
 Triangulating the Circle, at Random

 David Aldous

 1. INTRODUCTION. In a wonderful article [9] in this journal 38 years ago,
 George Polya discussed combinatorial questions concerning triangulations of the
 n-gon. In particular, the number of triangulations of the n-gon is given by the
 n - l'st Catalan number cn-, where

 (2m - 2)!
 cm - (m-1)!m!

 One of the interesting aspects of Polya's paper is that it exposed readers to his
 newly developed theory of "figurate series". We wish to consider the idea of
 letting n -*> oo and studying triangulations of the oo-gon, i.e. the circle. This
 question doesn't make much sense as combinatorics, but we can shift viewpoint

 and consider random triangulations of the n-gon, in which each of the cn-1
 possible triangulations is equally likely. The purpose of this paper is to show that
 there exists an object "the random triangulation of a circle" which is in a natural

 sense the n -* oo limit of the random triangulation of the n-gon. As with Polya [9],
 the exposition takes readers into some newly developed theory of the author.

 Let's start by recalling a precise definition. A triangulation of a finite set S is a
 collection of nonintersecting line segments with endpoints from S such that the
 convex hull of S is partitioned into triangular regions. We shall be concerned only

 with the cases Sn consisting of the vertices of the regular n-gon inscribed in a fixed
 circle of unit circumference. In such a triangulation each point is linked to its
 neighbor on either side, and may or may not be linked to other points. For each n

 there is a finite set An of possible triangulation of Sw, so it makes sense to talk
 about a (uniform) random triangulation of Sw7 where the word uniform emphasizes
 that all possible triangulations are equally likely. FIGURES 1 and 2 illustrate
 random triangulations for n = 12 and n = 2,000. In FIGURE 2 the printer drew a
 2000-gon, but of course it looks like a circle, so it is tempting to regard FIGURE 2 as

 Figure 1
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 Figure 2

 approximately an example of our desired limit "random triangulation of the

 circle". To make sense of this object, let's forget randomness for a while, and start
 by defining "triangulation of a circle". As far as I know, the topic hasn't been
 discussed before, so I get to make up my own definition.

 Definition 1. A triangulation of the circle is a closed subset of the closed disc whose
 complement is a disjoint union1 of open triangles with vertices on the circumference of
 the circle.

 It is not hard to show that the triangulations of the circle defined above are

 exactly the possible limits of triangulations of n-gons. Here "limit" presupposes a
 topology, and we use the Hausdorf metric on compact sets:

 d(C1,C2)= sup infly-xI+ sup infly-xI.
 xEC, YEC2 xeC2YEC1

 In this "limit" assertion we regard a triangulation of the n-gon as the closed set
 comprised of the 2n - 3 line segments. To illustrate, consider two sequences of

 triangulations of Sn. Labeling the points as 1 through n, one possible triangulation
 links

 (1, 2)(1, 3)(1, 4)(1, 5) . .. (1, n)
 For n = 2,000 (cf. FIGURE 2) the chords would look dense in the interior of the
 circle, and of course the n -* oo limit is the whole closed disc. Another possible
 triangulation, taking n to be a power of 2 for simplicity, links

 ('2 )('4 )(4 '2 ) 2 ' 4 )(4 ')('8 )(8 '4 )(4 ' 8 ..

 The n -* oo limit is a triangulation by sequential bisection of the circle, with each
 chord isQlated and only finitely many chords longer than a prespecified length
 L > 0. But the triangulation in FIGURE 2 is qualitatively different from each of the
 "extreme" possibilities above: the chords are neither dense nor isolated. It turns
 out that the limit random triangulation of the circle, formalized as a closed subset
 of the closed disc, has2 Hausdorff dimension 3/2, instead of dimension 2 or 1 as in
 the deterministic examples above. This fact, whose proof is sketched in section 6, is

 1The union may be empty, finite or countable infinite
 2With probability 1
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 the main concrete result of the paper. I find it remarkable that such fractal
 structure arises naturally3 in random combinatorial objects.

 Given Definition 1, one might want immediately to pose and try to solve
 quantitative probability questions such as Question 1 below. Note first that the
 length of the longest chord in a triangulation of the circle must be at least the
 side-length 1 of an inscribed equilateral triangle, and at most the diameter 11 of
 the circle.

 Question 1. In a random triangulation of the circle, what is the chance that the
 longest chord has length greater than (lo + 11)/2?

 This question is phrased to resemble the well-known Bertrand's paradox.

 Question 2. Vhat is the chance that a random chord in the circle has length greater
 than lo?

 This is called a paradox because, as discussed by Martin Gardner ([7] Chapter
 19), three equally plausible calculations give three different answers. The concep-
 tual point is that the notion "random chord" has no canonical meaning: instead
 there are several different meanings we could ascribe to it, modeling different
 mechanisms for physically drawing a chord in some way influenced by chance. In
 mathematical terms, these lead to different probability measures on the set of
 chords. The same issues arise with triangulations of the circle: before attempting
 problems like Question 1 we need to be clear about the probability measure
 underlying the word "random." Our resolution is to use the measure which is the
 limit of uniform random triangulations of n-gons, and so the issue changes to
 proving existence of such a limit. This is sketched in Section 5. How to solve
 quantitative problems like Question 1 is discussed in Section 7.

 2. CONTINUOUS FUNCTIONS AND TRIANGULATIONS OF THE CIRCLE. It
 turns out there is a simple way to specify a triangulation of the circle in terms of a
 more familiar object, viz a continuous function. Let f: [0, 1] -* [0, oo) be continuous
 and satisfy

 f(O) =f(1) = 0, f(t) > 0 forO < t < 1. (2)
 Suppose t2 is a strict local minimum of f, that is to say f(t) > f(t2) for all t # t2
 in some neighborhood of t2. Then by continuity there is a first time t3 > t2 at
 which f(t3) = f(t2), and also a last time t1 < t2 at which f(t1) = f(t2). Now regard
 [0, 1] as the circumference of the circle, and draw a triangle with vertices at t1, t2,
 and t3. Repeat for each strict local minimum t'. Note that if f(t2) > f(t2) then t'
 is in one of the arcs (t1, t2) or (t2, t3) or (t3, t1) and the triangle formed by the (t)
 lieg inside the region between that arc and the corresponding edge of the triangle
 formed by (ti). This shows4 that triangles associated with different local minima
 are disjoint. So we can define a triangulation of the circle as the complement of
 the union of all the open triangles associated with all the local minima. Of course,
 if f were a polynomial we would get only a finite number of local minima and

 3As opposed to fractal structures arising from recursive constructions specifically designed to
 produce fractals, e.g. the Cantor set

 4More precisely, assume the values of f at different local minima are distinct, otherwise we might
 get both diagonals of a quadrilateral.
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 hence only a finite number of triangles, so the triangulation would be a closed set

 with non-zero area. But there exist functions f with the property

 {t: t is a strict local minimum of f) is dense in [0,1]. (3)

 And such functions give triangulations with zero area, which seems more natural.
 This "function -*triangulation" mapping is useful for two reasons. First, it

 gives us a general strategy for. defining random triangulations indirectly, by first
 defining random functions and then applying the mapping. Such an indirect
 approach is useful because random functions (better known as stochastic processes)
 have been the topic of half the research in mathematical probability theory for the
 last fifty years, so we have related a new idea to a well-studied one. Secondly, and

 more concretely, the mapping "function - * triangulation" turns out to be just the

 continuous analog of a known correspondence between triangulations of the n-gon
 and discrete walks, which we now describe.

 3. TRIANGULATIONS, TREES, WALKS AND CATALAN NUMBERS. The com-
 binatorial results in this section have been explained very elegantly by Martin
 Gardner in Chapter 20 of [8], so we shall be brief. It is convenient to consider

 triangulations of the (n + 1)-gon, with vertex-set S,~+1 = {1,2,. .., n + 1}. As
 mentioned before, the number of triangulations of S + 1 is given by the Catalan
 number C,, defined at (1). Various other combinatorial sets have exactly the same
 size, and the one of ultimate interest to us is the set J'J' of positive walks of length
 2n whose first return to 0 is at time 2n. A walk has steps + 1 or -1: FIGURE 4

 illustrates one such walk for n = 11. One can specify an explicit one-to-one

 correspondence between J'J' and the set A\n+1 Of triangulations of Sn+i. This is
 most simply done in three stages, passing through two sets of trees whose size is

 also C,,. We shall specify each map in one direction only, leaving the reader to
 verify that it is indeed one-to-one.

 I~~~~~~~

 Figure 4
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 Map 1. This map takes the walk in FIGURE 4 to the tree in FIGURE 5. Imagine
 drawing a tree as the walk progresses. After the first step of the walk we draw the
 root of the tree. In general, when the walk makes a + 1 step we draw a new edge
 from the current vertex to a new vertex. When the walk makes a -1 step we
 retrace our pencil from the current vertex down one edge toward the root. Thus
 vertices a, b, c, d, e of the tree are first drawn at the steps of the walk indicated in
 FIGURE 4. Note that the three children b, c, d of a are produced in a specific order
 as "first child, second child, third child", and so the tree in FIGURE 5 is an ordered
 tree. Map 1 is a one-to-one correspondence between WJ' and the set OTn of rooted
 ordered trees on n vertices.

 Map 2. FIGURE 6 shows a tree which is a binary tree in the following sense: each
 vertex is either a leaf (with no children) or an interior Vertex (with exactly 2
 children, distinguished as "left" and "right"). The first child-next sibling map
 takes the ordered tree in FIGURE 5 to the binary tree in FIGURE 6. Each vertex v
 (except the root) of the ordered tree is associated with an interior vertex v' of the
 binary tree. If v has children in the ordered tree then there is a first child w, and
 in the binary tree we make the left edge from v' go to w'; if not, the left edge leads
 to a leaf. If v has a next sibling x in the ordered tree then in the binary tree we
 make the right edge from v' go to x'; if not, the right edge leads to a leaf. Thus in
 FIGURE 6 the vertices a, b, c, d (we've omitted the primes) occur along a path,
 because b is the first child of a, then c is the next sibling of b, then d is the next
 sibling of c. To start the construction, the root of the binary tree is the first child of
 the root of the ordered tree. Map 2 is a one-to-one correspondence between OTn
 and the set BTn of binary trees with n - 1 internal vertices and hence with n
 leaves.

 Map 3. There is a one-to-one correspondence between BTn and the set An+l of
 triangulations of the points Sn+i = {1,2,..., n + 1}. This map takes the binary
 tree of FIGURE 6 to the triangulation of FIGURE 1, and is illustrated by FIGURE 7
 which shows the tree and the triangulation superimposed. The idea is that chords
 of the triangulation are identified with edges of the binary tree. Each chord

 1994] TRIANGULATING THE CIRCLE, AT RANDOM 227

This content downloaded from 128.32.135.128 on Wed, 28 Feb 2018 19:40:41 UTC
All use subject to http://about.jstor.org/terms



 & /

 \ ~eQ 3

 0 ~~~~~~cc

 a

 \0/

 Figure 6

 Figure 7

 (i, i + 1) on the boundary of the convex hull (except (n + 1, 1)) is identified with
 an edge of the binary tree leading to a leaf. Each interior vertex v of the binary
 tree can be identified as a point inside a triangle of the triangulation; the three

 edges of the tree at v correspond to the chords of the triangle, the edge leading to
 the root being the chord of the triangle separating the interior of the triangle from
 the distinguished edge (n + 1, 1). Finally, the root of the tree is identified as a
 point in the interior of the triangle containing the edge (n + 1, 1).

 4. BROWNIAN MOTION AND EXCURSION. Where does this combinatorial
 skullduggery get us? Picking a walk at random from Wn gives us a constrained
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 random walk of length m = 2n (constrained by positivity and the "first return at

 time 2n" requirement). A simpler object is the corresponding unconstrained

 random walk of length m, where all 2m possible walks are equally likely. Such

 random walks are fundamental to probability theory, and their limit Brownian

 motion is central to much of the advanced probability theory studied by mathe-
 maticians in the last fifty years. To understand the limiting area involved, consider
 the practical issue of drawing, for large m, the m-step walk of FIGURE 4 on a

 typical piece of paper with available width (left-to-right) 1 unit and height (top-to-
 bottom) somewhat greater. To fit the paper we clearly want to make each step
 have width 1/m. It's less clear how high up or down each step should be, but it

 turns out that the maximum height of the walk is of order x/m, so a good choice is
 to make the steps have height + 1/rn. For any finite m we draw a piecewise
 linear path, but we can now imagine the m --> oo limit as being a continuous, but

 "jerky" rather than "smooth", path. This limit procedure, applied to uncon-
 .5

 strained random walk, gives a random continuous path, called Brownian motion5.

 We need the variation of this result saying that the constrained random walk
 converges to Brownian motion constrained to satisfy (2), a process called Brownian
 excursion. Our loose description of the paths of these processes as "jerky" is
 reflected in precise results which say e.g. that the paths are nowhere differentiable
 and

 satisfy (3).

 5. THE RANDOM TRIANGULATION OF THE CIRCLE. Granted the existence

 of Brownian excursion, we can see how to combine the ingredients we've assem-
 bled. Section 3 specifies a mapping taking constrained random walk to random

 triangulation of Sn. Section 2 specifies a mapping from continuous functions to
 triangulations of the circle, and applying this mapping to Brownian excursion gives

 a random triangulation of the circle. So this random triangulation of the circle

 must be the limit of the uniform random triangulation of Sw, because Brownian
 excursion is the limit of the constrained random walk.

 Of course, the prose in the paragraph above skips a lot of technicalities, but the
 only conceptually important thing to check is that the mapping from Brownian
 excursion to the continuous triangulation is "essentially the same" as the mapping
 from the discrete walk to the discrete triangulation. To check this, consider a

 triangle in the triangulation of Sn+1 for which none of the sides is very short.
 Using Map 3, this triangle corresponds to an interior vertex v of the binary tree.
 Each of the three edges from v leads toward some proportion of the leaves, and
 these three leaf-proportions are (give or take one leaf) the arc-lengths subtended
 by the sides of the triangle. In other words, a triangle of non-negligible area
 corresponds to a vertex v with children w, x such that, partitioning the leaves as
 descendants of w, descendants of x or descendants of neither, none of these three
 coniponents has a negligible proportion of the leaves. Mapping6 now to the
 ordered tree using Map 2, v and x are siblings, with parent u, say, and u has a
 similar property in the ordered tree as v had in the binary tree. That is, if we
 partition the vertices of the ordered tree as descendants of one child (v) of u, or

 5A rigorous discussion of Brownian motion and the nowhere-differentiability and dense local

 minima properties can be found in any good textbook on Probability at the first-year-graduate level, e.g.
 Durrett [6]. The Brownian excursion is less common in textbooks, but some discussion and references
 are in Bhattacharaya and Waymire [4].

 6This isn't the best way to make a rigorous argument: see the end of Section 8.1
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 descendants of another child (x) of u, or not descendants of u at all, then7 (give or
 take a few vertices, the descendants of the other children of u) these three
 proportions are the arc-lengths of the original triangle. Finally consider Map 1,
 taking the ordered tree to the walk. The subtrees at v and at x correspond to

 nearby subintervals [a1, a2] and [131, 32] or {0, 1,... , 2n} for which the walk is at
 the same height (1 plus the height of vertex u) at the different endpoints of the
 subintervals, and the walk is above that height during the subintervals. The lengths
 of the subintervals, relative to 2n, are the sizes of the subtrees at v and x, and
 hence are approximately the arc-lengths of the original triangle. As n -- oo such
 subintervals become adjacent intervals [t1, t2], [t2, t3] associated with a local mini-
 mum of a continuous function, and this is exactly the correspondence between
 functions and triangulations defined in Section 2.

 6. THE FRACTAL PROPERTY OF THE RANDOM TRIANGULATION OF THE
 CIRCLE. Our discussion here will be very sketchy. Given 8 > 0 consider the set

 S. of points on the circumference of the circle which are endpoints of some chord
 in the random triangulation with length at least 8. If we argue that SE has
 dimension 1/2 then the reader should have no difficulty believing that the
 triangulation itself (a closed subset of the disc) has dimension 3/2, because each

 point of S. corresponds to a chord in the triangulation. In terms of the construc-
 tion of the triangulation from a function f chosen at random by Brownian
 excursion, chords correspond to intervals [s, s'] for which f(s) = f(s') and f(t) >
 f(s) on s < t < s'. (Although such an interval may not be part of a local minimum
 interval-pair, it will be a limit of intervals which are.) Consider such intervals

 straddling time 0.5: these are the intervals [sy, s'] where 0 < y < f(0.5) and

 S = sup{t < 0.5: f(t) = y}, s' = inf{t > 0.5: f(t) = y}.

 So we need to argue that

 the set {sY: 0 < y < f(0.5)} has dimension 1/2 (4)

 and then replacing 0.5 with an arbitrary rational shows that S. has dimension 1/2.
 Fortunately (4) can be deduced from standard facts about functions g(t) chosen

 at random by Brownian motion. The most important of these facts is
 (a) ([6] Exercise 7.4.4) The zero-set {t: g(t) = 0) has dimension 1/2. The most

 intuitive explanation of (a) is that simple random walk has order nt"2 visits to 0 in
 the first n steps.

 Other facts require the concept of distribution-preserving transformation. If a
 number u is chosen uniformly at random from [0, 1] then the number 1 - u is also
 random and uniform on [0, 1], this being a special property of the particular
 transfornlation u -> 1 - u. In other words, 1 - u has the same distribution as u.
 An analogous fact about Brownian motion is

 (b) Levy's identity ([6] Theorem 7.4.7). Given g(t), define g*(t)=

 sup0<o<t g(t). Then (g*(t) - g(t)) and Ig(t)J have the same distribution. In
 particular, (a) and (b) imply that the set {t: g(t) = g*(t)} has dimension 1/2. This

 7The argument would break down if there were a vertex with three children, each of whose
 descendants comprised a non-trivial proportion of the population. But this has probability -O 0 as
 n -X00
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 is essentially the same as saying

 the set {ty: 0 < y} has dimension 1/2 (5)

 where ty = inf{t > 0: g(t) = y}. Next, Brownian motion has a "time-reversal"
 property

 (c) Define g(t) = g(O.5 - t). If g(t) is chosen according to Brownian motion
 then so is g(t).

 This property and (5) give us (4) for functions chosen according to Brownian
 motion. Of course we really need (4) for Brownian excursion, but the conditioning
 involved in producing Brownian excursion from Brownian motion doesn't affect
 "local" properties of the random functions, so (4) still holds for Brownian excur-
 sion.

 7. QUANTITATIVE CALCULATIONS. Consider three vertices 1 < i1 < i2 < j3 <
 n + 1 of the n-gon. The chance that the triangle with these three corners occurs in
 the random triangulation of the n + 1-gon is

 p(n; i1, i2, i3) = i2 il i3-i2 n+t+il-i3 (6)
 cn

 because the edge from i1 to i2 creates a (non-regular) i2 - i1 + 1-gon outside the
 triangle. Noting that (1) and Stirling's formula give Cmv1/2 - 3/2 2m-
 we can take asymptotics in (6) to get

 p(n; itI i2, i3) - n-30(tl, t2I t3) as 1 n+2 't ( t2n t3)

 where

 ( tl, t2 t3) = (t2 - tl) 32(t3 - t2) 32( + tl-t3)

 0 < tl < t2 < t3 < 1.(7)

 The function b represents the frequency spectrum of triangles in the random
 triangulation of the circle. That is, representing the vertices of a triangle by their
 distances t' around the circumference (as in Section 2),

 b(t1, t2, t3) dt1 dt2 dt3 =

 mean number of triangles (t', t', t') with t, E [ti, ti + dti], i = 1, 2, 3.

 Various quantitative problems about the random triangulation of the circle have
 str#aightforward answers involving 0. Consider Question 1, and measure "length"
 by arc-length, so the maximal chord length is between 1/3 and 1/2. A moment's
 thought reveals that the longest chord is just the longest edge of the triangle
 containing the center of the disc. So for 1/3 < x < 1/2 the maximal chord-length
 is less than x iff the triangulation contains a triangle (t1, t2, t3) such that

 max(t2 - tt, t3 - t2, 1 + t1 - t3) < x (8)

 because such a triangle necessarily contains the center of the disc. So the
 probability that the maximal chord-length is less than x is the integral of b over
 the domain (8). With a little help from MATHEMATICA we find that the integral
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 has the explicit expression

 (3x - 1)(1 - 2x)'1,2
 6 - (arctan 3-1/2 - arctan(1 - 2x) 1/2) - x ( -x)9)

 and that the probability density function of the maximal chord-length is

 3x- 1 1 1

 vx2(1 _ X)2(l-2 1/2' - <x < 2. (10) - x2(1- 2x)'~ 3 2

 The latter shows that the maximal chord-length distribution is strongly biased
 toward the upper end of the interval [1/3,1/2]. Numerically, the median works
 out as 0.479 and the chance of being in the lower half of the interval (Question 1)
 is only 0.126.

 We leave to the reader a similar problem.

 Question 3. What is the chance that the largest area of a triangle in the random
 triangulation is greater than half the area of a square inscribed in the circle?

 8. DISCUSSION

 8.1 The weak convergence paradigm. We've discussed triangulations, but we could
 try the same approach in a vast range of settings. Given a sequence of discrete
 (typically combinatorial) random structures of size n, does there exist a continuous
 structure representing then n -> oo limit? If so, then for many questions about the
 size-n structure one can obtain the n -- oo limit by simply asking the same question
 of the limit structure. This is the weak convergence paradigm8. To explain the
 name, recall from elementary probability that the Normal distribution is, in a
 certain sense, the limit of Binomial distributions. This kind of convergence is called
 "convergence in distribution" or "weak convergence", applied to random num-
 bers. But we can also talk about weak convergence of random elements of an
 abstract metric space. This abstract theory9 was developed in the 1950s and 1960s,
 with special emphasis on the case of random functions (from [0, co) to R) because
 these are just stochastic processes by another name.

 Trees are fundamental in combinatorics. If you are willing to regard FIGURES 1,
 4, 5 and 6 as different pictures of the same object, then we have implicitly been
 studying asymptotics of random trees. The weak convergence paradigm is based
 upon representing a "size n" combinatorial object as an element of a metric space,
 scaled in such a way that the objects are comparable for different n. Informally,
 this is the idea of being able to draw different sized objects on the same sized piece
 of paper. It is trivial to do this for trees, provided you are willing to picture the tree
 as a triangulation or as a path (formally, the metric spaces are "closed subsets of
 the disc" and "continuous functions [0, 1] -- R"). But if you insist on picturing
 trees as i'n FIGURES 5 and 6, you have probrems. How do you actually draw a
 2000-edge tree in the style of FIGURE 5 which "looks right," and what metric space
 do such trees inhabit? It's not easy10 to say. But by drawing trees as walks or
 triangulations we can literally see some interesting numerical characteristics of the

 8My friend Mike Steele prefers to call it "the objective method", because it involves constructing a
 limit object.

 9The classic text is Billingsley [5].
 10The best way I know to "draw large trees as trees" is in Aldous [1] pages 4-5.
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