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The quantile transform reorders the increments of
NPT real-valued walks of finite length, based on the value of the
walk at the left endpoint of each increment.

Increments that arise at low points in the walk w are set at
the beginning of Q(w); increments that arise at high points
of w are set at the end of Q(w).
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e In the discrete setting:

Q transform of

walks Sparre Andersen’s Wendel (°60)

Theorem (’53) ;
Spitzer’s Combinatorial Port (63)

Lemma ('56) Chaumont (’99)

Continuous-time extensions of Wendel’'s and Port’s
identities:

Dassios ('95, '96, '05) Bertoin, Chaumont, and

Embrechts, Rogers, and ~ Yor (97)
Yor ('95) Chaumont (’99, ’00)
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WP o (w) — the time at which the final increment of a walk w
appears in Q(w).

Q transform of
walks

Quantile pair — a walk-index pair (v, k) such that v has finite
length n,

v(j)>0 forj € [0,k — 1], and
v(j) > v(n) forje [k,n—1].
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o ransiorm f For w a real-valued walk, the pair (Q(w), a(w)) is a quantile

walks pair.
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Corollary (AFP, '13)

Let (w(j), j € [0, n]) be a real-valued walk. If w(n) > 0 then
Q(w) is nowhere negative. If w(n) < 0 then Q(w) is a
first-passage bridge to a negative value.
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Q transform of

walks m Simple walk — a walk of finite length with all increments
being +1.

m Simple quantile pair — a quantile pair (v, k) in which v is
simple.

Theorem (Quantile bijection, AFP, ’13)

The map w — (Q(w), a(w)) bijects simple walks with
simple quantile pairs.
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Q maps simple walk bridges to Dyck paths. Each Dyck path
arises in the image with multiplicity equal to the length of its

wkliel  final excursion.

This gives the (previously known) identity

2n L
n )= ZZka—1 Cn—«k
k=1

where C; denotes the j Catalan number.
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m Let (B(1), t € [0,00)) be Brownian motion.
o ransform of m Let (/(y), y € R) denote the (occupation density) local
time of B up to time 1 at height y.

m Let (a(s), s € [0, 1]) denote the quantile function of
occupation measure of B, so

a(s)

1
/1{B(t)§a(s)}dt:s:/ o(y)dy.
0

—0o0
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With j fixed, Q(w)(j) is a sum of increments of w that arise
at or below some height.

Noah Forman

Q transform of

L@Wﬁ ------- o e
| et

This evokes Tanaka’s formula:

1
| 1B() < y1aB(S) = 50+ (1)~ (v = B
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Theorem (AFP, '13)

The quantile transform of a sequence of (suitably rescaled)
simple random walks (SRWs) embedded in Brownian
motion (B(t), t € [0,1]) converge a.s. uniformly to

Q transform of

Q(B)(t) == %53(’) +(a(t)+ — (a(t) = B(1))+



Vervaat transform
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transform The Vervaat transform V (Vervaat, '79) splits the increments
Sl of a walk w at the first visit to the minimum. It swaps blocks
of increments: increments from after the min go at the start
of V(w), and those from before the min appear at the end of
V(w).

Q transform of

Theorem (AFP, ’13)
For S a SRW of finite length, V(S) £ Q(S).
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The Vervaat transform extends to Brownian motion, and
Vervaat ('79) gives a convergence result analogous to ours
for the quantile transform.

This leads to the following identity.

Theorem (AFP, ’13)
Q(B) = 3620 + (a(t))+ — (a(t) - B(1))+ £ V(B).

Q transform of




Jeulin’s theorem
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Let B denote a standard Brownian bridge and B a
standard Brownian excursion.

Q transform of

Theorem (Vervaat, '79)
V(Bbr) g Bex.

In the Brownian bridge case, our identity between Q(B) and
V(B) gives a novel proof of Jeulin’s theorem:

Theorem (Jeulin, '85)

For the local time process of B”, we get }¢3() 9 Bex(.).
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