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Motivation
Big data - 7 dimensions1

 Volume: size of data.

 Velocity: speed, displacement of data.

 Variety: diversity of data.

 Viscosity: measures the resistance to flow in
the volume of data.

 Virality: measures how fast data is distributed
unique and shared between nodes in a network
(e.g. the Internet).

 Veracity: trust and quality of the data.

 Value: what is the added value that Big Data
should bring?

1According to ATOS company
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Veracity of Data
Typical problems with data - training context

 Imbalanced data problem. One class
dominates another in the training data.

 Noisy labels problem. Some of the examples
in training data contain incorrectly assigned
labels.

 Missing values issue. Values of some
features are unknown.

 Unstructured data. The data is represented
in unprocessed form: images, videos,
documents, XML structures.

 Semi-supervised data. Some portion of
training data is unlabelled.

Example of
imbalanced data
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Methods
Restricted Boltzmann Machines (RBM)

 RBM is a bipartie Markov Random Field with
visible and hidden units.

 The joint distribution of visible and hidden units
is the Gibbs distribution:

p(x,h|θ) =
1
Z

exp
(
− E(x,h|θ)

)
 For binary visible x ∈ {0, 1}D and hidden units

h ∈ {0, 1}M th energy function is as follows:

E(x,h|θ) = −x>Wh− b>x− c>h,

 Because of no visible to visible, or hidden to
hidden connection we have:

p(xi = 1|h,W,b) = sigm
(
Wi·h + bi

)
p(hj = 1|x,W, c) = sigm

(
(W·j)>x + cj

)
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Methods
RBM for imbalanced data

 Train the model on examples from minority class by application of
MLL (scaled):

1
N

log
(
p(XNn=1|θ)

)
=

1
N

N∑
n=1

log
(∑
h

p(xn,h|θ)
)

 Generate artificial examples X̄Mm=1 using Synthetic Oversampling
TEchnique (SMOTE).

 For each of the newly created example xm apply Gibbs sampling:

hm ∼ p(h|x̄m, θ)
x̃m ∼ p(x|hm, θ)

 Label newly created example x̃m and store in training data.
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Methods
RBM for imbalanced data - example

SMOTE procedure:

A

B

Generating artificial examples on MNIST data:
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EXAMPLE 1

EXAMPLE 2

SMOTE

SMOTE RBM
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RBM for other raw data issues
 Problem of missing values.

 RBM is trained for each of the classes separately.

 Gibbs sampling is applied to uncover unknown values.

 RBM models are iteratively updated while new training example is
completed.

 Problem of noisy labels.

 RBM is trained for each of the classes separately.

 Each of the trained models is used as an oracle to detect
uncorrected labelled data.

 Reconstruction error is used to determine unlabelled examples.

 Problem of unstructured data.

 RBM is used as domain-independent feature extractor that
transforms raw data into hidden units.
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