, let’s say the prediction should be used only when

the interquartile range is more than 15. (8.1)

Benford’s law. Figure 8.9 shows a histogram8 for a data-set of the total
production (number of cases) of each of 337 wines reviewed by Wine Specta-
tor magazine in December 2000 (this data is not claimed to be representative
of all wine production). So the data is a list like 517, 5300, 1490, . . . ; the
minimum was 30 cases and the maximum9 was 229,165 cases. Note the log
scale on the horizontal axis, used to fit such widely varying data onto one
figure.

For obvious economic reasons, few wines have production levels of 1 case
or 1 million cases, and one might identify less obvious practical reasons for
other features of the data. It may seem surprising that such data could
be used to illustrate any general principle, but it can. Look at the first
digit of each number in the data – so that 45 or 4,624 or 45,000 are each
counted as “4”. There is a theoretical prediction, called Benford’s law, for
the frequencies of the 9 possible first digits in data like this. Table 8.1 shows
the predictions, derived from a formula written later.

The surprise is that theory doesn’t predict equal frequencies, but instead
predicts that 1 should appear much more often than 9 as a first digit. Fig-
ure 8.10 shows that for our wine-case data the prediction is fairly good –
certainly much better than the “equal frequency” prediction which would
imply a flat histogram.

8Here one needs to be careful about the precise definition of a histogram, which repre-
sents data by area.

9“Medium-bodied and a bit rustic, but a good everyday quaff”.

http://en.wikipedia.org/wiki/Benford's_law
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Figure 8.9: The wine-case data.
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Table 8.1: What Benford’s law predicts.

first digit 1 2 3 4 5 6 7 8 9
frequency .3010 .1761 .1249 .0969 .0792 .0669 .0580 .0512 .0458

Figure 8.10: Benford’s law and the wine-case data. The thick lines show the

histogram for first digit in the wine-case data; the thin lines are the histogram of

frequencies predicted by Benford’s law, Table 8.1.

1 2 3 4 5 6 7 8 9
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Though striking and memorable, upon a little reflection one realizes that
Benford’s law is just a lightly disguised instance of an ideas discussed earlier
in this lecture.

The math argument. Look again at Figure 8.9. What parts of the hor-
izontal axis correspond to case numbers with first digit 1? That’s easy to
picture.
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20000
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Compare with the exam score data, where we look at a given second digit,
say 2:

20 30 40 50 60 70 80

Both pictures show a “repeating pattern” on the one-dimensional line,
analogous to the two-dimensional repeating pattern in Figure 2 (playing
cards on the wall), whose “basic unit” is shown on the left below.

1 2 10 1 10

the interval from i to i+1

In each case, the smooth density idealization implies that the proportion
of data in the marked subset will be approximately the density of the marked
subset, that is the proportion of the length of the “basic unit” that is in the
subset. Since we’re working on a log scale, the length of this line from 1 to
10 is log 10, which (interpreting “log” as “log to base 10”) equals 1; and the
part of the line from 1 to 2 has length log 2, which works out to be 0.301.
Similarly, for each possible first digit i there is a repeated unit, as shown on
the right in the diagram above, and we get the formula

predicted frequency of i as first digit = log(i+ 1)− log i

which gave the numbers in Table 8.1.

The small print. To a mathematician, the Benford prediction is equiv-
alent to the second significant digit prediction10, applied to log(data). The
implicit assumptions are smoothness (on the log scale) and sufficient spread,
which (copying (8.1) but undoing the log transformation) becomes

10i.e. the least significant digit prediction applied to 2-digit numbers, as in our exam
scores data.
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(75th percentile)/(25th percentile) ≥ 30 ≈ 101.5 .
So the key requirement for the plausible applicability of Benford’s law is
that the data be widely varying – that it not be too uncommon to find two
numbers in the data where one number is more than 30 times the other.

Checking Benford’s law. Checking the accuracy of the Benford predic-
tion on real data, and in particular checking the implicit prediction that (for
similar size data sets) it will be more accurate for more spread-out distribu-
tion, is a natural course project written up here as an illustration of course
projects.

8.6 Which of 4 foundational principles do you be-
lieve?

Let me first clarify the distinction used, in the context of dart throws in
section 8.2, between observed data “following some smooth density f” and
“being IID samples from density f”. The latter is a very precise quantitative
assertion; the former is the more qualitative assertion that the observed
proportion of data values between a and b is “approximately”

∫ b
a f(x)dx,

without seeking to quantfy what “approximately” means.

What do you think about the following 4 general default assumptions?

1. Assume different outcomes are equally likely, unless there is a reason
to believe otherwise.

2. Assume different events are independent, unless there is a reason to
believe otherwise.

3. Assume data11 comes from a smooth density unless there is a reason
to believe otherwise.

4. Assume data arises as IID samples from a smooth density unless there
is a reason to believe otherwise.

Now one reaction to the first two assertions is “but almost always there is
a reason to believe otherwise”. In other words, they are formally true but
essentially vacuous. I would not argue with that view, but would prefer to
use the opposite default:

11Implicitly, the same attribute of different “individuals”.

http://www.stat.berkeley.edu/~aldous/Papers/me126.pdf
http://www.stat.berkeley.edu/~aldous/Papers/me126.pdf
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• Do not assume different outcomes are equally likely, unless there is a
reason to believe so.

• Do not assume different events are independent, unless there is a reason
to believe so.

What about the third and fourth assertions? Let me use the exam data in
Figure 8.7 as a paradigm example. My own view is that in such examples,
assertion 3 is reasonable – the estimated smooth distribution in Figure 8.8
means something, even if it’s hard to say what it means – but assertion 4 is
not a priori sensible – where is the asserted independence coming from?

Anyway, my point is not to set forth some argument for my personal
views, but rather to state that I find it strange that these questions are not
discussed more seriously in statistics textbooks, because tests of significance
or their Bayesian counterparts depend on IID or analogous specific models.
Let me continue with two more focused points.

Testing for IID. Testing whether data might plausibly have arisen as IID
samples from a specified distribution or family of distributions is a staple12

of classical mathematical statistics. Testing whether it might plausibly have
arisen as IID samples from some unspecified smooth distribution is a less
standard topic, but it is not hard to devise several schemes. One involves
testing the local irregularity of observed frequencies. For the exam data,
write fi for the frequency of score i. Then “smoothness” says that on average
fi should be close to (fi+1−fi−1)/2, and the squared difference [fi− (fi+1−
fi−1)/2]2 is a measure of local irregularity. This suggests looking at the
statistic

S =
∑
i

[fi − (fi+1 − fi−1)/2]2.

As outlined below, theory says that for IID samples from a smooth distri-
bution, S should be around 3n/2 when n is the number of observations.

The math argument. Smoothness says that the probabilities pi satisfy
pi ≈ (pi+1−pi−1)/2; “IID random ” says that the random variables fi should
be approximately Poisson distributed with mean npi. This gives

E[fi−(fi+1−fi−1)/2]2 ≈ var[fi−(fi+1−fi−1)/2] ≈ n[pi+(pi+1+pi−1)/4) ≈ npi×3/2

as the first-order approximation.
It is a course project to investigate S and other test statistics, for inter-

esting observational data sets such as those mentioned next.

12Kolmogorov-Smirnov test

http://en.wikipedia.org/wiki/Kolmogorov-93Smirnov_test
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On modeling obervational data as IID. As our freshman statistics
textbook13 puts it,

Chance models are now used in many fields. Usually, the models
only assert that some things behave like the tickets drawn at
random from a box.

It is a pervasive custom in some fields to model observational data as IID
from some unknown distribution, and try to infer something about that dis-
tribution. To illustrate, I copy below brief descriptions of 24 data sets used
in this 2009 Clauset-Shalizi-Newman paper. Let me emphasize that the
paper itself is a careful and valuable analysis of how closely such data-sets
follows some power law distribution; my point is that seeking to quantify
conclusions via any calculation based on an IID assumption is hard to jus-
tify14. The point is that independence does not mean “I can’t think of any
direct connection” but is a precise assertion about numerical equality of
conditional probabilities, and it is hard to argue this is a plausible assertion
in contexts where (as in most examples below) there is no clear notion of
what “probability” refers to.

1. The frequency of occurrence of unique words in the novel Moby Dick.

2. The degrees (i.e., numbers of distinct interaction partners) of proteins in
the partially known protein-interaction network of the yeast Saccharomyces
cerevisiae.

3. The degrees of metabolites in the metabolic network of the bacterium Es-
cherichia coli.

4. The degrees of nodes in the partially known network representation of the
Internet at the level of autonomous systems for May 2006.

5. The number of calls received by customers of AT&T’s long distance telephone
service in the United States during a single day.

6. The intensity of wars from 1816–1980 measured as the number of battle
deaths per 10 000 of the combined populations of the warring nations.

7. The severity of terrorist attacks worldwide from February 1968 to June 2006,
measured as the number of deaths directly resulting.

8. The number of bytes of data received as the result of individual web (HTTP)
requests from computer users at a large research laboratory during a 24-hour
period in June 1996.

13Freedman-Pisani-Purves-Adhikari Statistics.
14This is not a frequentist vs Bayesian issue. I have no quarrel with thinking of unknown

quantities as random, just with assuming independence or a Bayesian analog without any
reason.

http://arxiv.org/abs/0706.1062
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9. The number of species per genus of mammals.

10. The numbers of sightings of birds of different species in the North American
Breeding Bird Survey for 2003.

11. The numbers of customers affected in electrical blackouts in the United States
between 1984 and 2002.

12. The numbers of copies of bestselling books sold in the United States during
the period 1895 to 1965.

13. The human populations of US cities in the 2000 US Census.

14. The sizes of email address books of computer users at a large university.

15. The sizes in acres of wildfires occurring on US federal land between 1986 and
1996.

16. Peak gamma-ray intensity of solar flares between 1980 and 1989.

17. The intensities of earthquakes occurring in California between 1910 and 1992,
measured as the maximum amplitude of motion during the quake.

18. The numbers of adherents of religious denominations, bodies, and sects, as
compiled and published on the web site.

19. The frequencies of occurrence of US family names in the 1990 US Census.

20. The aggregate net worth in US dollars of the richest individuals in the United
States in October 2003.

21. The number of citations received between publication and June 1997 by sci-
entific papers published in 1981 and listed in the Science Citation Index.

22. The number of academic papers authored or coauthored by mathematicians
listed in the American Mathematical Society’s MathSciNet database.

23. The number of “hits” received by web sites from customers of the America
Online Internet service in a single day.

24. The number of links to web sites found in a 1997 web crawl of about 200
million web pages.

8.7 The local uniformity principle and asteroid near-
misses

I used the phrase fine-grain principle is the context of deterministic processes
with (slightly) random initial conditions, and the phrase smooth density
idealization in the context of fairly general observational data from human
society. Trying to relate these very different contexts seems unreasonably
speculative, but the mathematics is similar, so let me invent a third and
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much vaguer phrase local uniformity principle to denote what we are doing
if we assume, in any context, that experimental or observational quantities
at some level are random with some locally smooth distribution. Here is
another example.

99942 Apophis is a 350-meter long asteroid which is confidently pre-
dicted to pass Earth just below the altitude (35,000 km) of geosynchronous
satellites (which provide your satellite TV) on Friday, April 13, 2029.

This fact prompts discussion of the chances of an asteroid collision with
Earth. The actual spatial density of different sized asteroids at different
points in the solar system is of course an empirical issue. But it’s perfectly
reasonable to make the “local uniformity” assumption that the chance of
an asteroid being at one point near the Earth’s orbit is not substantially
different from the chance of it being at a different point a quarter million
miles away. Then mathematics, and the empirical fact that the ratio (radius
of Moon orbit)/(radius of Earth) is approximately 60, shows

Amongst asteroids which pass closer to Earth than the Moon’s
orbit, about one in 3,600 (= 602) will hit Earth.

Hypothetically, if astronomers could and did detect all asteroids of diameter
greater than 50 meters passing within the Moon’s orbit for a period of years,
and found there were on average 3.6 per year, then one could infer that such
an asteroid would hit the Earth about once every 1,000 years on average15.

8.8 Wrap-up and further reading

I occasionally indulge in a quixotic quest to retire “die” as the icon for
randomness, because

• dice are greatly overused, both as a verbal metaphor and as a visual

image – even Wikipedia uses the graphic

• dice are simply unrepresentative of the way we really do encounter
chance in the real world.

As section 8.2 suggests, “dart throws” are my best suggestion for a replace-
ment.

The big picture I have tried to explain in this lecture is undoubtedly
widely known to academics at some vague level. But the only attempt I

15This numerical conclusion is a typical estimate in the literature but not obtained in
this hypothetical way.

http://en.wikipedia.org/wiki/99942_Apophis
http://www.stat.berkeley.edu/~aldous/Blog/no_dice.html
http://www.stat.berkeley.edu/~aldous/Blog/no_dice.html
http://en.wikipedia.org/wiki/Near-Earth_object
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know at a systematic exposition is a 2003 monograph Bigger Than Chaos
by Strevens, which I find rather impenetrable. Similarly, the analysis of
coin-tossing has undoubtedly been rediscovered many times – most cited is
a 1986 paper by Keller.

Real coin tossing. In a fascinating 2007 paper by Diaconis - Holmes -
Montgomery, high-speed photography of coin tosses shows that in fact the
axis of rotation is typically not horizontal and that the axis precesses during
the flight. This leads to a theoretical prediction that a tossed coin should
land the same way up as it was thrown with probability about 51%. To
detect this effect, i.e. a difference from 50%, one would need about 40,000
tosses. Apparently the only actual experiment was done by two of my stu-
dents, and the title says it all: 40,000 coin tosses yield ambiguous evidence
for dynamical bias.

In fact two examples have long been known where the “argument by
symmetry” gives substantially wrong answers. One concerns spinning a
coin vigorously on its edge and waiting for it to fall; a typical U.S. penny
is noticably biased toward Tails. The second concerns holding a wine cork
horizontally and dropping it onto a table with a hard surface. One would
think that (like a tossed coin finishing upright on its edge) it is very unlikely
for the cork to bounce and finish in upright position. But in fact, starting
about 1.5 cork lengths above the table, it is not so unlikely – try it!16

Fine-grain principle. Though the principle is well-understood, there is
no standard phrase: fine-grain principle is my coinage, though the phrase
fine-grain is used literally and metaphorically in several areas of science.
Finding precise mathematical formulations that capture actual usage seems
difficult; neither long-run arguments (ergodic theory) nor asymptotics based
on imagining we can shrink the pattern17 really engage the issue, which is
more akin to studying the number of card shuffles required to mix a deck
(Lecture ??).

16A synthetic cork works best.
17von Plato (1983) The method of arbitrary functions, not open access.

http://gauss.stat.su.se/gu/sg/2012VT/penny.pdf
http://www-stat.stanford.edu/$\sim $cgates/PERSI/papers/dyn$_$coin07.pdf
http://www-stat.stanford.edu/$\sim $cgates/PERSI/papers/dyn$_$coin07.pdf
https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html
https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html


Chapter 9

A glimpse at research:
spatial networks over
random points

Students find it difficult to envisage what research in mathematical probabil-
ity consists of. This lecture is my attempt to illustrate, using the part of my
own recent research that is least technical and most amenable to description
via graphics. It is based on this overview paper and this overview paper, both
with undergraduate co-authors who did simulations and graphics.

9.1 Regular networks

By a spatial network 1 I mean one whose edges are physically situated in
two-dimensional space. This contrasts with the broader field of complex net-
works, focussing mainly on networks such as WWW links or social networks,
for which the edges are abstract or the geographical locations are relatively
unimportant. In particular let us think of road networks, for which extensive
data is readily available.

Figure 9.1 illustrates hypothetical “regular” or “structured” networks,
and mathematicians have implicitly studied (via Euclidean geometry) such
networks for many centuries. In that figure there are only two different
patterns of vertices, but different ways of linking vertices by edges. For
comparison purposes it is natural to scale so the density of vertices equals 1
per unit area. For each pattern the figure states the average degree (number

1The Wikipedia page is rather incoherent.
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http://www.stat.berkeley.edu/~aldous/Papers/STS335.pdf
http://www.stat.berkeley.edu/~aldous/Papers/me137.pdf
http://en.wikipedia.org/wiki/Spatial_network
http://en.wikipedia.org/wiki/Complex_network
http://en.wikipedia.org/wiki/Complex_network
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Figure 9.1: Variant square, triangular and hexagonal lattices. Drawn so
that the density of cities is the same in each diagram, and ordered by value
of L.
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L = 2.83 ∆̄ = 4
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L = 3.22 ∆̄ = 6
Triangular lattice

L = 3.41 ∆̄ = 6
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of edges per vertex) ∆̄ and the average edge-length per unit area L.
Consider a map showing the major roads linking cities. Of course cities

are not arranged in a regular pattern, so the map will not look much like
those in Figure 9.1. Let us instead imagine that city positions are random
points, in these sense of a Poisson process of rate 1 per unit area. Are there
mathematically natural ways to define links between cities – “roads” – so
that the network looks somewhat like an actual road network?

9.2 Networks on random points

A first issue is that we want the network to be connected. The first “local”
rules one might invent – link each point to the k closest points, or to all
points within distance d – do not always give connected networks. Figure
9.2 (left) shows the relative neighborhood network defined by

put a link between cities A and B if there is no other city C such
that the distances from C to A and to B are each smaller than
the distance from A to B

(here distance is straight-line distance). Informally, the relative neighbor-
hood network is the sparsest (fewest links) network that can be defined by
a simple local rule and is always connected2.

This idea of defining a network by a “no other city” rule can be extended
to define the one-parameter family of beta-skeleton networks. One member
of this family, shown in Figure 9.2 (right) is the Gabriel network, defined by

put a link between cities A and B if there is no other city C
within the circle on which A and B are diametrically opposite.

The networks of Figure 9.2 do not resemble maps of modern road networks,
though I imagine that they might resemble a map of roads or footpaths
between medieval villages3. It turns out to be surprisingly hard to devise
simple mathematical models yielding networks that visually resemble mod-
ern road networks. Indeed I do not know any such models, though the
following two sections could be viewed as indirect approaches toward that
goal.

Let me first show some mathematical results concerning the networks
above, for random points of mean density 1. It turns out there are simple
formulas for the mean degree ∆̄ and the mean length-per-unit-area L, as

2because it contain the minimum spanning tree.
3A student project is to find such maps to obtain some actual data.

http://en.wikipedia.org/wiki/Relative_neighborhood_graph
http://en.wikipedia.org/wiki/Beta_skeleton
http://en.wikipedia.org/wiki/Gabriel_graph
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Figure 9.2: The relative neighborhood network and the Gabriel network on
random points.

follows. Write c for the area of the excluded region in the definition of the
Gabriel network or the relative neighborhood network when cities A and B
are distance 1 apart. Then

L = π3/2

4c3/2 (9.1)

∆̄ = π
c . (9.2)

For the Gabriel network we immediately see c = π/4, and for the relative

neighborhood network a brief calculation shows c = 2π
3 −

√
3
4 . What is

fascinating is that for the Gabriel network we therefore find

∆̄ = 4, L = 2

which exactly coincides with the values for the square lattice. I do not know
of any explanation to suggest this is more than mere coincidence, but it
does suggest treating the Gabriel network as the random-point analog of
the square lattice.

Calculation for (9.1, 9.2). For readers familiar with calculations involving
the Poisson point process, here is the essence of the calculation. Take a
typical city at position x0. For a city x at distance s the probability that
(x0, x) is an edge equals exp(−cs2) and so

mean-degree =

∫
R2

exp(−c||x− x0||2) dx =

∫ ∞
0

exp(−cs2) 2πs ds
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L = 1
2

∫
R2

||x− x0|| exp(−c||x− x0||2) dx =

∫ ∞
0

s exp(−cs2) 2πs ds.

Evaluating the integrals gives (9.2,9.1).

In studying road networks a major feature of interest is (shortest) route-
length. Write `(i, j) for the route-length (length of shortest path) between
cities i and j in a given network, and d(i, j) for Euclidean distance between
the cities. So `(i, j) ≥ d(i, j), and we write

r(i, j) = `(i,j)
d(i,j) − 1

so that “r(i, j) = 0.2” means that route-length is 20% longer than straight
line distance. It is not practical to find useful explicit formulas for route-
lengths in models, but easy to find numerical values by simulation. Let us
consider

ρ(d) := mean value of r(i, j) over city-pairs with d(i, j) ≈ d (9.3)

This function is shown in Figure 9.3 for the two networks above and for a
denser network, the Delaunay triangulation.

Now obviously the values of ρ(d) will tend to be smaller for denser net-
works. But for other reasonable model of connected networks on random
points the function ρ(d) has the same characteristic shape as in Figure 9.3),
attaining its maximum between 2 and 3 and slowly decreasing thereafter.
This characteristic shape – exhibited also in real-world networks (see Fig-
ure 9.6 later) – has a common-sense interpretation. Any efficient network
will tend to place roads directly between unusually close city-pairs, implying
that ρ(d) should be small for d < 1. For large d the presence of multiple
alternate routes helps prevent ρ(d) from growing. At distance 2− 3 from a
typical city i there will be about π32 − π22 ≈ 16 other cities j. For some
of these j there will be cities k near the straight line from i to j, so the
network designer can create roads from i to k to j. The difficulty arises
where there is no such intermediate city k: including a direct road (xi, xj)
would increase L, but not including it would increase ρ(d) for 2 < d < 3. So
when a network designer is trying to minimize ρ(d) for given L, the difficult
values of d are around [2, 3].

A final comment is that Figure 9.3 suggests there are limits ρ(∞) =
limd→∞ ρ(d) in those three models, and indeed more sophisticated math
theory shows that the limit exists in any reasonable network model over
random points.

http://en.wikipedia.org/wiki/Delaunay_triangulation
http://arxiv.org/abs/0911.5301
http://arxiv.org/abs/0911.5301
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Figure 9.3: The function ρ(d) for three theoretical networks on random
cities. Irregularities are Monte Carlo random variation.
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9.3 An optimality criterion for road networks

One way to look at real-world intercity road networks with a mathematical
perspective would be to compare the actual network to some hypothetical
“optimal” network connecting the cities. But what optimality criteria should
we use?

A main goal of a road network is to provide short routes. Recall that
“r(i, j) = 0.2” means that route-length is 20% longer than straight line
distance. With n cities we get

(
n
2

)
such numbers r(i, j); what is a reasonable

way to combine these into a single statistic R, which measures how effective
the network is in providing short routes? Two natural possibilities4 are

Rmax := max
j 6=i

r(i, j) (9.4)

Rave := ave(i,j)r(i, j)

where ave(i,j) denotes average over all distinct pairs (i, j). However, being an
“extremal” statistic Rmax seems unsatisfactory as a descriptor of real world

4The statistic Rmax has been studied in the context of the design of geometric spanner
networks where it is called the stretch.

http://en.wikipedia.org/wiki/Geometric_spanner
http://en.wikipedia.org/wiki/Geometric_spanner
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networks – for instance, it seems unreasonable to characterize the U.K. rail
network as inefficient simply because there is no very direct route between
Oxford and Cambridge.

The statistic Rave has a more subtle drawback, which is a nice illustration
of the pitfalls of the usual theory methodology of comparing statistics in
the asymptotic (n = number of cities → ∞) regime. Consider a network
consisting of

• the minimum-length connected network – that is the Steiner tree – on
given cities;

• and a superimposed sparse collection of randomly oriented lines (a
Poisson line process).

See Figure 9.4.

Figure 9.4: An artificial network

2/1/08 2:00 PMEdges

Page 1 of 2http://www.spss.com/research/wilkinson/Applets/edges.html

Home

Edges of Graphs
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A graph is a set {V,E}, where V is a set of m vertices (nodes) and E is a
set of n edges that link (associate) pairs of vertices to each other. A graph
may be embedded in a space, in which case the set V is associated with a
set of m points, one for each vertex, and the set E is represented by lines
connecting points, one line for each edge. 

This applet illustrates several graphs that may be computed for a set of m
data points embedded in a space. These are discussed in Chapter 8 of The

Grammar of Graphics (Springer-Verlag, 1999). The Voronoi tessellation
partitions a set of data points such that every point within a polygon is

By choosing the density of lines to be sufficiently low, one can make the
normalized network length be arbitrarily close to the minimum needed for
connectivity. But it is easy to show that one can construct such networks

http://en.wikipedia.org/wiki/Steiner_tree_problem
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so that Rave → 0 as n → ∞. Of course no-one would build a road network
looking like Figure 9.4 to link cities, because there are many pairs of nearby
cities with only very indirect routes between them. The disadvantage of Rave

as a descriptive statistic is that (for large n) most city-pairs are far apart, so
the fact that a given network has a small value of Rave says nothing about
route-lengths between nearby cities.

One can avoid this pitfall by using a a statistic R which is intermediate
between Rave and Rmax, defined by

R := max
0≤d<∞

ρ(d). (9.5)

for the function ρ discussed in the previous section. In words, R = 0.2
means that on every scale of distance, route-lengths are on average at most
20% longer than straight line distance. For a mathematical model network
on many random points Rave is essentially ρ(∞). We see in the Figure 9.3
hypothetical networks, and (we suspect) in typical real-world networks, that
R is only slightly larger than Rave.

As a conclusion, the criterion we propose for “optimality” of a network
is that the network has minimum R for its given length. We could use this
in the context of n real-world cities – compare R and total length for the
real-world network with the minimum value of R over hypothetical networks
linking the cities with the same total length. Or in our model of random
points as a rate-1 Poisson process on the plane, we could ask what are the
minimum R and the corresponding minimizing network each given value of
L = length-per-unit-area. I cannot answer these questions, because I do
not have effective algorithms for finding the optimal networks. Regarding
the latter question, Figure 9.5 shows the R − L trade-off for the β-skeleton
family. Seeking to improve on that family has been a student project, but
only very small improvements have been obtained, so it is possible that the
β-skeleton family are in fact close to optimal in our sense.

9.4 Scale-invariant random networks

The networks described already, based on “local rules”, are frankly unre-
alistic for intercity road networks, which in practice arise from centralized
planning of a “backbone” of long-distance and fairly straight major roads.
I don’t know a good simple model for networks of this type, which would
involve some explicit use of roads at different levels of a major road - minor
road spectrum. Instead I will outline a quite different approach in which
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Figure 9.5: The length-per-unit-area L and the route length efficiency statis-
tic R for certain networks on random points. The ◦ show the beta-skeleton
family, with RN the relative neighborhood network and G the Gabriel net-
work; and 4 shows the Delaunay triangulation.
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such a spectrum emerges without being explicitly assumed. We will seek to
model the entire road network5.

Figure 9.6 shows a scatter diagram of the values r(i, j) of relative excess
route lengths for routes between the 200 largest U.S. cities. As mentioned
before, the “line of averages” is roughly constant, consistent with our earlier
discussion of ρ(d). It also shows a “law of large numbers” effect, that the
spread in values of r(i, j) decreases as the distance increases. However, major
city centers are not “typical” places with respect to the road network; if we
looked at the corresponding scatter diagram for the routes between 200
random addresses, we would expect slightly larger averages and also less
rapid decrease of spread.

A scale-invariant network is (very informally) one with the property

5Here is a fascinating map showing (only) every road in the U.S..

http://benfry.com/allstreets/map5.html
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Figure 9.6: Scatter diagram of relative excess route lengths r(i, j) between
each pair from the 200 largest U.S. cities. The horizontal scale is distance,
normalized so that there is on average one city per unit area. The two lines
show unweighted and population-weighted average excess, as a function of
normalized distance. Each average is around 18% at all distances.

(*) when you look at the map of the network within a window,
the statistical properties of what you see do not depend on the
size of the window.

Conceptually, what we are doing here is analogous to the Lecture 7 discus-
sion of modeling English text as a stationary random process. Both English
text and roads are consciously planned rather than “random” in the every-
day sense, but this does not preclude statistical regularity. And in both
cases we do not posit some explicit “toy model” but instead consider the
family of models that satisfy a particular requirement.

Defining property (*) more precisely is too technical for this lecture, ,
but various concrete consequences are easier to understand. In a scatter
diagram like Figure 9.6 for random addresses in a scale-invariant network,
the distribution of r(i, j)-values would not change at all with distance d, and
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the averages ρ(d) would be constant:

ρ(d) = R, 0 < d <∞, for some constant R. (9.6)

Although scale-invariance is at best only roughly realistic (for instance it
would imply there are arbitrarily small roads leading everywhere), a hypo-
thetical such network has some interesting mathematical properties. For
instance, one can quantify where a particular piece of road lies in the major
road - minor road spectrum by considering whether it forms part of some
long distance route; precisely, say its importance is the largest d such that
the given piece of road forms part of the route between some two addresses
both at distance ≥ d from that given piece. Now consider

A(d) = average length-per-unit-area of roads of importance ≥ d.

Then scale-invariance implies

A(d) = A/d, 0 < d <∞, for some constant A (9.7)

so we automatically have existence of roads over the entire major road -
minor road spectrum. Now suppose instead we sample random points of
density λ per unit area and consider the length-per-unit-area `(λ) of the
subnetwork consisting of routes between these points. For a scale-invariant
network we would have

`(λ) = λ1/2`, 0 < λ <∞, for some constant `. (9.8)

So one could test whether a real-world network is approximately scale-
invariant by checking whether the three scaling relations (9.6) - (9.8) are
approximately true over appropriate ranges.

Probability models of networks with the scale-invariance property do ex-
ist but are difficult to define and then difficult to draw satisfactorily. Figure
9.7 (top) shows the subnetwork of routes between randomly sampled points
in a network consisting of north-south and east-west roads, and Figure 9.7
(bottom) shows the subnetwork of routes between pairs (◦, •) in a network
consisting of randomly oriented roads.
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Figure 9.7: A spanning subnetwork



Chapter 10

The other lectures

10.1 Psychology of Probability: Predictable Irra-
tionality

There is a huge body of academic research, building on 1970s work of psy-
chologists Daniel Kahneman and Amos Tversky, on how people make de-
cisions under uncertainty, and in particular decisions involving risks and
rewards. Nowadays this topic forms part of broader disciplines such as cog-
nitive science and behavioral economics. Conclusions are mostly based on
experimental or survey data, typically obtained from the most convenient
source of subjects (undergraduates attending psychology courses) and based
on hypothetical questions – what would you choose if presented with these
choices .....?. In this regard it is quite different from our Lecture 1; here we
are prompting people to think about chance, whereas there we were seek-
ing to understand in what contexts people (unprompted) perceive chance as
playing a role in their lives.

In teaching the course in 2011 and earlier I sampled topics from many
sources, in particular the comprehensive 2004 book Cognition and Chance:
The psychology of probabilistic reasoning by Raymond Nickerson. That work
touches upon many different topics, and gives around 1000 references, so
it’s an invaluable resource for seeing the big picture of what scholars have
thought about, and for leads into the research literature, and for student
projects (try this experiment on your friends!). Then the publication of
Kahneman’s Thinking, Fast and Slow showed, unsurprisingly, that he can
write about this material infinitely better than I can. So in 2014 I merely
cribbed from his book. Chapters 10 and 13–21 are the most relevant to my
course, though I encourage students to read the entire book.
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http://en.wikipedia.org/wiki/Cognitive_science
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http://en.wikipedia.org/wiki/Behavioral_economics
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This topic is fun to do in class because I can try experiments on my
students. In the 2014 course I asked them

(a) It was estimated that in 2013 there were around 1,400 bil-
lionaires in the world. Their combined wealth, as a percentage
of all the wealth (excluding government assets) in the world, was
estimated as roughly

1.5% 4.5% 13.5% 40.5%

(b) I think the chance my answer to (a) is correct is . . . . . . . . . %

The figures are from Piketty’s Capital in the Twenty-First Century who
gives the estimate 1.5%. The student answers were

response number students average guess P(correct)
1.5% 5 54%
4.5% 3 37%
13.5% 12 36%
40.5% 14 64%

One can regard this as an instance of anchoring, because I placed the cor-
rect answer at one extreme of the possible range of answers. It is also a
dramatic illustration of overconfidence in that the people most confident in
their opinion were in fact the least accurate.

10.2 Science fiction meets science

This is a fun lecture to present. I discuss three related topics.

The Fermi Paradox.

The Universe is very big and very old; given there is a human
technological civilization on Earth, why don’t we see evidence of
technologically advanced extraterrestrial civilizations?

Devising possible explanations is an interesting exercise, as organized logic.
A top-down organization might start with the alternatives

• they (almost) never arise.

• they don’t last long in a form we would recognize, so none are currently
close enough to detect.

• they do currently exist but we can’t detect them for some reason.
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50 more detailed possible explanations are given in the non-technical book
If the Universe Is Teeming with Aliens . . . Where Is Everybody? by Stephen
Webb, and these are mostly copied to the Wikipedia Fermi Paradox page.
This topic is perhaps the best illustration of the Mark Twain quote

There is something fascinating about science. One gets such
wholesale returns of conjecture out of such a trifling investment
of fact.

The Great Filter. This is a very speculative line of thought, due to Robin
Hanson. Consider the product

Npq (10.1)

where

• N is the number of Earth-like (loosely, and at formation) planets in
the galaxy

• p is the chance that, on such a planet, an intelligent species at a
technological level comparable to ours will arise at some time

• q is the chance that such a species would survive in such a way as
to be observable (via communication or exploration) to other galactic
species for an appreciable length of time.

The point is that Npq represents the number of other intelligent species
we expect to observe in the galaxy. Because we don’t observe any, we con-
clude prima facie (treating absence of evidence as evidence of absence) that
it cannot be true that Npq � 1. Since it would be a bizarre coincidence if
Npq ≈ 1, we should conclude that Npq � 1 and so humans are most likely
to be the only technological species in the galaxy.

Now consider the following argument.

Human beings did not create the Universe or direct the course
of evolution, so N and p are not our responsibility. But q, as
applied to us (i.e. will our species leave its mark on the galaxy?)
is presumably under our control. Viewing q very roughly as the
chance that a hypothetical technological species arising across
the galaxy 25 million years in the future would then be able to
observe the then-current or previous existence of humans, be-
ing told that q = 10−6 would be rather depressing. Depressing,
because of the ways this might come about, for instance if hu-
mans soon become extinct, or change and cease to interact with

http://en.wikipedia.org/wiki/Fermi_paradox
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the macroscopic physical universe. Knowing q = 10−6 would
be knowing that something like this is almost certain to happen.
Now having decided that Npq is small, implying pq is very small,
the only way to avoid the depressing possibility of q being very
small is to for p to be very small.

This argument leads to the counter-intuitive conclusion that

we should want p to be very small (10.2)

where the sense of want is, as above, “to be consistent with humanity sur-
viving long enough to have at least a tiny chance of leaving its mark on the
galaxy”.

The Wikipedia Great Filter article is not very helpful; my own paper on
the topic gives a mathematical development, but I do not emphasize that in
the lecture.

Global Catastrophic Risks. Thinking about this involves an issue of
time-scale. We know the world (as a human technological society) has
changed in the last 100 years, and a default is to assume some compara-
ble amount of change in the next 100 years. We can’t imagine 1 million
years ahead (which was relevant to the Fermi paradox). So let’s fix on 500
years.

Question: How might it happen that in 500 years there might be no
recognizable “human technological civilization”?

The 2008 book Global Catastrophic Risks contains 15 chapters analyzing
particular risks. In class I ask students to suggest such risks, then show
chapter titles, and then discuss a few of their risks.

10.3 Ranking and rating

The 2012 book Who’s #1?: The Science of Rating and Ranking by Langville-
Meyer describes a range of rating methods based on undergraduate linear
algebra. That is not my cup of tea, but the general topic is a natural one
for my course. In the 2014 course I asked my grad student Dan Lanoue to
give the lecture, and his overview slide was

• Two general rating methodologies: Elo and PageRank,

• Two very specific rating methods for the NFL: DVOA and EPA,

http://en.wikipedia.org/wiki/Great_Filter
http://www.stat.berkeley.edu/~aldous/Unpub/GF.pdf
http://www.stat.berkeley.edu/~aldous/Unpub/GF.pdf
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• Compare these methods and what that tells us about the science of
ratings.

• I’ve chosen the NFL as a recurring example I find the most interest-
ing. In particular the NFL is a nice balance between the Moneyball
“science” of baseball and the “Wild West” of college football.

I plan to develop a more probability-oriented treatment for the next course.

10.4 Risk to Individuals: Perception and Reality

In this lecture I talk about 4 related topics. First I ask students to rank the
seriousness of various specific risks.

Data about risks. The concepts of micromort and microlife and numer-
ical estimates. Bad statistical comparisons abound, e.g. this Economist
article – for recreational activities, better to assess risk “per afternoon en-
gaged in activity”. Then I refer to the 2002 Ropeik - Gray book Risk. A
practical guide for deciding what’s really safe and what’s really dangerous
in the world around you. This has 6-8 page chapters on each of 48 specific
risks, written in a fixed format and summarized by “likelihood” and “con-
sequences” of each risk. A natural student project is to seek data and to
write a report on another risk in the same style.

Psychological factors which can make a risk seem more threatening or
less threatening than it really is. Based on the 2010 Ropeik book How Risky
is it Really?. Also cite a discussion on Quora under the title What are some
odd-sounding but completely rational ways we might live our lives if we paid
attention to the true probability of good or bad things happening to us?

Presentation of statistical risk data to the public , based in part on
the online article 2845 ways to spin the risk showing how data on risks “can
be “spun” to look bigger or smaller . . . . . . by changing the words used, the
way the numbers are expressed, and the particular graphics chosen”.

Economic and public policy aspects of risk , starting from an article
by Trudy Ann Cameron on the unwise choice of phrase statistical value of
life.

http://en.wikipedia.org/wiki/Micromort
http://en.wikipedia.org/wiki/Microlife
http://www.economist.com/node.21571981
http://www.economist.com/node.21571981
http://www.quora.com/What-are-some-odd-sounding-but-completely-rational-ways-we-might-live-our-lives-if-we-paid-attention-to-the-true-probability-of-good-or-bad-things-happening-to-us
http://www.quora.com/What-are-some-odd-sounding-but-completely-rational-ways-we-might-live-our-lives-if-we-paid-attention-to-the-true-probability-of-good-or-bad-things-happening-to-us
http://www.quora.com/What-are-some-odd-sounding-but-completely-rational-ways-we-might-live-our-lives-if-we-paid-attention-to-the-true-probability-of-good-or-bad-things-happening-to-us
http://reep.oxfordjournals.org/content/4/2/161.short
http://reep.oxfordjournals.org/content/4/2/161.short
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For wrap-up:

Purveyors of risk information usually claim that their rational
and scientific assessments help individuals choose safer or more
beneficial courses of action. Perhaps so, but in the process they
also confront risk consumers with an ever proliferating array of
private risk situations. Attempting to mitigate one risk, such as
the risk of breast cancer, forces an encounter with a new risk,
such as the risk of radiation from a mammogram. The island of
safety and security that risk analysis promises to deliver never
comes into view because each risk decision only delivers us to
ever more numerous and vexing risk assessments still. Jason
Puskar

10.5 Tipping points and phase transitions

Here I distinguish between

• a tipping point, where a system subjected to an external force suddenly
changes behavior

• a phase transition, where the equilibrium distribution of a system
changes qualitatively as a parameter varies.

Usage of the phrase tipping point increased dramatically after the 2000 pub-
lication of Malcolm Gladwell’s bestselling book of that name, and it’s fun
to search for recent metaphorical usages to see what writers think it means.

The lecture contains a little math content – the simplest probability
models with phase transitions, that is queues and branching processes. But
I don’t have any substantial interesting data to anchor the lecture.

10.6 Luck

I would like to give a lecture centered on The Big Question, which has
been asked since time immemorial:

What are the relative contributions of skill and chance to success
in different aspects of human life?”

Here are two recent discussions. The main message of Malcolm Gladwell’s
2008 bestseller Outliers is that the time, place and socio-economic status of

https://books.google.com/ngrams/graph?content=tipping+point&year_start=1990&year_end=2015&corpus=15&smoothing=3&share=&direct_url=t1%3B%2Ctipping%20point%3B%2Cc0
https://www.google.com/?gws_rd=ssl#q=tipping+point&tbm=nws


10.6. LUCK 157

one’s birth, the surrounding culture, and luck, rather than pure individual
merit, play more of a role in success than we might suppose. And in the
2009 book Dance with Chance, Spyros Makridakis et al. write

Hard work, determination, education and experience should count
for a great deal [as regards professional success]. But, again the
data available suggests that luck is almost entirely responsible
for which hard working, determined, educated and experienced
people make it in life.

But finding actual data, rather than anecdotes, to support these assertions
seems too difficult. So instead my lecture meanders around the following
topics.

(1) While few readers would admit to “believing in luck” in the super-
stitious sense, if I ask

do you ever take decisions on the basis (in part) of feeling lucky
or unlucky?

then people often admit to doing so, and one can devise psychology experi-
ments to test this.

(2) In a 1997 psychology paper by Peter R. Darke and Jonathan L.
Freedman The Belief in Good Luck Scale the authors are interested in the
spectrum between

• the view that luck is a somewhat stable characteristic that consistently
favors some people but not others and is especially likely to favor
oneself

• the rational view of luck as random and unreliable.

They devise a set of questions to place an individual on that spectrum; so I
put these questions to my students.

(3) The 2003 book The Luck Factor by psychologist Richard Wiseman
is based upon interviews with several hundred people who self-describe as
being extremely lucky or unlucky. His conclusion:

• Lucky people create, notice and act upon the chance opportunities in
their lives.

• Lucky people make successful decisions by using their intuition and
gut feelings.

https://www.stat.berkeley.edu/~aldous/157/Papers/darke.pdf
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• Lucky people’s expectations about the future help them fulfill their
dreams and ambitions.

• Lucky people are able to transform their bad luck into good fortune

To me, interpreting these consequences in terms of “luck” seems rather ar-
bitrary; one could just say they are consequences of “ adopting a positive
attitude towards life”.

(4) Real-world samples and categorizations of luck. Section 1.3
described some, mostly hypothetical, examples of luck given by the philoso-
pher Nicholas Rescher. A more serious project is to find a source of real
examples and devise a useful categorization. It is interesting to contrast the
psychologist’s advice above with the “philosophical” advice by Rescher:

• Be realistic in judgements (evaluate the probabilities and utilities as
objectively as you can)

• Be realistic in expectations (there is only so much one can do)

• Be prudently adventuresome (don’t be so risk-averse as to lose out on
opportunities)

• Be cautiously optimistic.

10.7 Toy models in Population Genetics: some
mathematical aspects of evolution

I spend some time during the course giving examples of the use and abuse
of toy models, in the following sense.

Some probability models of real-world phenomena are “quantita-
tive” in the sense that we believe the numerical values output by
the model will be approximately correct. At the other extreme,
a toy model is a consciously over-simplified model of some real-
world phenomenon that typically attempts to study the effect of
only one or two of the factors involved while ignoring many com-
plicating real-world factors. It is thus “qualitative” in the sense
that we do not believe that numerical outputs will be accurate.

The topic of this lecture is a classical source of toy models – but what I
say is all textbook stuff with no new data.

First I make the conceptual point
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The theory of genetics shows that heredity is not like paint mix-
ing.

Then I introduce the usual simple population genetics models and outline
the math arguments for:

For a single mutation giving an allele with small selective advan-
tage α, the chance that the allele becomes fixed is about 2α

σ2

The duration of a selective sweep ≈ log(2N)
α generations .

Then I talk about the neutral theory and the Ewens sampling formula

the effective number of coexisting neutral alleles at equilibrium
is 1 + 4Np.

This requires discussion of diversity statistics, used also in other lectures
(baby names etc). Finally

time back to MRCA in Wright-Fisher

and for fun

“How many of your 10th generation ancestors are you (geneti-
cally) related to?”
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