The quantile transform

Noan Formar

Q transform of walks

Q transform of BM

The quantile transform of Brownian motion

Noah Forman

University of Oxford

21 June 2014

Collaborators

The quantile transform

Noah Formar

Q transform of walks

Q transform BM

Based on joint work with Sami Assaf (University of Southern California) and Jim Pitman (UC Berkeley).

The quantile transform

Noan Formar

Q transform of walks

Q transform of BM

Part 1

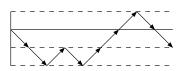
The quantile transform of a walk

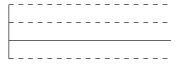
The quantile transform

Noah Formar

Q transform of walks

Q transform of BM



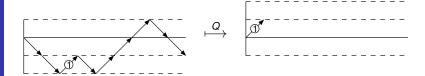


The quantile transform

Noah Formar

Q transform of walks

Q transform of

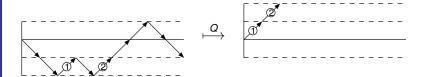


The quantile transform

Noah Formar

Q transform of walks

Q transform of

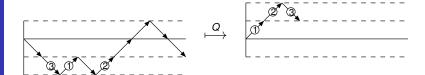


The quantile transform

Noah Forman

Q transform of walks

Q transform o BM

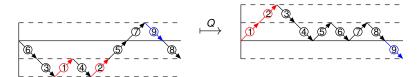


The quantile transform

Noah Forman

Q transform of walks

Q transform of BM The quantile transform reorders the increments of real-valued walks of finite length, based on the value of the walk at the left endpoint of each increment.



Increments that arise at low points in the walk w are set at the beginning of Q(w); increments that arise at high points of w are set at the end of Q(w).

Previous work on the quantile permutation

The quantile transform

Noah Forman

Q transform of walks

Q transform o BM In the discrete setting:

- 1 Sparre Andersen's Theorem ('53)
- Spitzer's Combinatorial Lemma ('56)
- 3 Wendel ('60)
- 4 Port ('63)
- 5 Chaumont ('99)

Continuous-time extensions of Wendel's and Port's identities:

- 1 Dassios ('95, '96, '05)
- 2 Embrechts, Rogers, and Yor ('95)
- Bertoin, Chaumont, and Yor ('97)
- 4 Chaumont ('99, '00)

Notation

The quantile transform

Noah Forman

Q transform of walks

Q transform of BM

 $\alpha(w)$ – the time at which the final increment of a walk w appears in Q(w).

Quantile pair – a walk-index pair (v, k) such that v has finite length n,

$$v(j) \ge 0$$
 for $j \in [0, k-1]$, and $v(j) > v(n)$ for $j \in [k, n-1]$.

Results I – general walks

The quantile transform

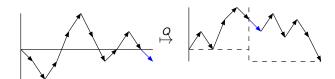
Noah Forman

Q transform of walks

Q transform of BM

Theorem (AFP, 2013)

For w a real-valued walk, the pair $(Q(w), \alpha(w))$ is a quantile pair.



Corollary (AFP, '13)

Let $(w(j), j \in [0, n])$ be a real-valued walk. If $w(n) \ge 0$ then Q(w) is nowhere negative. If w(n) < 0 then Q(w) is a first-passage bridge to a negative value.

Results II – simple walks

The quantile transform

Noah Formar

Q transform of walks

Q transform o BM

- Simple walk a walk of finite length with all increments being ± 1 .
- Simple quantile pair a quantile pair (v, k) in which v is simple.

Theorem (Quantile bijection, AFP, '13)

The map $w \mapsto (Q(w), \alpha(w))$ bijects simple walks with simple quantile pairs.

Results III - the bridge case

The quantile transform

Noah Forman

Q transform of walks

Q transform o BM *Q* maps simple walk bridges to Dyck paths. Each Dyck path arises in the image with multiplicity equal to the length of its final excursion.

This gives the (previously known) identity

$$\binom{2n}{n} = \sum_{k=1}^{n} 2k \frac{C_{k-1} C_{n-k}}{C_{n-k}}$$

where C_i denotes the j^{th} Catalan number.

The quantile transform

Noan Forma

Q transform of walks

Q transform of BM

Part 2

The quantile transform of Brownian motion

Notation

The quantile transform

Noan Formar

Q transform o walks

Q transform of BM

- Let $(B(t), t \in [0, \infty))$ be Brownian motion.
- Let $(\ell(y), y \in \mathbb{R})$ denote the (occupation density) local time of B up to time 1 at height y.
- Let $(a(s), s \in [0, 1])$ denote the quantile function of occupation measure of B, so

$$\int_0^1 \mathbf{1}\{B(t) \le a(s)\}dt = s = \int_{-\infty}^{a(s)} \ell(y)dy.$$

Quantile transform and Tanaka's formula

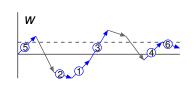
The quantile transform

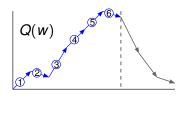
Noah Forman

Q transform o walks

Q transform of BM

With j fixed, Q(w)(j) is a sum of increments of w that arise at or below some height.





This evokes Tanaka's formula:

$$\int_0^1 \mathbf{1}\{B(s) \le y\} dB(s) = \frac{1}{2}\ell^y + (y)_+ - (y - B(1))_+.$$

Results I – convergence

The quantile transform

Noah Formar

Q transform of walks

Q transform of BM

Theorem (AFP, '13)

The quantile transform of a sequence of (suitably rescaled) simple random walks (SRWs) embedded in Brownian motion $(B(t), t \in [0,1])$ converge a.s. uniformly to

$$Q(B)(t) := \frac{1}{2}\ell^{a(t)} + (a(t))_{+} - (a(t) - B(1))_{+}.$$

Vervaat transform

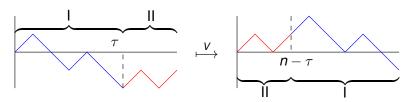
The quantile transform

Noah Forman

Q transform o walks

Q transform of BM

The Vervaat transform V (Vervaat, '79) splits the increments of a walk w at the first visit to the minimum. It swaps blocks of increments: increments from after the min go at the start of V(w), and those from before the min appear at the end of V(w).



Theorem (AFP, '13)

For S a SRW of finite length, $V(S) \stackrel{d}{=} Q(S)$.

Results II – distribution of the local time profile

The quantile transform

Noah Formar

Q transform of walks

Q transform of BM

The Vervaat transform extends to Brownian motion, and Vervaat ('79) gives a convergence result analogous to ours for the quantile transform.

This leads to the following identity.

Theorem (AFP, '13)

$$Q(B) = \frac{1}{2}\ell^{a(t)} + (a(t))_{+} - (a(t) - B(1))_{+} \stackrel{d}{=} V(B).$$

Jeulin's theorem

The quantile transform

Noah Forman

Q transform owalks

Q transform of BM

Let B^{br} denote a standard Brownian bridge and B^{ex} a standard Brownian excursion.

Theorem (Vervaat, '79)

$$V(B^{br}) \stackrel{d}{=} B^{ex}$$
.

In the Brownian bridge case, our identity between Q(B) and V(B) gives a novel proof of Jeulin's theorem:

Theorem (Jeulin, '85)

For the local time process of B^{br} , we get $\frac{1}{2}\ell^{a(\cdot)} \stackrel{d}{=} B^{ex}(\cdot)$.