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Stochastic Models and Descriptive
Statistics for Phylogenetic Trees,
from Yule to Today

David J. Aldous

Abstract. In 1924 Yule observed that distributions of number of species
per genus were typically long-tailed, and proposed a stochastic model
to fit these data. Modern taxonomists often prefer to represent rela-
tionships between species via phylogenetic trees; the counterpart to
Yule’s observation is that actual reconstructed trees look surprisingly
unbalanced. The imbalance can readily be seen via a scatter diagram of
the sizes of clades involved in the splits of published large phylogenetic
trees. Attempting stochastic modeling leads to two puzzles. First, two
somewhat opposite possible biological descriptions of what dominates the
macroevolutionary process (adaptive radiation; “neutral” evolution) lead
to exactly the same mathematical model (Markov or Yule or coalescent).
Second, neither this nor any other simple stochastic model predicts the
observed pattern of imbalance. This essay represents a probabilist’s mus-
ings on these puzzles, complementing the more detailed survey of biolog-
ical literature by Mooers and Heard, Quart. Rev. Biol. 72 [(1997) 31-54].
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Readers determined to get straight to the main
point of this essay (phylogenetic tree imbalance)
may skip to Section 3, but we hope that the
historical context provided in Sections 1 and 2 will
be helpful to most readers.

1. YULE’S 1924 PAPER

Textbooks on introductory stochastic processes
(e.g., Karlin and Taylor, 1975, Section 4.1; Ross,
1983, Section 5.3; Lawler, 1995, Section 3.3) often
have a paragraph like the following:

A population starts at time 0 with one
individual. As time increases, individuals
may give birth to a new individual, the
chance of any particular individual
giving birth during time [¢, ¢ + d¢] being
Adt. This is called the linear birth
process or Yule process.

David oJ. Aldous is Professor, Department of Statis-
tics, University of California, 367 Evans Hall,
Berkeley, California 94720 (e-mail: aldous@stat.
berkeley.edu).

As often happens, textbooks fail to mention the
original motivation for a mathematical innovation,
and in this case there is an interesting story.

Yule (1924) had data on the number of species
in genera (recall that genus is the taxonomic rank
immediately above species: a genus consists of
a number of closely related species) for various
biological groups. Here is one of his tables (the data
are of course the observed column). The immedi-
ately striking feature of this data (confirmed by
other such data sets) is that the distribution is
long-tailed and that the most frequent number of
species is 1. How can this be explained? Of course
there is subjectivity in how a taxonomist is to judge
“closely related”—how broadly to cast the net of
a single genus—and it would be unreasonable to
expect consistency of judgement between widely
different families, but one can hope for some local
consistency. Thus what Yule was looking for was a
one-parameter family of distributions with which
to compare data, the one parameter reflecting in
part the judgements of “closely related” by tax-
onomists in a particular area of biology. Instead
of just invoking some mathematically convenient
family, Yule sought to derive distributions from



24 D. J. ALDOUS

TABLE 1

Snakes: observed and calculated numbers of genera of each size
Table VII of Yule, 1924

Number Number of genera
species in genus Observed Calculated
1 131 130.9
2 35 47.2
3 28 25.2
4 17 16.0
5 16 11.2
6 9 8.3
7 8 6.5
8 8 5.2
9to 11 13 11.1
12 to 14 3 7.2
15 to 20 7 8.8
21 to 34 14 9.2
35 upward 4 6.2
Total 293 293.0

some not-too-implausible model of evolution. Here
is what he did. Assume the following:

1. a genus starts with a single species; new species
appear according to the (Yule) process above,
with parameter A, and all these species are in
the same genus;

2. separately, from within each genus a new species
of a novel genus appears, at constant rate u, and
thereafter the new genus behaves as in assump-
tion 1.

A simple (now textbook) calculation with the Yule
process shows that the number N(A, ¢) of species
in a genus at time ¢ after its first appearance has
geometric distribution with mean e*?:

P(N(A, t) = n)
— ef)\t(l _ e*/\t)nfl’

From assumption 2 the number of genera will grow
exponentially at rate u and so, in picking a random
genus extant today, the time since its first appear-
ance will have exponential(u) distribution. Thus the
distribution of number N of species in a random
genus will be

p(n) — /0 /ue_"“te_’”(l _ e—At)n—l dt

n=123,....

and setting p = A/u we recognize the integral as a
beta integral and can calculate (Yule, 1924, page 39)

r(1+p" I'(n)
P = = .
@ TWe=m P Tatil+ply
n=123,....

So this is the family (now called the Yule distri-
bution; Kotz and Johnson, 1989) that Yule devised

to fit his data. The snake data set reproduced in
Table 1 has the worst fit of the four data sets he
considered, and he writes (page 58):

I think it must be admitted that the for-
mula given is capable of representing the
facts with considerable precision, more
closely indeed than we have any right to
expect.

Mathematically, it is clear from (1) that P(N, =
n) is decreasing (and so maximized by n = 1) and
asymptotically proportional to n='=*"" (and so long-
tailed for suitable p).

2. FAST FORWARD TO TODAY

In modern jargon Yule was modeling macroevo-
lution, that is, evolution at the level of species as
opposed to within-species changes. While there has
been sporadic interest in stochastic modeling of
macroevolution since Yule’s era, it has not become
the kind of “standard subject” to which textbooks
are devoted. Before focusing on our particular topic
(phylogenetic tree balance) let us provide more con-
text by briefly reviewing four related areas which
have become standard subjects.

2.1 Population Genetics
To quote Maddox (1998, page 248),

(population genetics is) one of the few
uses of mathematics in biology to which
all biologists are reconciled, often with
unaccustomed enthusiasm.

Ewens (1979) is the standard reference. Two aspects
of the theory are relevant to this essay. Suppose
f1, a2, [3... are frequencies of alleles at a locus,
so that the parameter F = Y, f Lz measures the
genetic diversity or lack of diversity at that locus.
(Recall alleles are possible forms of a gene; a locus
is a position on a chromosome.) To study whether
observed frequencies provide evidence of selective
advantage for some alleles, one needs a null model
which predicts values for the f; in terms of F under
the neutral (non selective) hypothesis, and there
is a standard model which leads to predictions
called the Ewens sampling formula (Ewens, 1972,
1990; Kingman, 1980). The details (constant muta-
tion rate; mutations produce novel alleles) need not
concern us, but the conceptual point (cf. Section A.1)
is that there does exist an accepted mathematical
model for “what should happen just by chance” in
population genetics.

A second aspect is a stochastic process called the
coalescent (Kingman, 1982; Tavaré, 1984) which
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plays a central role in modern mathematical popu-
lation genetics. In particular, sample n alleles from
the current population by sampling n individuals,
and trace back their line of descent until their most
recent common ancestor. Under weak assumptions
on the historical population process, the resulting
family tree converges (as population size tends to
infinity, with n fixed) to a particular coalescent tree
on n leaves, and this stochastic model will reappear
in Section 5.1 as a model for phylogenetic trees.

2.2 Branching Processes

One can view the Yule process as the simplest
continuous-time branching process. There is a
huge mathematical theory of random branching
processes, represented by texts such as Harris
(1963), Athreya and Ney (1972), Jagers (1975) and
Asmussen and Hering (1983). Abstractly, a branch-
ing process is equivalent to a random tree, though
the bulk of the branching process literature has
a different focus from the random tree literature.
Recent research in stochastic modeling of phyloge-
netic trees (see Section 5.2) implicitly uses more
elaborate branching Markov process models.

2.3 Biological Systematics and
Phylogenetic Trees

The classical Linnaean hierarchy (originally
species, genus, order, class, kingdom but subse-
quently extended to many more ranks) remains
widely used in practice, but modern systematic
biologists regard it as conceptually preferable to
describe relationships between species via phy-
logenetic trees, this being more informative and
less arbitrary than the verbal hierarchy. Figure 1
shows an artificial phylogenetic tree on 11 species.
This type of tree, where only the combinatorial
structure is asserted, is more precisely called a
cladogram: see Eldredge and Cracraft (1980) for
biological discussion. As useful terminology, a clade
(or monophyletic group) is a set of species consist-
ing of all extant descendants of some ancestral
species. Thus if the 11 species in figure 1 form a

0 3 7 6 1 11 8 5 4 2 9

F1G. 1. A cladogram on 11 species.

clade then the subset {7,6,1, 11,8} is a subclade
but the complementary subset {10, 3,5, 4, 6, 2} is
not. Mathematically, a subclade can be identified
with an edge of the tree.

2.4 Computational Algorithms for Reconstructing
Phylogenetic Trees from Molecular Data

Over the last 20 years, the traditional methods of
taxonomy based on physical morphology have been
supplemented by methods based on molecular biol-
ogy, and these more quantitative methods use com-
puter algorithms to produce some “best fit” tree to
given data. The mathematical side of this work can
be found under Mathematical Reviews classification
92B10. Holmes (1998) gives an overview aimed at
statisticians. The actual trees reconstructed by biol-
ogists can be found in journals such as Molecular
Biology and Evolution, Molecular Phylogenetics and
Evolution, Systematic Biology, Systematic Zoology,
Systematic Botany, Evolution and Cladistics. More-
over there is an online database called TreeBASE
(www.herbaria.harvard.edu/treebase) intended as a
repository of phylogenetic trees and currently con-
taining over 1,000 trees. Let us (arbitrarily) call
trees small if the number of taxa is less than 10,
medium if 10-100, and large if over 100. Currently
published trees are almost all medium or small.

3. QUESTIONS SUGGESTED BY
TODAY’S DATA

3.1 Phylogenetic Trees

Reconstructing phylogenetic trees is a large-scale
project, within which many challenging technical
statistical questions arise. However, let me empha-
size that my concern in this essay is not with techni-
cal issues in reconstruction but with the conceptual
interpretation of the results. As an analogy, taking
the U.S. census is a large-scale project in which tech-
nical statistical questions arise (Breiman, 1994); but
one can also just take published census data at
face value and proceed to describe the demographic
changes they reveal. So let us assume that pub-
lished phylogenetic trees are broadly accurate and
ask, in the spirit of Yule, what questions do they
raise about patterns of macroevolution.

Of course, the first thing to do is to look at data.
Figure 2 shows a typical tree which can be viewed
and downloaded from TreeBASE.

Here is one way to study the “shape” of such a tree.
As mentioned before, each internal edge of a tree
specifies a clade. So each branchpoint (internal ver-
tex) of a tree specifies a split of a parent clade into
two daughter clades, and we can record the sizes

(m, 1) = (size of parent clade,
size of smaller daughter clade).
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FIG. 2. A typical tree from TreeBASE: phylogeny of 25 species of seals (and two outside species, at left). Figure 5A.1 of Bininda-Emonds

and Russell (1996).

So 1 <1i<m/2, because the size of the parent clade
is the sum of the sizes of the two daughter clades.
Before looking at actual trees one might antici-
pate roughly even splits (i around m/2), or uniform
random splits (i roughly uniform on [1, m/2]), but
actual phylogenetic trees show a strong tendency
for the smaller daughter clade to be much smaller
than the parent clade. See Table 2 for the splits in
the tree from Figure 2.

After a moment’s thought one sees that this
“imbalance” feature of trees is exactly the counter-

TABLE 2
Size of splits with parent size greater than or equal to 6
in the tree of Figure 2

Size of
parent clade

Size of smaller
daughter clade

25
24
23
22
21
19
10

9
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part of Yule’s observation that, in the traditional
hierarchical taxonomy, number of species per genus
has mode 1 and a long-tailed distribution. To see
why, suppose that in the setting of Figure 2 one
wished to assign species to genera so that each
genus is a clade. Then one is forced to assign each
small clade branching off from the top of the tree
to a separate genus, so that (cf. Table 2) one might
finish with genera of sizes {1,1,1,1,2,...}.

The central observation (amplified in Section 4.1)
is that this type of imbalance is pervasive in pub-
lished phylogenetic trees. So what does it signify?
One could start by asking for a biological explana-
tion of the observed imbalance, but to a statistician
that begs the question: maybe imbalance is just
what one would expect to happen “by chance” and
so requires no biological explanation. That begs
the further question: is there a canonical stochas-
tic model to say what trees would occur “ust by
chance”? Unfortunately (see Section 5.1) it seems
hard to justify any particular model of “just by
chance.” It seems to me better to reorder the ques-
tions as follows:

1. What is a useful way to describe balance and
imbalance in a general phylogenetic tree?

2. Is there some particular region of the balance—
imbalance spectrum containing most actual phy-
logenetic trees?

3. If so, is there some mathematically simple and
biologically plausible stochastic model for phy-
logenetic trees whose realizations mimic actual
trees?
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This ordering deliberately downplays the stochas-
tic modeling aspect, because it is possible to be
philosophically opposed to the whole idea of stochas-
tic models of macroevolution, while it is scarcely
possible to be philosophically opposed to descriptive
statistics! Asking such questions is hardly origi-
nal, of course. We are fortunate that Mooers and
Heard (1997) have written an accessible, detailed
survey of the technical biological literature on the
subject of phylogenetic tree shape, and a discussion
of whether conclusions concerning macroevolution-
ary process may legitimately be inferred from tree
shape. That survey, to which we shall refer often,
covers substantially more topics than does this
essay. However, our particular three questions have
a distinctly different emphasis from much of the
biology literature, which tends to start with spec-
ulation on the biological mechanism underlying
macroevolution (Sections 5.2 and 5.3).

3.2 The Simplest Stochastic Models

Though we intend to downplay stochastic models
and emphasize descriptive statistics, it is useful to
mention here the two simplest models for n-species
cladograms. The Yule process itself, run until there
are n species, defines a random n-species phyloge-
netic tree: following biologists’ terminology, call this
tree (regarded as a cladogram) the Markov model.
Under the Markov model, different possible trees
are not equally likely (when n > 4), so for compari-
son one can also consider the uniform distribution.
Again following biologists’ terminology, we call the
uniform distribution on cladograms the PDA model
(proportional to different arrangements). It turns
out (Section A.1) that both models are particular
cases (Markov is B8 = 0; PDA is B8 = —1.5) of a one-
parameter beta-splitting family of distributions on
cladograms, whose parameter varies over the range
—2 < B < oo, with increasing B corresponding to
greater balance.

4. PHYLOGENETIC TREE BALANCE
4.1 Visualizing Balance via Scatter Diagrams
A binary tree contains a set of splits

(m, i) = (size of parent clade,
size of the smaller daughter clade)

which can simply be plotted as a scatter diagram.
My proposal for studying tree balance is that, given
a large phylogenetic tree, one should estimate (cf.
nonlinear regression) the median size of the smaller
daughter clade as a function of the size of the parent
clade and use this function as a descriptor of balance
or imbalance in the given tree. Section 4.4 describes

size of smaller

daughter clade =

* B =0 Markov model
100 -

30+

10+

3 * ok Rk kX * * *

2+ * dbk Kk RNk * *

B = —1.5 PDA model

1= *kkkblek dk HoME ok ok ok *

1 I | 1
10 30 100 300

Size of parent clade

FiG. 3. Splits in the tree of Chase et al. (1993), and approximate
median lines for the beta-splitting model. Note the log-log scale.

why this should be preferable to simply using some
numerical summary statistic. Carrying through this
program turns out to be less easy than anticipated,
because I have not located any data set satisfying all
the desired criteria, so what is proposed here may
be regarded as a program for describing future large
trees. Figures 3-5, described below in more detail,
illustrate three data-sets. It is convenient to make
a log—log plot and to ignore small parent clades.
Rather then estimating medians, as proposed above,
the scatter diagrams show lines giving the approxi-
mate median value of the size of the smaller daugh-
ter clade predicted by the beta-splitting model, for
several values of B3, in particular the values for the
Markov (8 = 0) and PDA (8 = —1.5) models. In
other words, if the model were true, then the scat-
ter diagram for a typical tree would have about half
the points above the line and half below the line,
throughout the range.

Figure 3 shows the scatter diagram for the tree
of 475 species of seed plants given by Chase et al.
(1993). The figure clearly shows that the tree is less
balanced than predicted by the Markov model and
more balanced than predicted by the PDA model.

As Chase et al. (1993) write, their chosen species
“include all major lineages” but have “an uneven
taxonomic distribution,” and this seems typical of
published large trees. So one cannot rule out the
possibility of selection bias influencing tree bal-
ance, as well as the other sources of possible bias
discussed in Mooers and Heard (1997). Ideally
we would like to study trees which are complete
(include all extant taxa), large (> 400 taxa, say) and
fully resolved (only binary splits), and where the
taxa are species (avoiding the possible subjectivity
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size of smaller
daughter clade

100 — °
B = 0 Markov model

50

B=-10

B = —1.5 PDA model

10 20 50 100 200
Size of parent clade

FiG. 4. Splits in the tree of Harrington (1980).

of grouping species into higher taxa). Such a study
would show whether the pattern of Figure 3 per-
sists. Unfortunately we can find no such trees
published in usable form. The largest complete
trees we can find have 200-300 species and invari-
ably have nonbinary splits. For instance, Figure 4
shows the scatter diagram for a tree of 268 species
of Myodochini given by Harrington (1980), in which
the nonbinary splits were arbitrarily resolved to
binary splits marked by o.

As well as the arbitrary binary resolutions, the
comparatively few splits of large clades make the
correct median line hard to determine—this is
typical of trees in this size-range—though again the
diagram shows the tree is less balanced than the
Markov model predicts and more balanced than
the PDA model predicts. To take a different
approach, but one with an even greater risk of
selection bias, Figure 5 shows the scatter diagram
corresponding to a list of 30 basal splits of mono-
phyletic lineages given by Guyer and Slowinski
(1993, Table 1).

These three data sets present a clear picture:
the trees are more balanced than predicted by the
PDA model and less balanced than predicted by
the Markov model. This is not a new observation;
rather, it supports the current view of biologists.

size of smaller
daughter clade

B = 0 Markov model

1000

B=-10

B = —1.5 PDA model

L I I
100 1000 10000

Size of parent clade

FiG. 5. The 30 splits in Guyer and Slowinski (1991, Table 1).

Estimated phylogenetic trees tend to be
more unbalanced than expected under
the Markov model, and this tendency is
independent of methodological details of
the trees’ estimation. Heard (1996).

4.2 Technical Asides

It is easy to raise technical issues in the pro-
gram above; let me just address two such issues, and
refer to Mooers and Heard (1997) for more extensive
discussion.

Selection Bias. In choosing a group of species
to study, a biologist will typically choose a group
believed a priori to be a clade qualitatively separate
from others. In other words, if the true evolutionary
tree has a split of a size-45 clade into daughter
clades of sizes 15 and 30, then a biologist is likely
to choose one of these daughter clades to study, and
the study will not record that particular split. Thus
in aggregate studies of small or medium trees, selec-
tion bias may affect the observed pattern of splits
near the root. Looking at individual large trees,
without supposing they are necessarily representa-
tive, largely avoids this issue.

Systematic bias caused by reconstruction
algorithms. Noone believes that published large
trees are completely accurate. It has been argued
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(see Mooers and Heard, 1997, pages 39-40) that
systematic bias in tree shape is created. Roughly,
the argument is that algorithms start by implicitly
assuming all possible trees are equally likely. If the
correct tree were a typical tree under the Markov
model, then a sequence of reconstructed trees based
on more and more data would presumably inter-
polate between a typical PDA tree and the correct
typical Markov tree; so if there is not enough data
to identify the correct tree then the reconstructed
tree will tend to err on the side of a PDA tree, that
is, to be too unbalanced. While such reconstruction
error is a legitimate concern, tree imbalance also
is seen in classical trees based on morphological
data constructed “by hand” without computer algo-
rithms. In this setting one can argue that people
are biased toward creating too-balanced trees, as
providing tidier classifications.

4.3 Studies of Small Trees

There have been two studies of small trees. Guyer
and Slowinski (1991) take clades of size n = 5 and
Savage (1983) takes 4 < n < 7. These two stud-
ies reached opposite conclusions on which of the
Markov model and the PDA model gives the bet-

ter fit. So it is hard to interpret their conclusions.

4.4 Balance Statistics

Of course, a more classical way to think about
tree imbalance is to invent a single numerical
summary statistic. Many such statistics have been
discussed in the biological literature by Kirkpatrick
and Slatkin (1993), Rogers (1996) and Shao and
Sokal (1990) and are reviewed in Mooers and Heard
(1997, pages 34-35). A common choice of balance
statistic is

Nt
Li=(",") Tl s

where s;(v) and s,(v) are the sizes of the two daugh-
ter clades at a branchpoint v. Though intuitively
reasonable, justifying this particular choice via any
theoretical statistical criterion seems problematical.

However, our proposal for describing imbalance
via median regression seems preferable in two ways.
First, such graphical methods are more informative,
and more in the modern statistical spirit. Second
is the issue (calibration) of comparing trees with
different numbers n of taxa. A summary statistic
allows us to say that one size-n; tree is (by a cer-
tain criterion) more balanced or less balanced than
another size-n; tree, but it does not allow us to com-
pare directly two trees of different sizes (n; and no,
say). One could standardize statistics with respect

to some stochastic model, but that begs the ques-
tion of which stochastic model to use. In contrast,
the scatter diagram-regression method permits a
direct comparison of different-sized trees, by super-
imposing the two scatter diagrams.

4.5 Alternative Types of Data

This essay focuses on phylogenetic trees of extant
species, for the simple reason that most relevant
data currently being published are of this form. But
note that there are two other possible types of data.
First, a tree drawn as in Figures 1 and 2 is asserting
only a certain combinatorial structure—recall that,
more precisely, such trees are called cladograms.
One can envisage a phylogenetic tree having also
an explicit time scale, and hence asserting how long
ago different lineages diverged. Some reconstruc-
tion algorithms seek to construct such “trees with
time scale.” Working with such data would make
a genuine difference, in that one of our conceptual
points (that biologically different stories may lead to
the same mathematical model; Section 5.1) would
no longer be true. One can also argue that imbal-
ance in cladograms which reflects short edges in
the phylogenetic tree is artificial, and would be cor-
rectly downplayed by measures of imbalance based
on trees with time scale. On the other hand the
accuracy of estimates of divergence times is often
questionable. See, for example, Paradis (1998) for
references to statistical analysis of such data.

A second approach to studying macroevolution
is described in Steven Jay Gould’s popular writ-
ings (e.g., Gould, 1977, page 132; Gould, 1989, page
303): use fossil data to estimate numbers of dif-
ferent species (or higher taxa) in existence as a
function of time, during some geological era. Fit-
ting birth-and-death type stochastic processes to
such data (a natural extension of Yule’s idea) has
been studied by several authors (Gould et al., 1977,
Stanley, Signor, Lidgard and Karr, 1981; Stoyan,
Stoyan and Fiksel, 1983) and one can regard this
as a complementary approach to the study of sta-
tistical aspects of macroevolution.

5. STOCHASTIC MODELING OF
MACROEVOLUTION SINCE YULE

5.1 Two Biological Pictures

As described in Section 1, Yule needed a two-part
model to study distribution of species per genus.
Ironically, it is simpler to use his idea to model
phylogenetic trees, because the Yule process itself,
run until there are n species, defines a random
n-species phylogenetic tree (this is the Markov
model). The Yule process can be regarded as the
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simplest model for what biologists call adaptive
radiation. In brief, the idea is that the first species
with some novel useful feature, a key innovation
(the first species of bird, for instance) will compar-
atively rapidly speciate into different species which
all preserve the distinguishing innovating feature
but which otherwise adapt to different ecological
niches.

In a sense adaptive radiation emphasizes selec-
tion and fitness. Alternatively one can imagine
macroevolution as neutral (to borrow the language
of population genetics), and model extinctions and
speciations as pure chance. In a simple model, take
the number n of species in a group to be fixed,
and at each step choose at random one species to
become extinct and another to speciate (in popu-
lation genetics, this is the Moran model (Ewens,
1979, Section 3.3)). Imagining this process to have
continued from the distant past until now, there
is a phylogenetic tree on the n extant species, and
we can call this model of a random phylogenetic
tree the coalescent model. This model has a simple
“backward” description. Regard the n species as n
“lines of descent.” Pick uniformly at random a pair
of lines, and merge them into one, giving now n — 1
different lines of descent. Repeat until there is only
one line of descent.

At this point it seems that one could discriminate
between these two biological possibilities by seeing
which model fits the data better. But it turns out
that the two models are mathematically identical:
that is, they give the same probability distribution
on cladograms! (Here the fact that cladograms
have only combinatorial structure, not a time scale,
becomes relevant.) In fact this equivalence holds
much more generally. Specify arbitrarily a sequence
ng, Ny, ..., n; of positive integers changing by +1
at each step, representing number of species in suc-
cessive time periods. Define a stochastic model for
speciation and extinction within these constraints
as follows:

(*) Astepn jir1=n;—1 indicates extinction of a uni-
form random species; a step n;,; = n; + 1 indi-
cates speciation from a uniform random species.

The Markov model is the special case (ngy, ny, ...,
ng) = (1,2,...,n), and the coalescent model is
equivalent to the special case (ng,nq,...,n;) =
(n,n—1,n,n—1,...,n). It is easy to see that in
the general case the following is true. Take the phy-
logenetic tree on the current n, species and assume
there is a single common ancestor in the first time
period. Then the tree (regarded as a cladogram) has
the same distribution as the coalescent tree, and
hence as the Markov tree.

While this observation is not new (see, e.g.,
Slowinski and Guyer, 1989), its implications have,
in my view, been insufficiently emphasized in the
biological literature. One is studying what tree
shape says about macroevolution; macroevolution
is driven by speciations and extinctions; so one
might take for granted that tree shape has some
relation to overall rates of speciation and extinc-
tion. But it does not. That is, within model (¥)
(which by analogy with population genetics (Ewens,
1979, Section 3.4) one might call the exchange-
able model) the shape of the cladogram on extant
species is unaffected by (and hence tells us nothing
about) past overall rates of speciation and extinc-
tion. While these rates can be studied using other
types of data (Section 4.5), the equivalence of mod-
els makes the observed tree imbalance even more
puzzling; what does it signify?

5.2 More Elaborate Stochastic Models of
Phylogenetic Trees

To a modern probabilist, the natural “general
model” of macroevolution would be a branching
Markov process (which have been studied in var-
ious contexts, e.g., Asmussen and Hering, 1983).
Suppose the following:

(i) each species has some “type” x;
(i1) a species of type x becomes extinct at some
(stochastic) rate a(x);
(iii) a species of type x gives rise to daughter species
of types y at (stochastic) rate B(x, y);
(iv) a species may change its type according to some
specified Markov process.

With so many parameters one could presumably
fit any tree; so what special cases are more sensible?
Here is one conceptual approach. The general view
among evolutionary biologists is that, except for
mass extinctions and their aftermath, overall num-
bers of species do not tend to increase or decrease
exponentially fast. So in the language of branching
processes, models should typically be close to criti-
cal, in the sense that the overall mean number of
daughter species before extinction equals 1. Con-
ceptually, one can ask whether macroevolution is
dominated by chance (with only occasional adaptive
radiations) or by selection (ongoing replacement
of less fit by more fit species). Mathematically,
the former possibility could be modeled as the
general neutral model, the branching Markov pro-
cess in which for each type x the extinction rate
a(x) equals the total speciation rate Y, B(x, y)
(or its continuous-type analog). Such a process
is critical, but contrasts with the exchangeable
model of Section 5.1 by allowing the rate to vary
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between species, which is biologically reasonable
(e.g., varying by size of organism). It is not hard to
guess heuristically (e.g., by considering an extreme
case in which extinction—speciation rates are either
very small or very large) that such variation should
tend to increase tree imbalance; formalizing that
idea in some generality is an interesting mathemat-
ical challenge. The biology literature has focused
more on generalizing the Yule model to models
with varying speciation rates but without extinc-
tion. Heard (1996; see also papers cited therein)
uses Monte Carlo simulation to study several such
models, and concludes

As suspected, variation in speciation...
rates among lineages within a clade does
tend to produce unbalanced phylogenetic
trees, reminiscent of those seen in the
systematic literature ... [but] it is clear
that estimated trees from the literature
correspond to very high, perhaps implau-
sibly high, levels of rate variation.

To mention one of several further models described
in Mooers and Heard (1997), Rogers (1996) consid-
ers a variation in which new species cannot speci-
ate during an initial time period and observes this
alone may lead to increased imbalance. De Queiroz
(1998) critically reviews statistical attempts to
detect adaptive radiation by studying sizes of sister
clades.

5.3 Biology Underlying Stochastic Models

The mathematical models in Sections 5.1 and 5.2
treat speciation and extinction as intrinsically ran-
dom, rather than being derived from some under-
lying biological mechanism which one might model
instead. The generally accepted allopatric theory of
speciation asserts that new species typically arise
from small, geographically isolated, subpopulations
of existing species. But what constitutes “geograph-
ical isolation,” and what causes it, will vary greatly
from one group of species to another, making it dif-
ficult to formulate any general biology-motivated
mathematical model of speciation (see Mooers and
Heard, 1997, pages 49-50, for references to models
tied to specific kinds of organisms). Various modes
of allopatric speciation suggest unbalanced trees.
For instance, climatic change may cause the range
of a species to shrink, leaving subpopulation in iso-
lated pockets, each having a chance to speciate and
all such new species being direct offshoots from
the original species. In contrast, the predominant
cause of extinctions is more controversial (Raup,
1991) and so extinction is seldom modeled except
as being intrinsically random. Attempts to devise

models in which speciation and extinction are con-
sequences of some explicit underlying mechanism
tend to be complex and arbitrary: see, for instance,
Aldous (1995b).

6. SUMMARY

The observed imbalance of published phyloge-
netic trees remains a puzzle. While it is easy to
propose biological mechanisms which might give
rise to imbalance, biologists have not reached any
consensus on a dominant effect. Many nonmathe-
matical biologists would be dismissive of the whole
project, arguing that macroevolutionary history,
like human history, is a mosaic of singular events
not amenable to mathematical modeling. On the
other hand one can look forward to the day when
there is a largely accepted phylogenetic tree for
most of the millions of extant species, and (in con-
trast to human history) this is a definite data set:
a priori refusal to subject it to statistical scrutiny
seems perverse.

In view of the ever-increasing number of pub-
lished phylogenetic trees and the size of the liter-
ature relating to tree balance (Mooers and Heard,
1997, cite almost 150 papers), it is surprising
that there has not been any careful large-scale
study of tree balance since the early 1990s. We
advocate such a study, emphasizing descriptive
statistics rather than stochastic models. The notion
of median regression described in Section 4.1 seems
one promising way of describing balance in more
detail. We would like to see the current summary
sentence “actual trees are more unbalanced than
predicted by the Markov model” replaced by a more
positive statistical description of empirical tree
shape. Such a description would provide a baseline
useful for several purposes, for example, distin-
guishing particular phylogenetic trees whose shape
is different from typical, or assessing qualitative fit
of stochastic models.

Biologists’s concern with formal goodness-of-fit
tests seems misplaced—surely all these models are
better regarded as crude caricatures instead of pre-
cise hypotheses. As described in Section 5.1, one can
distinguish between a conceptual view of macroevo-
lution dominated by adaptive radiation and a view
of macroevolution as dominated by chance. Recent
stochastic models based on variations of the Yule
branching process are in a sense implicitly assum-
ing the adaptive radiation viewpoint; in seeking to
distinguish between these views, it seems desirable
to study in parallel models assuming overall equi-
librium between speciations and extinctions. More
speculatively, one might hope to devise models
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which enable one to quantify the amount of selec-
tion during macroevolutionary history required to
produce observed tree imbalance.

APPENDIX
A.1 The Beta-Splitting Model

Instead of devising more elaborate models based
on biological considerations, as in Section 5.2, one
can instead ask a purely mathematical question:

Is there a convenient one-parameter
family of probability distributions on
n-taxon trees which interpolates between
the completely unbalanced and the
completely balanced cases and which
includes the PDA model and the Markov
model as special cases?

This question was studied in Aldous (1995a), where
the beta-splitting family was introduced and shown
to have the desired properties, except for being less
“natural” (either mathematically or biologically)
than one would like. The definition is reviewed in
the next section. Varying the parameter B covers
almost the entire balance—imbalance spectrum. The
essential information is presented in Table 3, where
as in Section 4.1 “median split” indicates approxi-
mate median size of the smaller daughter clade in
a split of an m-taxa parent clade, for large m.

Figures 2—4 indicate that the 8 ~ —1 model gives
a better fit to these data sets than either the Markov
or the PDA model.

As analogies to this model, both Yule’s distribu-
tion (1) for number of species per genus and the
Ewens sampling formula for random allele frequen-
cies are one-parameter families where the param-
eter has a natural biological interpretation (in (1)
p relates to the ratio of speciation rate to rate of
appearance of new genera; in the Ewens sampling
formula the parameter relates to the total number of
new alleles arising by mutation in each generation).
The beta-splitting family is biologically artificial, in
that it does not correspond to any simple descrip-
tion of speciation and extinction forwards in time,
and so the parameter g has no a priori biological
interpretation.

TABLE 3
Aspects of the beta-splitting model

B Description Median split
-2 Completely unbalanced 1

-1.5 PDA model 1.5

-1 Unnamed Jm

0 Markov model m/4

00 An almost completely balanced model m/2

A.2 More about the Beta-Splitting Model

Mathematical motivation for the beta-splitting
model and further mathematical properties are
given in Aldous (1995a) and will not be repeated
here.

We start with a rather general mathematical
construction of a random tree on n taxa. Place n
“particles” labeled {1,2,...,n} on the unit inter-
val at uniform random positions. Split the interval
at a random point chosen from some probability
density f. Rescale subintervals to unit length, and
repeat recursively on subintervals for as long as
subintervals contain at least two particles. Asso-
ciate a tree in the natural way, illustrated in
Figure 6.

The chance that the left branch at the root has
size i equals

0 (5) [ ¥ -2y s,

l<i<n-1,

(2)

for normalizing constant

1
a, =/ 1-x"-1—-x)")f(x)dx.
0

The beta-splitting family, with parameter —2 < 8 <
o0, is the specialization where we split the unit
interval with “density”

f(x) oc xP(1 = x)P.

Though this is only a probability density for 8 > —1,
the definition (2) makes sense for 8 > —2, and the
limit case B = —2 is the completely unbalanced tree.

Implicit in (2) is a formula for the distribution
of the size I,, of the smaller daughter group in a
split of a size-m group. Because the integrals in
(2) involve the Gamma (factorial) function, this for-
mula simplifies when B is an integer or an integer
plus 1/2. Explicitly (Aldous, 1995a, Section 4.1) for

FI1G. 6. A tree construction.
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1<i<m/2,

2
P, =i)= —1 (Markov model)

- (’”) %im=i  (PDA model)

i) ¢

m
= =1
l(m _ i)hm_l (B )7
where

c,=2n-3)(2n-5)----- 3.1

and

1 1 1
hm,1=1+§+§+'--+m,

and where for even m and i = m/2 the probabilities
are halved. From these exact formulas one deduces
the asymptotic formulas for median split given in
Table 3. Figures 2—4 may mislead by suggesting that
the median lines are straight. Of course the exact
medians are integer-valued—that is why we did not
extend the median lines below size-30 parent clades.
However, for the B-values in the figures the lines are
indeed asymptotically straight, as suggested by the
formulas for median split given in Table 3.
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