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A Prediction Tournament Paradox
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ABSTRACT
In a prediction tournament, contestants “forecast” by asserting a numerical probability for each of (say)
100 future real-world events. The scoring system is designed so that (regardless of the unknown true
probabilities) more accurate forecasters will likely score better. This is true for one-on-one comparisons
between contestants. But consider a realistic-size tournament with many contestants, with a range of
accuracies. It may seem self-evident that the winner will likely be one of the most accurate forecasters. But,
in the setting where the range extends to very accurate forecasters, simulations show this is mathematically
false, within a somewhat plausible model. Even outside that setting the winner is less likely than intuition
suggests to be one of the handful of best forecasters. Though implicit in recent technical papers, this
paradox has apparently not been explicitly pointed out before, though is easily explained. It perhaps has
implications for the ongoing IARPA-sponsored research programs involving forecasting.
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1. Introduction

In mathematical terms, a prediction tournament consists of a
collection of n questions of the form “state a probability for a
specified real-world event happening before a specified date.” In
actual tournaments one can update probabilities as time passes,
but for simplicity we consider only a single probability predic-
tion for each question, and only binary outcomes. Scoring is by
squared error1: if you state probability q then on that question

score = (1 − q)2 if event happens; score = q2 if not.

Your tournament score is the sum of scores on each question.
As in golf one seeks a low score. Also as in golf, in a tournament
all contestants address the same questions; it is not a single-
elimination tournament as in tennis. The use of squared-error
scoring is designed so that (under your own belief) the expecta-
tion of your score is minimized by stating your actual probability
belief. So in the long run it is best to be “honest” in that way.

General nonmathematical background to the topic is best
found in the persuasive essay by Tetlock, Mellers, and Scoblic
(2017). Study of results of prediction tournaments in recent
years has led to the popular book by Tetlock and Gardner (2015)
and substantial academic literature—for instance Mellers et al.
(2014) has 147 Google Scholar citations. That literature involves
serious statistical analysis, but is focused on the psychology of
individual and team-based decision making and the effective-
ness of training methods. This article addresses a conceptual
point—how effective are tournaments at identifying the best
forecasters?—via simulation and only quite elementary math-
ematics.

Here is the basic algebra. With unknown true probabilities
(pi), if you announce probabilities (qi) then (see (1)) the true
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1In fact tournaments use Brier score, which is just 2× the squared error, with modifications for multiple-choice questions.

expectation of your score equals
∑

i
pi(1 − pi) +

∑

i
(qi − pi)

2.

The first term is the same for all contestants, so if S and Ŝ are the
tournament scores for you and another contestant, then

n−1/2(ES − EŜ) = σ 2 − σ̂ 2

where

σ :=
√

n−1
∑

i
(qi − pi)2

is your RMS error in predicting probabilities and σ̂ is the other
contestant’s RMS error. Thus by looking at differences in scores
one can, in the long run, estimate relative abilities at prediction,
as measured by RMS error of predicted probabilities.

To re-emphasize, when we talk about prediction ability we
mean the ability to estimate probabilities accurately; we are not
talking about predicting Yes/No outcomes and counting the
number of successes, which is an extremely inefficient procedure
for comparing prediction ability.

1.1. The Elementary Mathematics

Let us quickly write down the relevant elementary mathematics.
Write X for your score on a question when the true probability
is p and you predict q

P(X = (1 − q)2) = p, P(X = q2) = 1 − p.

EX = p(1 − q)2 + (1 − p)q2 = p(1 − p) + (q − p)2.
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So writing S for your “tournament score” when the true
probabilities of the n events are (pi, 1 ≤ i ≤ n) and you predict
(qi, 1 ≤ i ≤ n),

ES =
∑

i
pi(1 − pi) + nσ 2, (1)

where
σ 2 := n−1

∑

i
(qi − pi)

2

is your mean-squared error (MSE) in assessing the probabilities.
Let us spell out some of the implications of this simple formula.

• The first term in (1) is the same for all contestants: one could
call it the contribution from “irreducible randomness.”

• The formula shows that a convenient way to measure forecast
accuracy is via σ , the root-mean-square (RMS) error of a
candidate’s forecasts.

• The actual score S is random
S =

∑

i
pi(1 − pi) + σ 2 + (chance variation), (2)

where the “chance variation” has expectation zero. Given the
scores S and Ŝ for you and another contestant, one could
attempt a formal test of significance of the hypothesis σ < σ̂

that you are a more accurate forecaster. But making a valid
test is quite complicated, because the “chance variations” are
highly correlated.

1.2. But One-on-One Comparisons May Be Misleading

In the model and parameters we will describe in Section 2, a
contestant in a 100-question tournament who is 5% more accu-
rate than another (i.e., RMS prediction errors 10% vs. 15%, or
20% vs. 25%) will have around a 75% chance to score better (and
around 90% chance if 10% more accurate). This is unremark-
able; it is just like the well-known Bradley–Terry style models
(see, e.g., Hunter 2004) for sports, where the probability A beats
B is a specified function of the difference in strengths. In the
sports setting it seems self-evident that in any reasonable league
season or tournament play, the overall winner is likely to be one
of the strongest teams. The purpose of this article is to observe,
in the next section, that (within a simple model) this “self-
evident” feature is just plain false for prediction tournaments.
So in this respect, prediction tournaments are fundamentally
different from sports contests.

Let us call this the prediction tournament paradox. Once
observed, the explanation will be quite simple. Possible impli-
cations for real-world prediction tournaments will be discussed
in Section 3.

2. Who Wins the Tournament?

Simulations in this section use the following model for a tour-
nament.

Default tournament model. There are 100 questions, with
true probabilities 0.05, 0.15, 0.25, …, 0.95, each appearing 10
times.

This number of questions roughly matches the real tournaments
we are aware of.

Figure 1. Chance variation in tournament score.

Table 1. Chance of more accurate forecaster beating less accurate forecaster in 100-
question tournament.

RMS error σ (less accurate)

0.05 0.1 0.15 0.2 0.25 0.3

0 0.73 0.87 0.95 0.99 1.00 1.00
RMS 0.05 0.77 0.92 0.97 0.99 1.00
error σ 0.1 0.78 0.92 0.97 0.99
(more 0.15 0.76 0.92 0.97
(accurate) 0.2 0.76 0.91

0.25 0.73

2.1. Intrinsic Variability

In this model, for a player who always predicted the true prob-
abilities their mean score would be 16.75. But there is notice-
able random variation between realizations of the tournament
events, illustrated in Figure 1 histogram.

The variability in Figure 1 can be regarded (very roughly) as
the “luck” in the 3-part decomposition (2).

2.2. Comparing Two Contestants

We do not expect contestants to predict exactly the true prob-
abilities, so to understand a real tournament we need to model
inaccuracy of predictions. This is conceptually challenging. The
basic formula (1) shows that it is the MSE σ 2 in forecasting
which affects score, so we parametrize “inaccuracy” by the
RMS error σ . Amongst many possible models, we take what is
perhaps the simplest.

Simple model for predictions by contestant with RMS error
σ . When the true probability is p, the contestant predicts
p ±σ , each with equal probability (independent for different
questions, and truncated to [0, 1]).

Table 1 shows the probability that, in this model tournament,
a more accurate forecaster gets a better score than a less accurate
forecaster. The simulation results here correspond well to intu-
ition; indeed the probability depends, roughly, on the difference
in RMS errors.
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Figure 2. Rank of tournament winner, 300 contestants, error parameters 0 < σ <
0.3.

2.3. Rank of Tournament Winner

We now consider a tournament with 300 contestants, keeping
the model above for questions and forecasting accuracy. If all
contestants had equal forecasting ability then each would be
equally likely to be the winner. Modeling variability of accuracy
amongst the field of contestants is also difficult, and again we
take a simple model.

Simple model for variability of accuracy amongst contestants.
Abilities (measured by RMS error σ ) range evenly across an
interval, which we arbitrarily take to have length 0.3.

In pseudo-Python code

nc = 300 # number of contestants

nq = 100 # number of events

for i = 0 to nq − 1: p(i) = 0.05 + 0.1⌊i/10⌋ # True

probability of event i
B(i) = Bernoulli(p(i)): # outcome of event i

# [σ0, σ0 + 0.3]range of RMS errors

for different contestants

for j = 0 to nc − 1 : σ (j) = σ0 + 0.3j/nc: # RMS error of

contestant j
for i = 0 to nq − 1: q(i, j) = p(i) ± σ (j) #prediction

of contestant j
for event i, with random ±

score(i, j) = (B(i) − q(i, j))2 #squared error,

contestant j event i
score(j) = ∑

i score(i, j) # total score

of contestant j.

With 300 contestants, the top-ranked ability is little different
from that of the second- or third-ranked, so the chance of the
top-ranked contestant winning will not be large in absolute
terms. But common sense and Table 1 results suggest the winner
will be one of the relatively top-ranked contestants; as in any
sport, the probability of being the tournament winner should
decrease with rank of ability.

Figure 2 shows the results of the first simulation we did,
taking the interval of RMS error parameters to be [0, 0.3].

So here the winner is relatively most likely to be around
the 100th most accurate of the 300 contestants, and the top-

ranked contestants never win. This is in striking contrast to
intuition—a paradox, in that sense. Indeed one might well sus-
pect an error in coding the simulations. However, if we shift
the assumed interval of σ successively to [0.05, 0.35], [0.1, 0.4],
and [0.15, 0.45]then (see Figure 3) we do soon see the intuitive
“winning probability decreases with rank” property, but still the
winners are not as strongly concentrated among the very best
forecasters as one might have guessed.

2.4. First Explanation of the Paradox

Once observed, the original paradox is easy to explain in words.
In the specific setting of Figure 2, the handful of top-rated
contestants are making almost exactly the same predictions and
therefore getting almost exactly the same score—as if there were
just one such contestant. But looking at contestants with σ

around 0.1 they are making slightly different predictions, on
average scoring less well; but by chance, for some contestants,
most of the predictions will vary in the direction of the outcome
that actually occurred, and so these contestants will get a better
score by pure luck. As a physical analogy, imagine contestants
who each shoot successively at 100 different red targets. But
there is an invisible-to-contestants blue target randomly dis-
placed from each red target, and they are scored by the aver-
age distance between the shot and the blue target. The skillful
contestants whose shots land close to the red targets will all get
roughly the same score. Less skillful contestants will typically
get lower scores, but some will by chance have more errors in
the directions toward the blue targets and therefore, by luck, get
a better score. This is an instance of a mean-variance trade-off.
See Section 3 for further discussion.

One might wonder whether the specific implementation of
RMS error σ as “predict p ± σ with equal probability” had
any effect. Simulations with the alternative “predict a random
variable uniform in [p − σ

√
3, p + σ

√
3]” implementation

are shown in Figure 4, and the effect is even stronger in that
model.

One might also wonder if this behavior is special to the
winner, but we see a similar effect if we look at the ranks of
contestants whose scores are in the top 10—see Figure 5.

Are these results merely artifacts of the specific model? Sup-
pose instead we took a “one-sided” model of inaccuracy, say in
the sense that contestants systematically over-estimate probabil-
ities. Then there would be a comparatively large chance that the
top-ranked contestant is the winner, from the case that more
event outcomes than expected turned out to be “no.” What
about a model in which half the contestants systematically over-
estimate probabilities and the other half systematically under-
estimate? The results are shown in Figure 6. As before the
inaccuracy parameter σ of different contestants varies evenly
over [0, 0.3], but now the prediction model is

for half the contestants, when the true probability is p, the
contestant predicts a random value uniform in [p, p + σ

√
3]

(independent for different questions, and truncated to
[0, 1]); for the other half of the contestants,when the true
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Figure 3. Rank of tournament winner, 300 contestants, error parameters 0.05 < σ < 0.35 (left), 0.1 < σ < 0.4 (center), and 0.15 < σ < 0.45 (right).

Figure 4. Alternate model: rank of tournament winner, 300 contestants, error parameters 0.05 < σ < 0.35 (left), 0.1 < σ < 0.4 (center), and 0.15 < σ < 0.45 (right).

Figure 5. Ranks of tournament winner (left) and of top 10 finishers (right), 0.15 < σ < 0.45.

Figure 6. Rank of tournament winner, 0 < σ < 0.3 (left) and 0.15 < σ < 0.45 (right) for systematic over- or under-estimation.

probability is p, the contestant predicts a ran.om value
uniform in [p−σ

√
3, p](independent for different questions,

and truncated to [0, 1]);

Here, in the case 0 < σ < 0.3 with accurate forecasters, we
see a combination of the effects noted above. A near-top-rated
contestant will likely win when the pattern of eventoutcomes

is relatively close to balanced (events of probability p happen
a proportion p of the time), but as in the previous one-sided
case some of the biased contestants will, by luck, do better when
outcomes are unbalanced. In the case 0.15 < σ < 0.45 of all
inaccurate forecasters the pattern of winner ranks is similar to
the original model (Figure 3).
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3. Discussion

One subtle point not discussed earlier is that our measure σ of
accuracy is implicitly a long-term average. By modeling predic-
tions as random, each contestant in our model has an empirical
RMS prediction error in a finite tournament. In the size of
tournaments simulated here, for contestants with equal σ the
correlation between score and RMS empirical prediction error
is small: the “noise” of event outcomes is overwhelming. One
might hope that differences in long-term accuracy would show
up in reasonable size tournaments, but part of our “paradox”
is the observation that 100-question tournaments are not suffi-
cient.

3.1. Explanations of the Paradox

To elaborate our earlier mean-variance-tradeoff explanation of
the paradox with some numbers, consider a 100-question tour-
nament in which the true probabilities are all 0.5. So a perfectly
accurate forecaster will score exactly 25.0. Now consider a con-
testant who predicts 0.4 or 0.6 randomly on each question. Their
score is random with expectation 26 and standard deviation
(SD) 0.98, so have around 15% chance to beat the perfect fore-
caster. If instead predictions were 0.3 or 0.7, the expectation and
SD become 29 and 1.83. Moreover, as a special feature of the “all
true probabilities are 0.5” setting, different contestants’ scores
are independent. In our simulated setting of 300 contestants
with RMS prediction errors ranging from 0 to 0.3. some scores
will by chance be around 3 SDs below expectation, and by
this back-of-an-envelope argument we expect a winning score
around 23 and we will not be surprised if this comes from the
100th or 200th best forecaster.

Our simulations used the more plausible default probabil-
ity model with varying true probabilities, and here there is a
specific complicated dependence structure for the scores of
different contestants, not amenable to convincing back-of-an-
envelope calculations or convincing asymptotic approximations
or human-interpretable algebra, which is why we have relied on
simulations.

Experts in statistical methodology might readily think of
their own explanations of or analogies for the paradox. For
instance it is partly analogous to standard multiple comparison
settings, though the specific dependence structure arising in
this “estimating probabilities” context is quite different from
the usual contexts of multiple comparisons for experimental or
observational data. See Hung and Fithian (2019) for recent work
on similar rank verification questions within the usual context.

In a typical sports setting, the winner of a tournament is
indeed relatively more likely to be one of the best teams. So it
is important to realize how our prediction tournament setting
is conceptually very different from the more familiar setting of a
contest in which each contestant earns points (directly reflecting
skill, as in a basketball shot) in each of 100 rounds and the
winner is the contestant with the most total points. In sports
an “error”—that is, not making the percentage play—is usually
costly and only rarely is it luckily beneficial (a soccer shot that
would miss the goal might luckily be deflected by a defender
into the goal, for instance). But in the probability prediction
context, predicting a 60% or 40% probability when the true

probability is 50% is almost equally beneficial or costly. Loosely
speaking, errors in predicting probabilities have only a second-
order effect: 100 errors in a sequence of sports matches are more
costly than 100 errors in predicting probabilities, and the latter
might indeed by pure luck be overall beneficial.

3.2. Practical Relevance?

Our model is over-simplified in many ways; does it have
implications for real-world prediction tournaments? Currently
(announced February 2018) IARPA is offering $200,000 in
prizes for top performers in its upcoming Geopolitical Fore-
casting Challenge (IARPA 2018); no doubt this will encourage
volunteers to participate, but is it effective in identifying the best
forecasters?

The authors of Tetlock, Mellers, and Scoblic (2017) write
“some forecasters are, surprisingly consistently, better than oth-
ers,” and background to this assertion can be found in Mellers
et al. (2015):

[the winning strategy for teams over several successive
tournaments was] culling off top performers each year and
assigning them into elite teams of superforecasters. Defying
expectations of regression toward the mean 2 years in a row,
superforecasters maintained high accuracy across hundreds
of questions and a wide array of topics.

Designers of that strategy were implicitly assuming that
doing well in a tournament is strong evidence for ability
(rather than luck), though our model results suggest that this
assumption deserves some scrutiny. However, a main focus of
the recent literature is arguing for the effectiveness of training
methods, so that (if it were correct to downplay the effectiveness
of “culling off top performers each year” in selecting for prior
ability) our results actually reinforce that argument.

A superficial conclusion of our results is that winning a
prediction tournament is strong evidence of superior ability only
when the better forecasters’ predictions are not reliably close to
the true probabilities.2 But are our models realistic enough to be
meaningful? Two features of our “simple model for predictions
by contestant with RMS error σ ” are unrealistic. One is that
contestants have no systematic bias toward too-high or too-low
forecasts. A more serious issue is that the errors are assumed
independent over both questions and contestants. In reality, if all
contestants are making judgments on the same evidence, then
(to the extent that relevant evidence is incompletely known)
there is surely a tendency for most contestants to be biased in
the same direction on any given question. Implicit in our model
(and in our “first explanation” previously) is that, in a large
tournament, this “independence of errors” assumption means
that different contestants will explore somewhat uniformly over
the space of possible prediction sequences close to the true
probabilities, whereas in reality one imagines the deviations
would be highly nonuniform.

2Asking whether “close to the true probabilities” is true in practice leads
to basic issues in the philosophy of the meaning of true probabilities, not
addressed here.
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For recent relevant technical literature see Witkowski et al.
(2017, 2018) and citations therein. In particular, when viewed as
game theory with each player’s only objective being to win the
tournament, under the usual scoring scheme the optimal strat-
egy involves not making truthful predictions, so one can study
alternative scoring schemes that incentivize truthful reporting
and are more likely to identify the bests forecasters.

Acknowledgments

I thank Seth Goldstein, Don Moore, Jens Witkowski, and two anonymous
referees for valuable comments on an earlier draft.

Funding

The author gratefully acknowledges support by N.S.F. grant DMS-1504802.

References

Hung, K., and Fithian, W. (2019), “Rank Verification for Exponential Fam-
ilies,” The Annals of Statistics, 47, 758–782. [5]

Hunter, D. R. (2004), “MM Algorithms for Generalized Bradley–Terry
Models,” The Annals of Statistics, 32, 384–406. [2]

IARPA (2018), “Geopolitical Forecasting Challenge Announcement,” avail-
able at https://www.herox.com/IARPAGFChallenge. [5]

Mellers, B., Stone, E., Murray, T., Minster, A., Rohrbaugh, N., Bishop,
M., Chen, E., Baker, J., Hou, Y., Horowitz, M., Ungar, L., and Tetlock,
P. (2015), “Identifying and Cultivating Superforecasters as a Method
of Improving Probabilistic Predictions,” Perspectives on Psychological
Science, 10, 267–281. [5]

Mellers, B., Ungar, L., Baron, J., Ramos, J., Gurcay, B., Fincher, K., Scott,
S. E., Moore, D., Atanasov, P., Swift, S. A., Murray, T., Stone, E., and Tet-
lock, P. E. (2014), “Psychological Strategies for Winning a Geopolitical
Forecasting Tournament,” Psychological Science, 25, 1106–1115. [1]

Tetlock, P. E., and Gardner, D. (2015), Superforecasting: The Art and Science
of Prediction, New York: Crown. [1]

Tetlock, P. E., Mellers, B. A., and Scoblic, J. P. (2017), “Bringing Probability
Judgments Into Policy Debates via Forecasting Tournaments,” Science,
355, 481–483. [1,5]

Witkowski, J., Atanasov, P., Ungar, L. H., and Krause, A. (2017), “Proper
Proxy Scoring Rules,” in Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI’17). [6]

Witkowski, J., Freeman, R., Vaughan, J. W., Pennock, D. M., and Krause, A.
(2018), “Incentive-Compatible Forecasting Competitions,” in Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18).
[6]


