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David J. Aldous and Madelyn Cruz

(Communicated by Jonathon Peterson)

Card shuffling models have provided simple motivating examples for the math-
ematical theory of mixing times for Markov chains. As a complement, we
introduce a more intricate realistic model of a certain observable real-world
scheme for mixing human players onto teams. We quantify numerically the
effectiveness of this mixing scheme over the seven or eight steps performed in
practice. We give a combinatorial proof of the nontrivial fact that the chain is
indeed irreducible.

1. Introduction

In introducing Markov chains at some elementary level, the first author always
found it difficult to give motivating examples with a real-world story, a plausible
probability model, and a fairly rich mathematical structure. Then he realized that
he was a regular participant in one such story. A first thought was to write out the
model for possible use as an instructional example in an introductory lecture. As
often happens, things turned out to be more complicated than first imagined, so it
was repurposed as a basis for a challenging undergraduate project to study further
aspects of the model. The second author took up the challenge. Some remaining
questions that could be used for undergraduate projects are mentioned in Section 6.4.

2. The model

The story concerns recreational volleyball, in a drop-in setting without fixed teams,
and where one wants the team compositions to change from game to game, both for
socialization and to avoid persistent large differences in team skill levels. Specif-
ically, there are 24 people, and at each stage, there are two ongoing games on
two courts, each game between two teams, each team with six players on a half-
court. Over the two-hour period there will be seven or eight successive such stages,
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Figure 1. One step of the big chain. As in football, positions are
relative to the way a team is facing: at start of game 0 both b and B
are front right in their teams.

everyone always playing. The rule1 for changing team composition is very simple,
exploiting a particular incidental feature of volleyball:

At the end of one stage, the players in the back row of each team stay in
these positions for the start of the next game, while the front row players
move (clockwise in the gym) to the same positions in the next quadrant.

See Figure 1. The key point is that in volleyball, there are six positions,2 and
players rotate one position each time their team regains the serve, and this happens
a random number of times during a game. So, relative to initial positions, the three
players who finish in the front row will in fact be (to a good approximation) a
uniform random choice over the six possibilities of three adjacent players, and so
we model this as a uniform random choice.

To complete a mathematical model, note that the number of one-position rotations
of two opposing teams can differ (because they alternate rotations) by at most 1. So,
independently for the two courts, we model the final positions of players in opposing

1Actually used in the gym where the first author plays; I don’t know how common it is.
2By convention numbered 1 to 6, starting in serving position (back right, as facing the net) and

ordered counterclockwise. Because players rotate clockwise, this indicates serving order.
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teams in a game as rotations by (C1,C2) where C1 is uniform3 on {0, 1, . . . , 5} and
C2 = C1− 1+Binomial

(
2, 1

2

)
modulo 6, the Binomial term reflecting randomness

of the initial serving team and the final serving team.
This specifies a “big” Markov chain on the 24! states (assignment of players

to positions). One step of this big chain is from the starting positions in one
game to the starting positions in the next game, as illustrated in Figure 1. This
model is conceptually loosely related to some card shuffling models4 such as those
in [Diaconis 1998; Levin and Peres 2017] in that a “rotation” of team players
corresponds to a cut-shuffle of a six-card deck. But unlike playing cards, the
volleyball players care about their positions relative to other players for various
reasons5 and this suggests actual observables for study in the model.

3. Results

The central, albeit vague, question is how effective is this scheme at mixing up the
teams?

In a lecture course, this would provide a real-world example for later discussion
of the mixing times topic. It seems intuitively obvious that this scheme would mix
perfectly in the long run. What does that mean? First observe that the chain is
doubly stochastic. To see why, consider the step illustrated in Figure 1. This takes
the “start game 0” configuration x0 to a certain “start game 1” configuration x1,
via a series of rotations. By reversing that series, one sees that there exists a
configuration x−1 which, from the same (forwards) series of rotations, takes x−1

to x0. This leads to (for fixed x0) a bijection between possible configurations x1

and x−1 which preserves transition probabilities; which in turn implies the doubly
stochastic property. And that property implies that the uniform distribution on all
24! states is a stationary distribution for the chain.6

Basic finite Markov chain theory7 identifies “mix perfectly in the long run” with
irreducible and aperiodic, which implies convergence of time-t distributions to a
unique stationary distribution, which in our model must be the uniform distribution
on all 24! states. Theory also tells us that irreducible is equivalent to the property
the directed graph of all possible transitions on the 24! states is strongly connected.

3In a more detailed model, each team wins a random Geometric
( 1

2
)

number of points between
rotations, and the game ends when one team reaches 25 points. Then the number of rotations modulo 6
does indeed have distribution close to uniform.

4See further discussion in Section 8.
5Friendly rivalry between spikers/blockers; more talented setters enable sophisticated fast plays;

attractive members of opposite sex; . . . .
6More generally, any card-shuffling scheme in which the shuffling rule depends only on the ranks

(positions within deck) and not on the labels of the cards will be doubly stochastic.
7In many textbooks such as [Häggström 2002; Privault 2013].



832 DAVID J. ALDOUS AND MADELYN CRUZ

This property is purely combinatorial — the numerical values of the nonzero
transition probabilities do not matter. So our first goal is to prove irreducibility and
aperiodicity. We give a constructive proof of irreducibility in Section 4, and a proof
of aperiodicity in Section 5. Our proofs are rather complicated, and no doubt there
exist simpler proofs.

Our second set of results concern numerical calculation or simulation of statistics
relating to the realistic short term in this story — seven or eight steps. Some basic
observables involve the friend chain indicating the relative positions of two players.
A variety of numerical results are shown in Section 6. For instance, if your friend
does not start on your team, then the probability that you are never on the same team
over eight games varies between 0.251 and 0.403 depending on initial relative posi-
tions (Table 5). A pedagogic point is that, for numerical calculations, we don’t want
to work with 24! × 24! transition matrices, but instead exploit symmetry to reduce
to question-specific small-state chains. For instance the way a given player moves
between games is simple: with chance 1

2 they stay, with chance 1
2 they move to the

next quadrant. In jargon, this is called the lazy cyclic walk [Levin and Peres 2017].
The bottom line is that, as regards simple observables, this scheme does a

reasonable job of mixing up the teams over eight games. However, the central
point of sophisticated mixing time theory [Levin and Peres 2017] is to go beyond
the unquantified “eventually” implied by irreducibility, and instead to quantify
when the step-t distribution is close to (in our case) the uniform distribution. The
usual quantification involves variation distance between distributions on the 24!
states, and this is the context of the famous result of [Bayer and Diaconis 1992] for
riffle shuffles, informally called “seven shuffles suffice” [Kolata 1990]. Studying
variation distance for our big chain, either numerically or via analytic bounds,
remains a challenging open problem. We give some preliminary observations in
Section 7.

4. The big chain is irreducible

4.1. Notation. To prove that the “big” chain is irreducible, we will show that it
is possible to move from any one given state to any other given state via some
sequence of allowable transitions of the chain.

Label the four quadrants (half-courts) A, B,C, D as shown in Figure 2. The
change in configuration, from the start of a game to the end of that game, can be
represented symbolically in the form

Ax1C x2 Bx3 Dx4,

where 0≤ xi ≤ 5 indicates the number of positions (modulo 6) rotated by the team
in the relevant quadrant. Figure 3 gives an illustration.
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Figure 2. Left: labeling of the four quadrants. Right: rotations
involved in step A5C4 B E .

0 1 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

→

1 2 8
19 20 14

15 16 17
13 12 18

9 3 4
0 6 7

5 11 10
21 22 23

Figure 3. The effect of step A5C4 B E .

So the allowable values are x1−x2 ∈{−1, 0, 1} and x3−x4 ∈{−1, 0, 1}modulo 6.
We then append a symbol E to indicate the final movement (the front row players
in each quadrant move to the same positions in the next quadrant). This provides
a coding of a step of the chain. For brevity we omit any xi = 0 term and write B
instead of B1. So a typical step is coded in a format like A5C4 B E . The reader may
check that the Figure 1 example is A5C4 B3 D2 E .

A sequence of steps can then be specified by concatenation, so A5C4 B E E DE
represents three steps of the chain, the second (E E) step indicating a game with
zero (modulo 6) rotations of each team before the front row switch. We will name
certain sequences later as X, F,G, H in describing the construction. The number
of steps in a sequence is just the number of E’s, when expanded fully. In writing
the sequences (such as the definition of X below) we often include spaces for visual
clarity but the spaces have no mathematical significance.

One aspect of this notation may be confusing. The sequence E E E E would code
the identity move. That means that B E E E E E has the same effect as B E . But
note that B E E E E is different, and in fact will be a useful device because it has
the effect of rotating the players in quadrant B while fixing all other players — see
Figure 4. Note also that B5 E E E E is the analogous back-rotation. This syntax
issue explains why we sometimes (e.g., in the definition of F below) need to include
an initial E E E E in the definition.

4.2. High level description 1. It is an elementary fact that any permutation of a card
deck can be obtained by a sequence of transpositions of two adjacent cards. Indeed
the “random adjacent transposition” shuffling scheme is one of the original and
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0 1 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

→

0 1 2
6 7 8

12 13 14
18 19 20

9 3 4
10 11 5

15 16 17
21 22 23

Figure 4. The effect of sequence B E E E E .

0 1 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

→

1 0 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

(a) Transpose two adjacent players in the same quadrant (sequence F).

0 1 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

→

2 1 0
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

(b) Transpose two players in the same quadrant with one space in between (G).

0 1 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

→

8 1 2
6 7 0

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

(c) Transpose two players in the same quadrant with two spaces in between (H ).

Figure 5. Transpositions achieved by the specific sequences F, G, H .

most deeply studied examples in the modern theory of mixing times [Aldous 1983;
Lacoin 2016; Wilson 2004]. By analogy, we start by showing that any transposition
of two players on the same quadrant can be obtained by some sequence of steps.
There are three cases, depending on the initial distance between the two players,
illustrated in Figure 5, and we will exhibit sequences F,G, H for each case. We
will show the first case (adjacent players) in detail.

4.3. Sequences that transpose two players. We start by introducing a 16-step
sequence X defined as

X := AE B2 D3 E E E A2C3 E B3 D3 E E E A5 E B5 E E E AE B5 E E E AC3.
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0 1 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

→

1 0 2
5 3 6

12 13 14
18 19 20

4 7 8
9 10 11

15 16 17
21 22 23

Figure 6. The effect of sequence X.

The step-by-step trajectory of sequence X is shown in Figure 7 below, which
demonstrates that the effect of X is as shown in Figure 6. The introduction of this
X is somewhat magical and hard to explain, but note that for some players it is like
a reverse step of the chain.

We can now define the sequence F that transposes the two adjacent players at
the left corner of the back row of quadrant A, as shown in Figure 5. Essentially it
is just three applications of X. Precisely

F := E E E E X X X E E E E .

So F involves 68 steps of the chain. Figure 8 shows the step-by-step trajectory of
sequence F.

The other transposition sequences. To transpose the two players at the back row of
quadrant A with one space in between, as shown in Figure 5, we use the sequence G
defined as

G := E E E E A5 F A F A5 F A E E E E .

This works because the effect of these sequences is to alter the back row as

012→ 021→ 201→ 210.

Finally, to transpose the players at the upper left corner and at the lower right corner
in quadrant A, as shown in Figure 5, we use the sequence H defined as

H := F A5 F A5 F AF AF.

The reader may check that this works, and is one place where the initial E E E E in
the definition of F is needed.

4.4. High level description 2. By symmetry, to prove irreducibility it is enough to
prove that, from any initial state, one can reach (by some sequence of allowable steps)
the reference state shown in Figure 9, where each player i is in position i . Because
any permutation of the six players in quadrant A can be derived from a sequence of
transpositions, from the existence of transposition sequences (Section 4.3) it suffices
to show that we can move, by some sequence of steps, player i to position i , for
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1. AE (separate player 2 from 0
and 1)

2–4. B2 D3 E E E (move player 2
to the front right position in A)

6 0 1
14 13 12

15 16 17
18 19 20

3 4 5
7 8 2

11 10 9
21 22 23

6 0 1
2 5 4

12 13 14
18 19 20

8 7 3
21 22 23

15 16 17
9 10 11

5. A2C3 E (separate players 0
and 1 from 2)

6–8. B3 D3 E E E (move player 0
at the back right of B)

5 2 6
18 19 20

15 16 17
14 13 12

8 7 3
4 1 0

23 22 21
9 10 11

5 2 6
3 7 8

20 19 18
14 13 12

0 1 4
9 10 11

15 16 17
21 22 23

9. A5 E (rotate A to move
player 2 at the back right of A)

10–12. B5 E E E (move player 2
to the left of 0)

2 6 8
18 19 20

15 16 17
14 13 12

0 1 4
5 3 7

11 10 9
21 22 23

2 6 8
0 5 3

20 19 18
14 13 12

1 4 7
9 10 11

15 16 17
21 22 23

13. AE 14–16. B5 E E E (move player 1
to the left of 02)

0 2 6
18 19 20

15 16 17
14 13 12

1 4 7
5 3 8

11 10 9
21 22 23

0 2 6
1 5 3

20 19 18
14 13 12

4 7 8
9 10 11

15 16 17
21 22 23

17–20. AC2 E E E EC (same ef-
fect as AC3)

1 0 2
5 3 6

12 13 14
18 19 20

4 7 8
9 10 11

15 16 17
21 22 23

Figure 7. Step-by-step trajectory of sequence X.
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1. E E E E X

1 0 2
5 3 6

12 13 14
18 19 20

4 7 8
9 10 11

15 16 17
21 22 23

2. X

0 1 2
8 4 5

12 13 14
18 19 20

7 3 6
9 10 11

15 16 17
21 22 23

3. X E E E E

1 0 2
6 7 8

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

Figure 8. Step-by-step trajectory of sequence F.

A

C

0 1 2
6 7 8

12 13 14
18 19 20

B

D

3 4 5
9 10 11

15 16 17
21 22 23

Figure 9. Reference state.

every player in all the other quadrants B,C, D. We will move players to positions
row by row, in the following order:

• Back row of D: (21, 22, 23).

• Back row of C : (18, 19, 20).

• Front row of D: (17, 16, 15).

• Front row of C : (14, 13, 12).

• Back row of B: (5, 4, 3).

• Front row of B: (9, 10, 11).

Each row in turn is fixed, in that it remains in place after each subsequent row has
been moved to its position.

In the next section we will describe the algorithm in words. A key point is that
we will use quadrant A as a kind of temporary stopover for players in transit.

4.5. The algorithm. As noted in Figure 4 a sequence like B E E E has the effect of
rotating a given quadrant by one position, and one can repeat such a sequence. So
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we can use phrases such as “rotate player i to position j” (in the same quadrant).
We will call E the migration step, so by repeating step E we can use “migrate
player i to position j”, where player i has the same relative position (e.g., front,
right) as j , in the front row. (But remember that all 12 front-row players migrate.)
In both cases we of course only do the move if necessary, that is if the player is not
already in the desired position.

The algorithm is based on variations of the following Procedure P , where P is
one of the quadrants B,C, D, and where the procedure acts to move the required
three players to the back row of P.

Procedure P . (1) Label the back row positions of P as a, b, c, left-to-right. (So
for P = D we have (a, b, c)= (21, 22, 23).)

(2) Rotate (if in back row) player a to front row. Migrate player a to quadrant A
and rotate to front right position. Migrate player a to the front right position in P.

(3) Rotate player a to back right position in P.

(4a) If player b is not in P, repeat actions (2) for player b. This moves player b to
the front right position in P.

(4b) Else, rotate P so that player b is in front row, while player a is in back row.
Migrate player b to quadrant A. Rotate A to move player b to front right. Rotate
P so that player a is returned to back right position in P. Migrate player b to the
front right position in P.

(5) Now players (a, b) are in (back right, front right) positions in P: rotate one
space to (back center, back right) positions.

(Next we move player c in essentially the same way as player b, Here are the
details.)

(6a) If player c is not in P, repeat actions (2) for player c. This moves player c to
the front right position in P.

(6b) Else, rotate P so that player c is in front row, while players a, b are in back
row. Migrate player c to quadrant A. Rotate A to move player c to front right.
Rotate P so that players (a, b) are returned to (back center, back right) positions
in P. Migrate player c to the front right position in P.

(7) Rotate players (a, b, c) to (back left, back center, back right) positions in P.

Procedure P moves the required three players to the back row of P. In the
algorithm below, once a back row is placed, it is fixed and those players are never
moved subsequently. This is because that would require a rotation of P at some
subsequent use of (2), which cannot happen because of the if in back row condition
in (2); these players are already in place.
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The algorithm. (1) Apply Procedure D, then Procedure C . (This fixes the back
rows of C and D. For the third row (the front row in D) we will use a little trick,
to first arrange them on a back row.)

(2) Here, we consider players (17,16,15) who need to be moved to the front row
of D. But we label them as (a, b, c) = (5,4,3) and use Procedure B to move them
to the back row of B. Then revert to labels (17, 16, 15).

(3) Rotate players (17,16,15) three positions so they become the front row of B.

(4) Migrate one step, so players (17,16,15) become the front row in D. (The
previous back rows remain fixed. Next we consider the fourth row, the front row
of C . Here another small complication arises; any migration will move the front
row of D (fixed above), so we need to ensure that it will not be rotated (we can
migrate if necessary), and it is migrated back into place before finishing.)

(5) Here we are considering players (14,13,12). As in (9), label them as (a, b, c)=
(5, 4, 3) and use Procedure B to move them to the back row of B. Then revert
to labels (14,13,12). This involves a certain number of migrates. When applying
Procedure B, we make sure players (17, 16, 15) remain at the front row in some
quadrant at all times by not rotating them, and the fixed back court players (18-23)
are not moved.

(If we need to rotate a quadrant where players (17,16,15) are in the front row,
migrate first until that front row does not contain players (17, 16, 15), b if b is not
at the back row of P, and c if b is at the back row of P and c is not, then rotate that
quadrant.)

(6) Migrate players (17, 16, 15) to make them the front row in quadrant A. Rotate
players (14,13,12) in B three positions so they become the front row in B. Migrate
two turns.

(Now all players 12–23 in quadrants C and D have been moved to their reference
positions.)

(7) Apply Procedure B. This moves players (5, 4, 3) to the back row of B, as
required. It involves some number of migrates, but the players 12–17 assigned to
front rows of C and D should remain as front rows of adjacent quadrants, so make
sure not to rotate them and migrate them back to their required positions.

(If a rotation is needed, migrate first until that front row does not contain play-
ers 12–17, b if b is not at the back row of P, and c if b is at the back row of P and
c is not.)

(Now we have fixed all rows of B,C, D except the front row of B. For the front
row of B we do a quite different scheme, using the transposition sequences from
Section 4.3.)
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(8) Here we are considering players (11, 10, 9). Our first goal is to move them
to target positions (2, 1, 0) in the back row of A. Any of those players (11, 10, 9)
in A can be moved to their target position via transpositions. Remaining players
amongst (11, 10, 9) must be in the front row of B. Migrate the front row of B to
the front row of A, transpose relevant players to target positions, and migrate back.

(9) Players (11, 10, 9) are at positions (2, 1, 0) in the back row of A. Migrate
(17, 16, 15) to the front row of B. Rotate players (11, 10, 9) three positions so they
become the front row of A, and migrate to front row of B.

(Now all rows of B,C, D are fixed.)

(10) As noted earlier, any permutation of the six players in quadrant A can be
derived from a sequence of transpositions, so we can fix quadrant A by using the
transposition sequences F,G, H from Section 4.3.

This completes our proof of irreducibility. Recall that the basic idea was to move
players to positions row-by-row. It seems likely that there is some alternate “basic
idea” that would lead to a simpler proof, and so we have not tried to optimize the
implementation of our basic idea.

5. The big chain is aperiodic

We know that it is possible to move from one state to that same state in four steps —
E E E E . So to prove that the big chain is aperiodic, it is sufficient to exhibit a
sequence of n steps, for some odd n, that move the reference state (Figure 9) to
that same state. Such a sequence is shown in Figure 10, There are 163 E’s in the
unexpanded notation, and 68, 424, and 340 steps from the one F, two G’s, and
one H , respectively, so there are 995 steps in this sequence.

6. The friend chain

Perhaps the most natural observable to study concerns the positions of two players,
say ego and friend. Naively this would require a 24× 23 state chain, but we can
exploit some symmetries to make a 26-state chain indicating relative positions of
the two players. Doing so requires some care; the states are indicated in Figure 11,
as explained next.

First note that our process is not invariant under a quarter-turn of the four
quadrants,8 but is invariant under a half-turn, so as in Figure 11, we can assume
ego is in the left court.

The states of what we will call the friend chain indicate relative positions at
the start of a game. To describe the state, first record which quadrant ego is in
(denoted here as initial 1 or 2; that is, quadrants C or A) and then whether friend

8A friend on the same team in quadrant B might be an opponent in the next game; this cannot
happen on quadrant D.
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1–13. AE E E E AE AE C E
DE E E E DE DE (move to a cer-
tain other arrangement)

14–32. E E DE E E E DE E E E
DE E C E E E E C E E E D (fixing
back row of D)

14 7 6
0 21 22

23 15 16
19 20 9

3 4 5
8 2 1

18 11 10
13 12 17

14 7 6
8 2 1

17 12 13
9 16 15

3 4 5
10 11 18

0 20 19
21 22 23

33–57. C E E E E C E E E E
C E E E AE E E E AE E E C E E E
C E E E E C (fixing back row of C)

58–67. E AE E E E AE B E E AE
B B B B B E (fixing (17,16,15) using
Procedure B then some migration)

11 10 14
9 16 15

17 12 0
18 19 20

3 4 5
8 2 1

13 7 6
21 22 23

9 12 0
6 7 13

1 2 8
18 19 20

3 4 11
14 10 5

15 16 17
21 22 23

68–87. B AE E E E AE B E E E
AE B E B E E E E B E E E E B E E
(fixing (14,13,12) using Procedure B
then some migration)

88–99. B E E E E B E B E E E
AE B E E E (fixing (5,4,3) using Pro-
cedure B)

0 7 6
4 9 3

12 13 14
18 19 20

1 2 8
10 5 11

15 16 17
21 22 23

9 0 7
1 6 10

12 13 14
18 19 20

3 4 5
11 8 2

15 16 17
21 22 23

100–135. AE E E E AE E E E
AG AE E E E AE E E E AE E E E
AE E E AE E E E AE E E E
AE E E E AE (fixing (9,10,11)
using Steps 15 and 16 of the
algorithm)

136–163. AE E E E AH A AG A
AE E E E AE E E E AE E E E
AF AE E E E AE E E E AE E E E
(fixing A)

0 2 8
6 1 7

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

0 1 2
6 1 7

12 13 14
18 19 20

3 4 5
9 10 11

15 16 17
21 22 23

Figure 10. Sample moves.



842 DAVID J. ALDOUS AND MADELYN CRUZ

all 2+

all 2−

2T 5 2T 4 2T 3
2T 6 • 2T 2

2O2 2O1 2O6
2O3 2O4 2O5

ego • in second quadrant

all 1+

all 1−

1O1 1O6 1O5
1O2 1O3 1O4

1T 4 1T 3 1T 2
1T 5 1T 6 •

ego • in first quadrant

Figure 11. Positions of friend relative to ego •.

is in the same team (denoted by T ) or the current opposing team (denoted by O),
or on the other court. If on the other court, we only need to note which quadrant
(because the position will be randomized during the game), so denote by one of
(1+, 1−, 2+, 2−) as illustrated. Finally, writing temporarily ego* for the opponent
in the same position as ego, we indicate a friend’s position as 1, 2, 3, 4, 5, or 6,
counterclockwise from ego or ego*.

This adds up to 26 states, and one can check that the big chain rules define a
Markov chain on these states, with transition matrix P as shown in Figures 12 and 13.
Its stationary distribution π is induced from the uniform stationary distribution of
the big chain: probability 6

46 for each of the states 1+, 1−, 2+, 2− and probability
1

46 for each of the 22 remaining states.

6.1. Numerics for the friend chain. Let us investigate the mixing properties of
the friend chain. Standard theory quantifies “closeness to stationarity after n steps”
via variation distance d∗(n) or separation distance s∗(n) from worst-case start, that
is, via

d∗(n) :=max
i

1
2

∑
j

|pn
i j −π j |,

s∗(n) :=max
i, j
(1− pn

i j/π j )

for the n-step transition matrix Pn. Another measure of distance to stationarity is the
L2 or the χ2 distance. The L2 distance between Pi and the stationary distribution π
after n steps is

‖Pn(i, · )−π‖2 =

√∑
j

(pn
i j −π j )

2

π j
and

‖Pn
−π‖2 =max

i
‖Pn(i, · )−π‖2.

Shown in Table 1 are the numerical values for these distances.
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Figure 12. Transition matrix of the friend chain (first part).
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Figure 13. Transition matrix of the friend chain (second part).
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n 1 2 3 4 5 6 7 8 9

d∗(n) 0.957 0.638 0.375 0.263 0.180 0.122 0.083 0.058 0.040
s∗(n) 1 1 1 0.933 0.508 0.374 0.297 0.223 0.160
L2(n) 4.690 2.254 1.544 1.05 0.71 0.492 0.339 0.233 0.159

Table 1. Measures of distance to stationarity for the friend chain,
after n games.

start 1+ 1− 1T 2 1T 3 1T 4 1T 5 1T 6 1O1 1O2 1O3 1O4 1O5 1O6

OT 1.607 1.962 1.803 2.107 2.222 2.107 1.803 3.059 2.894 2.606 2.482 2.606 2.894
ST 1.093 1.515 3.773 2.725 2.314 2.725 3.773 1.421 1.499 1.550 1.523 1.550 1.499

Table 2. Mean number of games (out of eight) in which friend is
on the opposite team OT (and the same team ST) as ego, who starts
in the first quadrant.

start 2T 2 2T 3 2T 4 2T 5 2T 6 2O1 2O2 2O3 2O4 2O5 2O6 2+ 2−

OT 1.493 1.678 1.700 1.678 1.493 3.059 2.894 2.606 2.482 2.606 2.894 1.962 1.940
ST 3.778 2.698 2.297 2.698 3.778 1.421 1.499 1.550 1.523 1.550 1.499 1.515 1.103

Table 3. Mean number of games (out of eight) in which friend is
on the opposite team OT (and the same team ST) as ego, who starts
in the second quadrant.

But these are not observable quantities. More relevant to players is the mean
number of games is which friend is on the same team, or on the opposing team,
as ego. This is a simple calculation involving only matrix powers, and shown in
Tables 2 and 3 are the mean number of games in which friend is on the opponent
team and in which friend is on the same team.

Notice that there is a symmetry property visible in Tables 2 and 3, i.e., the values
under 1T 2 to 1T 6, 1O2 to 1O6, 2T 2 to 2T 6, and 2O2 to 2O6 are exactly invariant
under reversal. Moreover, the values under 1− and 2+ are the same. This shows
that if friend is playing with or against ego, the mean number of games in which
friend is on the opposite team (or the same team) can be computed depending on
the distance from friend’s initial position to ego or temporary ego’s initial position.
In other words, we can reduce the number of states, and the states will depend on
friend’s shortest distance (counterclockwise or clockwise) from ego.

A related question is the chance that you never play as an opponent (or as
teammate) to your friend. Shown in Tables 4 and 5 are the numerical values for
“opponent” and “teammate”, respectively, omitting the cases where this is zero
(initial opponent, or 1T 4).
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start 1+ 1− 1T 2 1T 3 1T 5 1T 6

probability 0.098 0.057 0.141 0.026 0.026 0.141

start 2T 2 2T 3 2T 4 2T 5 2T 6 2+ 2−

probability 0.168 0.081 0.082 0.081 0.168 0.057 0.057

Table 4. Probability that friend is never an opponent of ego over
eight games.

start 1+ 1− 1O1 1O2 1O3 1O4 1O5 1O6

probability 0.403 0.292 0.344 0.317 0.271 0.251 0.271 0.317

start 2O1 2O2 2O3 2O4 2O5 2O6 2+ 2−

probability 0.344 0.317 0.271 0.251 0.271 0.317 0.292 0.393

Table 5. Probability that friend is never a teammate of ego over
eight games.

Comparison with random teams. There are several ways one could compare the
effect of the mixing scheme we study with the alternate scheme of randomly
assigning players to team for every game. For instance, under random mixing,
if friend starts somewhere which is not the opposite team as ego, then in each
subsequent game the probability that friend is not on the opposite team as ego
equals 17

23 . So by independence, the probability that friend will never be on the
opposite team as ego over eight games equals

( 17
23

)7
= 0.1205168 . . .≈ 0.121. We

see from Table 4 that this is less than the values under our scheme, if the starting
position is only one position away from ego or the corresponding position of ego
on the other half court. In the remaining cases, it is much greater.

Similarly, if friend starts somewhere which is not the same team as ego, then
(under random mixing) in each subsequent game the probability that friend is not on
the same team as ego equals 18

23 . So the probability that friend will never be on the
same team as ego over eight games equals

( 18
23

)7
= 0.1798095 . . .≈ 0.180. From

Table 5 this is always less than the values under our scheme.

6.2. Monte Carlo simulations. More complicated observables can most easily be
addressed via Monte Carlo simulation of the process. For instance:

What is the probability that ego will encounter (as either teammate or
opponent) all of the other 23 players during an eight-game sequence?

By Monte Carlo, the probability ≈ 0.595 if ego starts at the first half court,
or ≈ 0.675 if ego starts in the second half court. (Intuitively, these figures differ
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because in the former case one has more overlap between opponents in the first and
second games.) Over ten games, these probabilities increase to 0.814 and 0.857.
These simulations were done with one million trials, so we can take confidence
intervals to be ±0.001.

6.3. Solving linear systems. Aside from computing powers of the transition matrix
or using Monte Carlo simulations to answer numerical questions, a textbook method
for calculation is via solving linear systems of equations. We will illustrate by two
examples which can be done by hand — more complicated examples could be done
numerically.

Example. For each of the various positions for players on the same team, what is
the expected number of games until they are no longer on the same team?

Recall the Figure 11 notation. By symmetry, we can take the first player to be
ego in the first quadrant, and the other player to be one of 1T 2, 1T 3, 1T 4, or ego
in the second quadrant, and the other player to be one of 2T 2, 2T 3, 2T 4. For one
of those initial other player positions i , let ti be the expected number of games it
takes until the two players are on different teams. Consider i = 1T 2. There are
three equally likely outcomes of the first match. Either neither of those two players
migrates, in which case the configuration remains 1T 2. Or both players migrate,
in which case the configuration becomes 2T 2. Or exactly one player migrates, in
which case they are now on different teams. Repeating this analysis for each i leads
to the following linear system of equations:

t1T 2 = 1+ 1
3 t1T 2+

1
3 t2T 2, t2T 2 = 1+ 1

3 t1T 2+
1
3 t2T 2,

t1T 3 = 1+ 1
6 t1T 3+

1
6 t2T 3, t2T 3 = 1+ 1

6 t1T 3+
1
6 t2T 3,

t1T 4 = 1, t2T 4 = 1.

By symmetry we have t1T 2 = t2T 2, t1T 3 = t2T 3 = t1T 5 = t2T 5, t1T 4 = t2T 4. Solving
theses equations leads to

t1T 2 = t2T 2 = 3, t1T 3 = t2T 3 = t1T 5 = t2T 5 =
3
2 , t1T 4 = t2T 4 = 1.

In fact this example could be solved without writing down equations, by first
observing that in each case the number of games required has a Geometric(p)
distribution, with p= 1

3 ,
2
3 , 1 according as the initial distance between players being

1, 2, 3.

Example. Starting the friend Markov chain from one of the states 1± or 2±, what
is the probability that ego and friend will play on the same team before they play
on opposing teams?

Here we do need to write down the equations. Let pi be the probability that ego
and friend will play on the same team before they play on opposing teams if friend
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starts on state i , where i is one of 1± and 2±. While they are on opposite courts,
there are 4 equally likely possibilities for the players to migrate or not. From the
transition matrix of the friend chain, we obtain the linear system

p1+ =
1
4 p1++

1
4 p1−+

1
4 p2++

1
4 p2−,

p1− =
1
4 +

1
4 p1−+

1
4 p2−,

p2+ =
1
4 +

1
4 p2++

1
4 p2−,

p2− =
1
4 p1++

1
4 p2−.

The solution is

p1+ =
3

11 , p1− = p2+ =
4

11 , p2− =
1
11 .

Hence, if friend starts on one of the states in 1+, 1−, 2+, and 2−, the probabilities
that ego and friend will play on the same team before they play on opposing teams
are 3

11 , 4
11 , 4

11 , and 1
11 , respectively.

6.4. Suggestions for course projects. As mentioned in the introduction, one could
use this topic as a source of projects to accompany a course in Markov chains with
some emphasis on computation. Here are some suggestions.

(1) Repeat the analysis for the simpler model is which there are only 12 players and
one court. At the end of each match, the players in one front row swap positions
with the players in the other front row.

(2) Similar to the two examples in Section 6.3 above, calculate the expected amount
of time until ego and friend are on the same team (or opposite teams) for each
possible initial configuration.

(3) (suggested by a referee) Calculate the fundamental matrix of the friend chain.
The fundamental matrix determines the mean time to go from one given initial state
to another given target state. Moreover, in the context of comparison with random
teams (the number of games you play with or against your friend in the Markov
scheme, versus the number in the purely random model), the fundamental matrix
determines the n→∞ limit of the expected difference between the two schemes.

(4) A more challenging theory project is to improve our bounds on the mixing time.
The construction in Section 4 implicitly gives a (very large) upper bound, and the
next section gives lower bounds, but these are surely far from optimal.

7. Mixing time for the big chain

At a research level there has been extensive study of mixing times for many different
card-shuffling models, usually in the asymptotic setting (as the size n of card deck
goes to∞). Our model is rather specific to the n = 24 case, so we have not sought
to embed it into some family allowing large n.
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n 1 2 3 4 5 6 7 8 9

d(n) 0.5 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0313 0.0313

Table 6. Variation distance for the lazy cyclic walk.

One can get lower bounds on mixing time by considering specific functions of
the chain, and the variation distances in Table 1 for the friend chain are a lower
bound for the distances in the big chain. A first step [Aldous 1983] in studying
some “local moves” shuffles such as random adjacent transpositions was to obtain
lower bounds by studying motion of initially adjacent cards. In our model, the
“friends” maximal-start variation distance in Table 1 is indeed9 from the case of
initial adjacent players.

Recall that the progress of ego around the four quadrants is just the lazy cyclic
walk, for which variation distance to stationarity in recorded in Table 6.

These values are slightly less than the values in Table 1 for the friend chain —
both are priori lower bounds for the variation distance for the big chain.

To find a better lower bound for the mixing time for the big chain, we can
combine the two aforementioned ideas and form a 52-state (big friend) chain, where
ego can be in any of the four quadrants. In this new chain, we label the positions
with respect to ego similar to the friend chain (see Figures 11 and 14). We first
record which quadrant ego is in (denoted as 1, 2, 3 or 4) and then whether friend is
in the same team (denoted by T ) or the current opposing team (denoted by O), or on
the other court. If on the other court, we only note which quadrant, so denote by one
of + or −. Finally, writing temporarily ego* for the opponent in the same position
as ego, we indicate a friend’s position as 1, 2, 3, 4, 5, or 6, counterclockwise from
ego or ego*. Its stationary distribution π is induced from the uniform stationary
distribution of the big friend chain: probability 6

92 for each of the states 1+, 1−, 2+,
2−, 3+, 3−, 4+, and 4−, and probability 1

92 for each of the 44 remaining states.
The transition matrix for this big friend chain is easy to obtain from the transition

matrix of the friend chain. Consider the transition matrix of the friend chain in
Figures 12 and 13. We can view it as a matrix composed of smaller matrices as in
Table 7, where T11, T12, T21, and T22 are 13× 13 matrices. The states used in the
transition matrix for the big friend chain are arranged as follows: 1+, 1−, 1T 2 to
1T 6, 1O1 to 1O6, 2T 2 to 2T 6, 2O1 to 2O6, 2+, 2−, 3+, 3−, 3T 2 to 3T 6, 3O1
to 3O6, 4T 2 to 4T 6, 4O1 to 4O6, 4+, and 4−, and transition matrix for the big
friend chain is shown in Table 8.

We can now investigate the mixing properties of the big friend chain. Shown in
Table 9 are the distances from stationarity for the big chain.

9Except for opening games.
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all 4−

all 4+

4O5 4O4 4O3
4O6 4O1 4O2

4T 2 • 4T 6
4T 3 4T 4 4T 5

ego • in fourth quadrant

all 3−

all 3+

• 3T 6 3T 5
3T 2 3T 3 3T 4

3O4 3O3 3O2
3O5 3O6 3O1

ego • in third quadrant

Figure 14. Positions of friend relative to ego •.

1 2

1 T11 T12

2 T21 T22

Table 7. Transition matrix for the friend chain.

1 2 3 4

1 T11 T12 0 0
2 0 T22 T21 0
3 0 0 T11 T12

4 T21 0 0 T22

Table 8. Transition matrix for the big friend chain.

n 1 2 3 4 5 6 7 8 9

d∗(n) 0.978 0.713 0.520 0.340 0.242 0.168 0.125 0.085 0.058
s∗(n) 1 1 1 1 0.827 0.681 0.461 0.391 0.272
L2(n) 6.708 2.977 1.868 1.228 0.827 0.563 0.387 0.266 0.183

Table 9. Measures of distance to stationarity for the big friend
chain, after n games.

Notice that the values we got for d∗(n) in the big friend chain are larger than
that of the friend chain, improving the lower bound of the big friend chain.

8. Final remarks

We have mentioned analogies with card shuffling several times, because rotations of
team players correspond to a cut-shuffle of a six-card deck. Our model is equivalent



A REAL-WORLD MARKOV CHAIN ARISING IN RECREATIONAL VOLLEYBALL 851

to a certain (not very easily implemented physically) random shuffle of a 24-card
deck via first breaking into four subdecks. Persi Diaconis (personal communication)
remarks that casinos and some fantasy games involve shuffling decks much larger
than the usual 52-card deck, and this is often done via some scheme involving
breaking into subdecks, shuffling each in some way, and recombining in some way.
Such schemes (thereby loosely analogous to our model) have generally not been
studied in mathematical probability, an exception being the casino shelf shuffling
machines studied by Diaconis, Fulman and Holmes [Diaconis et al. 2013].

We have interpreted the underlying question

how effective is this scheme at mixing up the teams?

in terms of mixing times, that is, implicitly by comparison with the alternative of
randomly assigning players to teams for each game. An opposite alternative would
be some analog of “design of statistical experiments” schemes, deterministically
assigning players to teams in each round in such a way that relative positions
of two players were as uniformly spread as possible. At a practical level, our
scheme is much easier and faster to implement than either alternative. Moreover its
implementation is robust to small variation in number of players, which is common
in informal settings: an extra player will rotate off court, or a five-player team
always has three players deemed front row.
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