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Abstract

We study a service system in which, in each service period, the server performs
the current set B of tasks as a batch, taking time s(B), where the function s(-)
is subadditive. A natural definition of “traffic intensity under congestion” in this
setting is

p = lim ' Es(all tasks arriving during time [0, ¢]).

=00
We show that p < 1, and finite mean of individual service times, are necessary and
sufficient to imply stability of the system. A key observation is that the numbers of
arrivals during successive service periods form a Markov chain {4, }, enabling us to
apply classical regenerative techniques and to express the stationary distribution

of the process in terms of the stationary distribution of {4,}.
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1. Introduction

In a general model of a batch service system, tasks are presented to a server at random
times. On completing a service, the server examines the set A of tasks to be done, and
chooses (according to some strategy) a subset B C A as the next batch of tasks to be
accomplished. In many contexts, the service time s(B) to accomplish task-set B (for
simplicity we assume service times are deterministic) will be a subadditive function of

task-sets:
S(Bl U BQ) S S(Bl) + S(BQ). (11)

In particular, subadditivity is pervasive when a server must physically move (combining
two trips into one trip saves time and distance) or where there is some start-up time for
each new batch (so combining two batches eliminates one start-up time). For instance

consider

o A retail store’s delivery van. A “task” is to deliver a package to a house.

e Thin client computing. That is, replacing a PC and purchased software applications
by a cheaper device which downloads rented software from the Internet as needed.

So a “task” involves start-up time spent downloading some set of software.

Realistic modeling of any particular example will involve more specific structure (e.g.
specific forms of s(+), capacity constraints). But can we say anything interesting when we
assume only subadditivity for s(-) 7 This mathematically natural question has apparently
not been studied before, so we make a modest start here. We take a model (stated more

precisely in Section 2) which is simple in other respects:

e single server
e deterministic service times

e Poisson arrivals (with general type-space).

In contrast to classical multi-class queueing theory which envisages a small number of
customer classes (see e.g. [14] Chapter 10), we envisage every task being different, that

is the type of each arrival may be chosen from some diffuse distribution.

Subadditivity as a proof technique is pervasive throughout modern applied probability.
In the queueing context it has been used to study stability and Lyapounov exponents:
see e.g. Baccelli and his coworkers ([2] and references) regarding max-plus systems,

and Bambos and Walrand [3] regarding parallel processing systems. But our use of



subadditivity is less standard since it is used a weak model hypothesis in place of more

structured ones.

Perhaps the most interesting questions about our model involve the server’s choice
of strategy, where one seeks to minimize some long-run average cost per unit time, and
we outline some such questions in Section 5. But such long-run questions beg the more
foundational question of when the system is stable. In this paper we study the simple
strategy in which the server adopts the entire set of waiting tasks as the next batch. This
can be called a batch clearing system; or in the terminology of polling service systems a
gated service discipline. Intuitively, stability should be closely related to the condition

pi= t1i>r<£lo t~' Fs(all tasks arriving during time [0,1]) < 1 (1.2)
because under this condition we expect that (for large to) all arrivals in one interval of
duration ¢y can typically be served in the next interval of duration ¢, so that waiting times
should not grow much beyond #3. Our main result, Theorem 3.1, shows that condition
(1.2), together with finite expectation of the time s(X;) to serve a single customer,
establishes stability (i.e. convergence to stationarity) of the queueing system as a whole,
and hence of the usual characteristics such as service time, waiting time and queue length.
These conditions are also necessary. Moreover, Corollary 4.2 shows that if Fs*(X;) < oo
then the stationary waiting time or queue length have finite mean. So if there is a
bounded waiting-cost function then (cf. Corollary 4.1) the asymptotic waiting cost per

unit time is finite.

The case where s(-) is additive is essentially (see Section 5 for elaboration) the M/G/1
queue, for which the process of arrivals during successive service periods is i.i.d. Keys to
our analysis are the observations (Lemmas 2.1 and 3.3) that in the subadditive case the
process of arrivals during successive service periods is Markov and the mean service time
of a batch is finite. In Section 3 we combine this with the observation that the process

regenerates when empty, and deduce the convergence theorem.

Our model could be restated in the general framework of state-dependent service
models. Such queueing models (in particular, polling systems [12]) have been widely
studied. The regenerative technique is the standard way to prove stability — see e.g. [13]
for a recent account of its queueing uses and [11] for the case of clearing systems — but it
seems simpler to give direct regenerative proofs of our results than to adapt some other

general set-up.

2. The model and first lemmas

We restate the model more carefully using the language of queueing theory. Consider a

single server queue with Poisson arrivals at rate A\. Customers are numbered as 1,2, 3, ...



according to their arrival times 0 < T} < Ty < .... The n-th customer has task of type
X,, where {X,;; n = 1,2,3,...} are i.i.d. random variables (with some distribution ©
on some type-space X, the details being irrelevant for our purposes). Service time is
specified by a measurable function s : { finite subsets of X'} — [0, 00) for which the key
assumption is the subadditive property (1.1). We assume s()) = 0 for the empty set (.

It may be also natural to assume monotonicity:

if By C By then s(By) < s(Bs) (2.1)
and non-triviality

s(B) =0 only if B is empty. (2.2)

However, we shall not use these assumptions throughout the paper. Sets like B are really
multisets; we won’t labor the distinction. The verbal description of the batch clearing
system translates into the following inductive description of the n’th service period [v,,, 1)
and the index J,, of the final customer in the n’th batch. For n =1,2,...,

Yo = max(u—1, T, 41)
Jo = max{j:T; <)
Mo = Yo+ (X7 _ 1415+, X,)
initialized by v9 = no = Jo = 0. Note we write s(X7y,..., X;) in place of s({X1,..., X;}).
Consider
A, = number of arrivals during n’th service period
= max{j Ty <} — o,
setting Ap = 0. This is almost the same as
Al = o —
= size of (n 4 1)’st batch served.
The difference is that A, = 0 implies A’ = 1; in other words
Al =max(1, A,). (2.3)

A key observation is that {A,} is Markov. This is intuitively clear: the number of arrivals
during the n + 1’st service depends only on the duration of the n + 1’st service, which
depends only on the number and types of arrivals during the n’th service, but the types

are independent of the number. We write the argument more carefully below.

Lemma 2.1 {A,;n > 0} is the discrete-time Markov chain on states {0,1,2,...} with

Ag = 0 and transition probabilities

pi; = I (()\S(Xl,
iy —

J!
Hence the Markov chain {A,} is irreducible and aperiodic.

Xy J . .
 Av)) e_AS(Xl""’X“)) ,  where i’ = max(1,1). (2.4)
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ProOOF.  Write G, = o(J1,..., Jog1; X1,..., X

n+1
start of the (n + 1)’st service. So A, and the duration 9,41 — v,41 are G,-measurable.

) for the information known at the

The conditional distribution of A,y given G, is Poisson with mean 7,11 — Yy,41 =
S(Xgpg1se s Xy ). Write F, = 0(Gno1, Jn + 1, ..., Jnya), so that A, is F,-measurable.
Conditional on F,,, (X, 41,...,X,,,) is distributed as (Xl, e 7)2%) where the X; are
independent copies of the (X;). So the conditional distribution of A,,41 given o(A4,..., A,) C
F, is the Poisson mixture specified by the random parameter S(Xl, e 7)2%)‘ This es-
tablishes the Markov property and the formula for transition probabilities. O

Lemma 2.1 immediately implies that {A’ ,n > 0} is also Markov. For n =1,2,3,...

write 5, for the service time of the n’th batch. So as in the proof above

S(Xjn_H,...,XJ

n-l-l)

s(Xp,.o, Xar) (2.5)

Sn—l—l =
4

and (S,,n > 1) is also a Markov chain. Related to S, is
S’ = time between start of n’th and (n + 1)’st service
= Yn+1 — Vn-

Here S/ — S, = 0 unless A, =0, in which case S} — 5, has exponential(\) distribution,

i.e., with mean 1/A. In particular

E(S, - S,)=X"P(A, =0). (2.6)

We next note some consequences of subadditivity. Write

Y, = s(X1,...,X,)
f(n) = FEY,.

If Fs(X1) < oo, then by subadditivity of s(-) we have FY, < nEY; < co. So f(n) is
finite valued and subadditive:

f(n14+n2) < f(ng) + f(na).

Lemma 2.2 (i) If FY; < oo then
EY,

Jim —= =5, (2.7)
for some 0 < 3 < o0.
(ii) For each k > 2, if EY} < o then
EYF
Jim, nkn =" (2.8)



PROOF. Part (i) is a classical consequence of deterministic subadditivity (see e.g.
Theorem 6.6.1(a) of [5]). For (ii), we first note that Y, is subadditive, since s(-) is so.

Kingman’s subadditive ergodic theorem (see e.g. Theorem 6.6.1 of [5]) implies

lim Yo =4, a.s., (2.9)

n—oo N,

for the 3 defined by (i). Fix a > 3 and write Y* as
Y =YY, < na) + YV, > na),

where 1(-) is the indicator function for the statement ”-”. Using the bounded convergence
theorem and (2.9), we have
EY*1(Y,

n—0oo nk

On the other side, the subadditivity of Y, implies

=1

This together with the convexity of 2* yields

E (i—fuyn > na)) < K ((%21 S(Xi))k és(xi) > na))
< Lp (D06 2 )

NE
2
s
vV
S
Q
~

= F (sk(Xl);

where the last equality holds because the s(X;)’s are independent identically distributed.
Since we can choose any a > [3, take a > EY;. Then the law of the large numbers implies

that the last term of the above formula converges to 0. Thus we get (2.8). O

It is straightforward to check that the congested traffic intensity p defined at (1.2)

satisfies

p=j (2.10)
where X is the Poisson arrival rate of customers and 3 is the mean congested service time
per customer defined by (2.7).

3. The convergence theorem

In the following lemma, by positive recurrence of a Markov chain we mean stability, that

is the existence of a limiting stationary distribution.
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Lemma 3.1 If p < 1 and Fs(X;) < oo, then {A,;n >0} and {A/;n > 1} and {S,;n >

1} and {S/;n > 1} are positive recurrent.

PrROOF. Consider {A,}, which is irreducible and aperiodic. We use Foster’s Theorem

with test function h(:) = ¢ for a discrete-time Markov chain (see e.g. Theorem 5.1.1 in

[4]). For ¢ >1
(A | Ay = i) —i = AB(Y))—i

()
ilp+o(l)—1) by (2.7,2.10)

— —00 as 1 — 00,

IN

and thus the Lyapunov condition is satisfied. So {A,} is positive-recurrent and converges

in distribution to a stationary batch size:

A, LN A, say.
From (2.3)
A= max(1, A,) LN max(1, A) = A’, say.
Also
Spp1 £ s(Xi,..., Xa) by (2.5)
i> S(Xl,...,XA/)
L g say,

where S is therefore the stationary service time. Similarly, using the argument above
(2.6)
(52,57) = (5, 5)

where in particular the limit satisfies
E(S"—S)=X"'P(A=0). (3.1)

a

An obvious feature of our batch clearing system is that it regenerates each time an
arriving customer finds an empty queue. The first such time is the first arrival time 77.

The next regeneration time 7 is given by

N
T—T1:ZS7/1
n=1



where N = min{n > 1: A, = 0}. By the regenerative cycle formula
N
EY S =(EN)(ES. (3.2)
n=1

By positive-recurrence of {A,} (Lemma 3.1) we have FN < oo. We need to know
that the hypotheses of Lemma 3.1 imply FS’ < oo; this is part of Lemma 3.3, whose
statement and proof we defer. Granted that E.S" < oo, we have shown that the mean
duration F(r — Ty) of a regenerative cycle is finite. So we can apply classical results on
regenerative processes. To this end, we describe the state of the batch clearing system as
follows. Write the state as £ = (u,C, B) where

u is the time since the starting instant of the latest service;
(' is the set of types of customers being served;

B is the set of types of customers waiting.

Note that ' is empty only when the system state is empty. For convenience, this empty
state is denoted by (). Let =(¢) be the system state at time ¢. Then, the argument above

is summarized by:

Lemma 3.2 Under the assumptions of Lemma 3.1, the process =(t) has the stationary

distribution given by

Ef7 1(Z(t)e-)dt
PZe-) = L . 3.3
Eeq = E0s (3.3

To state a more helpful expression for the stationary distribution, we introduce the
following notation. Write #B for the size of set B. Write X (i) or X (i) for a random
set distributed as {Xy,..., X;}. Write P(¢) for a Poisson process with rate 1. We also
write C and B for measurable subsets of the second and third components of the system

state, respectively.

Theorem 3.1 Suppose p < 1 and Es(X;) < oco. Then P(Z(t) € -) - P(Z € -) as 1
goes to infinity, where — means the setwise convergence for all measurable subsets. The

limit distribution is as follows. For each pair C,B of measurable subsets and each integer
1> 1,

P(Z € (du,{C € C;#C =i}, B))

_ P =i s(X(i) 2w, X() €CX (POu) B du (g

ES’
where the random quantities A', X (1), X™(i), P(:) in the numerator are independent.
Moreover B
P=Z=0)=1- . 3.5
E=p=-1-25 3.5)

oo



PrOOF. The setwise convergence is immediate from the following observations. A
regenerative process converges to its stationary version in the sense of the total variation
as the time goes to infinity if the regeneration cycle has a finite expectation (see, e.g.,
Section II1.18 of [7]), and we have verified this condition, provided ES" < co. Thus we
only need to show (3.4) and (3.5). From the mean cycle formula concerning the service

starting instants, we have

P(Ee.) = mE (/j H(E(u) € -)du) a0 (3.6)

Hence, from (3.6), we have, for i > 1,

P(Z € ((0,1],{C € C; #C =i}, B))

I
= <t < "= )
ES/E/O Lu<t<8A =i, X(i) € C, X(P(\)) € B) du
1 t
= > f— ,
ES,/O P(S > u, A =i, X (i) € C, X(P(M)) € B) du,

since F(vy —v1) = FE(S5"), where S = s(X (2)). This is equivalent to (3.4). We finally get
(3.5) from

S/
PE=0) = — B [T 2w POS) = 0) du
ES" Jo
ETy
L1 ppas) = 0
s
ES’
where the last equality follows from P(P(AS) =0) = P(A =0) and (2.6). O

As part of the proof of Theorem 3.1 we needed to know that £S5’ < oo, which by (2.6)
is equivalent to £S < oo. This follows from (3.1) and the & = 1 case of the next lemma.

Lemma 3.3 Suppose p < 1. For each positive integer k, the following are equivalent.

(i) Es*(X;) < oo

(ii) EA* < o0

(iii) BS* < co.

PROOF. Recall ([5] p. 19) the factorial moments of P(x) are
EP(z)(P(x)—=1)...(Plz)—k+1)= 2" (3.7)

Let b > 0, and recall Y; = s(X(¢)). From (2.4)

B(AE, Ab) = P(A, = 0)E(P*(AY)) Ab) + fj P(A, = ))E(P*(AY;) Ab),  (3.8)

=1



with P(-) independent of {Y,}. Since A, LN A, letting n — oo go to infinity in the

formula above yields

E(A*AB) = P(A=0)E(P*(\Y1)Ab)+ i P(A = j5)E(P*(A\Y;)Ab).  (3.9)

i=1

Letting b — oo shows
E(A* Ab) > P(A = 0)EP*(\Y;) > M EYF.

So (ii) implies EY" < oo, which is assertion (i). Conversely, suppose EFY} < oo. From
(3.7), for every 0 < § < 1 we can find d such that

E(PH ) Ab) < (EPH(a))Ab < (14 68) (2" Ab) +d. (3.10)

This implies
E(P(AY])Ab) < (14 8)(MNEY Ab)+d < co.

Substituting into (3.9),

B(A* A D) < P(A=0)((1+ONEYF +d) + D (1 + NEYF Ab) +d)P(A = ).
7=1

Using either (2.7) for k =1 or (2.8) for k > 2, we have for all ¢ and suitable chosen d’
)\kEyjk < )\k(mk+€)jk+d"

Hence we conclude that there exist 0 < g < 1 and A > 0 such that
E(AY Ab) < gE(A* Ab) + h

for n > 1 and therefore

h
F(A* A D) < —— < .
(A A B) <

Letting b — oo implies £ A* < oo, which is (ii). The equivalence of (iii) follows from the
fact that

Z EYk Z m* 4+ e ] +d )J P(A 7),
7=1
and the correspondmg lower bound with —e. O

For completeness, let us prove necessity in Theorem 3.1.

Proposition 3.1 If =(¢) converges in distribution then p < 1 and Fs(X;) < co.
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PRrROOF. It is not difficult to see that convergence of =Z(¢) to some limit = implies
P(==10) > 0. Indeed, for each state £, there is a non-random time ¢, > 0 (the time to
serve all customers present) such that, for the process started at state &, =(¢) attains the
empty state with positive probability for each ¢ > ¢5 . This remains true if the initial
state is random. So any stationary distribution = for the process must have P(= = {}) > 0
. Hence the inter-regeneration time 7 — T has finite mean. Since 7 — T} is stochastically
larger than s(X1), we deduce Fs(X;) < oo. Moreover in the notation of (3.2)

(EN)(ES") < oo
so that {4,} is positive-recurrent, implying A, -5 A for some A, and
ES = Es(X(A) < ES" < cc.
In the subadditive limit (2.7) 8 = inf, 22X and so
Es(X(n)) > nf. (3.11)
So BEA < Es(X(A)) < oo, implying
lim sup A, < BA < EA' < oo. (3.12)
But as at (3.8),

EAny = P(A, = 0)\Es(X)) + fj AEs(X(A))1 (A, = §)

> P(A, =0)A3+ wfj EA,1(A, = j) by (3.11)

= pP(A,=0)+pFA,.
If p > 1, summing over all n > 1 yields
hg(l)ngAn > an::l P(A, =0)
= oo because P(A, =0) = P(A=0) > 0.
But this contradicts (3.12), so we must have instead p < 1. |
For the discrete time chain {A,} the situation is more complicated, since p < 1 may

not be necessary for {A,} to be positive recurrent (see [10] for the additive case). We

state here a partial result.

Proposition 3.2 {A,} is transient if there exist a 0y € (0,1] and an € > 0 such that
limsup £ (6_90}/""'90(1"'5)”) < 1. (3.13)

n—00 -

The proof is given in Appendix A. It is easy to see that (3.13) implies p > 1. For some
s(+), in particular if s(-) is additive, (3.13) is equivalent to p > 1, provided Fs(X;) < cc.

11



4. Characteristics of the stationary distribution

Assume now that p < 1 and Es(X;) < 0o, so we are in the setting of Theorem 3.1. Let
us elaborate the model by introducing a waiting cost function ¢ : X — (0, 00), where ¢(x)
is interpreted as a waiting cost per unit time for a type-z customer, incurred from arrival
until service is complete. For a set B write ¢(B) =3 ,cp c¢(x). So the instantaneous cost

rate associated with a state ¢ is
He) = 0 if&=10
| «C)+e(B) ifé=(u,C,B).

In the setting of Theorem 3.1 the system has a long run average waiting cost per unit
time given by

¢ = Fe(=).

Corollary 4.1

S(ES*)(Ec(X1)) + Ele(X(A")s(X(A))]
ES ‘

In particular, if Es*(X,) < oo and Ec*(X,) < oo then ¢ < oo.

c =

PROOF.  The formula can be established by integrating over the distribution (3.4) of
=. More intuitively, consider a typical S’-interval. The first term in the numerator is
the mean total cost over the interval associated with new customers arriving during the
interval, while the second term is the cost associated with the customers being served.

Because S’-intervals occur at rate 1/ES’, a regenerative argument rederives the formula.

If Fs*(X;) < oo then Lemma 3.3 implies that S < s(X(A’)) has finite second moment;
similarly if Ec?(X;) < oo then ¢(X(A’)) has finite second moment; and so when hoth

conditions hold we have ¢ < oco. O

A natural characteristic of the batch clearing system is the queue length process
{L(t)}. Of course, Theorem 3.1 implies that as { — oo this characteristic converges in
distribution to the stationary distribution L, and one can write expressions in the spirit
of (3.4) for their distributions. Note that the special case ¢(-) = 1 of Corollary 4.1 gives
the stationary mean queue length, which is related to the mean stationary sojourn time

of a customer by Little’s law. Thus, writing W for the stationary sojourn time, we have

Corollary 4.2
SES? + E[A's(X(A))]
ES '
In particular, Lemma 3.3 implies EL (or EW ) is finite if and only if Es*(X;) < oo.

EL=XEW =

12



As in classical queueing theory, one expects that k’th moments of I and W are finite
if and only if Es*+1(X|) < oo, and this can be verified in our model (see Appendix B for

their verifications).

5. Discussion

1. The requirement that service times be deterministic is in fact no restriction. Random
service times could be represented as s(Xi,..., X;,U;), where as before the X’s are i.i.d.
with some distribution © on some type-space X', and now the U; are independent U(0, 1).
Subadditivity is now defined via the usual stochastic partial order on probability measures
on [0,00). But an exercise in measure theory (which we leave to the reader) shows that,
given any such s(-), we can find an enlarged type-space X and i.i.d. X-valued random
variables X; and a subadditive function 5(+) such that
s(X1,.. . XU 23Xy, X)), i=1,2,....

2. We take X, as a type of a customer. It is also natural to consider it as an original
service time of the customer. In this case the type-space to be (0,00) (note this identi-
fication cannot be made in the general subadditive case). A typical service function s(-)

of this case is a linear function, i.e., for some nonnegative constant a > 0,
s(Xi,...,. X))=a+ X1+ 4+ X,

In particular, when s(-) is additive (i.e., a = 0), our model is essentially the M/G/1 queue
as mentioned in Section 1. More precisely, consider the usual Galton-Watson branching
process associated with the M/G/1 queue, in which arrivals during one customer’s service
are the children of that customer. Then a batch service interval in our additive model
corresponds to the time taken to serve all members of one generation in the M/G/1
queue. And the server’s busy periods are identical in the two processes. See [10, 12] for

related work.

3. Asalso mentioned in Section 1, perhaps the most interesting questions about the model
involve the server’s choice of strategy. Consider the setting of Corollary 4.1 where the
“clearing” algorithm CLEAR has some mean cost per unit time ¢(CLEAR) < co. There
will be some optimal strategy OPT (depending on ¢(+), s(+), A and the type-distribution
0) such that ¢(OPT) is the minimal cost over all strategies. It is not hard to give an
example to show that ¢(CLEAR)/¢(OPT) is not bounded by any absolute constant (there
is an example with two types of customer and ¢(-) = 1), so that the “clearing” strategy
may be inefficient. Calculating the exact optimal strategy at any level of generality seems
hopeless. But in the spirit of competitive analysis of algorithms [6] one can ask if there

exists any simple-to-describe strategy STRAT such that
¢(STRAT)/¢(OPT) is bounded by some constant. (5.1)

13



In a first draft of this paper we conjectured that a greedy algorithm
choose as the next batch the subset B of current tasks that maximizes Y, cp c¢(2)/s(B)

might satisfy (5.1), but John Tsitsiklis (personal communication) gave an example where

this greedy strategy is not even stable.
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Appendix A

We show here the proof of Proposition 3.2. We first state the following lemma.

Lemma A.1 Let
bn(t) = —log E(e™"™), n=1,2,...

Then

(i) For each t > 0 the sequence {¢p,(t),n =1,2,...} is subadditive.
(i1) The function ¢,(t) is concave.

(iii) The following limit exists

#(t) = inf 6., (1)/n = lim 6,(t)/n.

which is increasing and concave.

PROOF. Since s(-) is subadditive we have

Hence

Taking the logarithms of the both sides and multiplying by —1 shows the subadditivity.
Laplace transforms are logarithmically convex. Hence ¢,(t)/n is concave and ¢(t) is

concave as the infimum of concave functions. O

PrROOF OF PROPOSITION 3.2. Without loss of generality we assume A = 1. We use
Theorem 8.4.2 from Meyn and Tweedie [8] (or Theorem 3.7 from Chapter 5 from Brémaud
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[4] but the test function must be negative) with h(n) =1—0", F'={0,1,...,no}, where
0 < # < 1 and ng are suitable chosen. We have

f:pnkh(k) - i(l — (gk)E (i;—nlke_yn) =1—F (6_(1_€)Yn)
k=0 .

k=0

and therefore we want
L= E (0= > 10" 0>, (A.1)

which implies that A, is transient. We show now how to choose # and ng. From (iii) of
Lemma A.1, the limit &(¢) of ¢,(¢)/n exists. From (3.13), there exists i such that

1
——log K/ (e—ean) > 0(1 4+ ¢), Vn > 1q.
n
Hence, writing 6y = 1 — 6, we have
. 1 _
o1 —61) = lim ——log (=) > 0o =1— 0.

Since (1 — 0) is concave, this implies that the left-hand derivative of ¢(1 —0) at § = 1 is

less than —1. Hence the concavity of —log # together with its derivative at § = 1 yields
that there exists a positive 6y < 6 such that

qb(l — 02) > —log 02.
Then, for ng = 0,
1
—qbn(l — 02) 2 qb(l — 02) > —log 02, n > ng,
n

which yields (A.1) for § = 6s. O

Appendix B

We first consider a distributional relationship between L and A. To this end, we apply
the rate conservation law to the process U(t) = 2™ with 0 < 2 < 1, assuming {L*(#)}
to be a stationary version of the queue length process {L(1)} (see, e.g., [9] for the rate
conservation law). Since U(t) has jumps at arrival instants as well as service completion

instants, we have, using PASTA (see. e.g., [14]),
\E (ZL _ Z(L-l—l)) +VE (Z(A/+P(/\YA/)) _ ZP(/\YA/)) —0,
where v is the mean departure rate of the batches. This yields

NE (M2 = 1)) = vB (PO (A — 1)) (B.1)
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Let B(j,k) be 31/(j — k)! for j > k and 0 otherwise. For z < 1, differentiate both sides
of (B.1) for k + 1 times. Then, letting z go to 1 yields

Mk +1)EB(L, k) = Vzkj (k Z 1) EB(P\Yar, ()B(A" k+1—0). (B.2)

In particular, for £ =0, A = vFA’. Since

EA = P(A=0)+ E(A)

_ ) (P(A _ 0)§ + E(YA,)) — \ES,

we have v = 1/ES’ as is expected. For k = 1, (B.2) obviously leads to Corollary 4.2.
From (B.2), it is also not hard to see that, for any positive integer k, FL* < oo if and
only if EA*! < 0o, which is equivalent to Fs**1(X|) < co by Lemma 3.3,

For the stationary sojourn time W per a customer, we decompose it as
W = WQ + S,

where Wy is the waiting time before service. Obviously we can use PASTA for Wy, so it
has the same distribution as the remaining service time of a batch at an arbitrary point
in time. From Theorem 3.1, it is easy to see that the latter has the finite k-th moment
if only if £S*! < co. Hence, using the inequality,

< (my)t <2y, 2y >0,

we have that EW* < oo if and only if £S*! < co.
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