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ABSTRACT 

Grow a tree on n vertices by starting with no edges and successively adding an edge chosen 
uniformly from the set of possible edges whose addition would not create a cycle. This 
process is closely related to the classical random graph process. We describe the asymptotic 
structure of the tree, as seen locally from a given vertex. In particular, we give an explicit 
expression for the asymptotic degree distribution. Our results an be applied to study the 
random minimum-weight spanning tree question, when the edge-weight distribution is 
allowed to vary almost arbitrarily with n. 

1. INTRODUCTION 

The construction indicated in the abstract, and stated more formally in Section 2, 
yields a certain random tree F,, on n vertices. It is easy to calculate that, for the 
star graph t ,  centered at vertex 1, 

P(F" = I , )  = 2"-'(n - 1)!/(2n - 2)! 

and so for n 1.4, F,, is not the uniform random labeled tree (for which the 
probability is 1 ln" -2) .  Other explicit calculations are harder. The substance of 
this paper is Theorem 1 below, which gives information about certain aspects of 
the asymptotic behavior of T,, as n+=. 

Associate with F,, the random fringe subtree 9" defined as follows. Regard F,, 
as rooted at some prespecified vertex (1, say). Each edge from 1 leads to some 
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subtree, whose combined sizes (numbers of vertices) equal n - 1. Delete the 
subtree of maximal size (if not unique, choose arbitrarily). Let P,, be the 
remaining tree, rooted at 1. By removing labels we may regard 9,, as a random 
element of the set T of finite rooted unlabeled trees. (T includes the trivial tree 
consisting of a root only.) 

Theorem 1. There exists a probability distribution r on T such that 

P(9,,  = t)-+ m(t)  as n-m; t E T . 
Moreover 

m(t )  root-degree (t) = 1 . 

The limit r is the distribution of a certain random tree %”, which we describe 
verbally now (and formally in Section 2). Write %? for the family tree of a 
Galton-Watson branching process with 1 progenitor and Poisson(s) offspring 
distribution, considered as a rooted unlabeled tree. Construct a random tree 
process (Xs: 0 I s < 00) as follows. X,, is a root only. During time [s, s + ds], each 
vertex u of Xs has chance ds to have attached to it an independent copy of Ys, if 
the realization of Y?$ is finite: if infinite, nothing is attached, but at the first time 
that some infinite tree is attempted the vertex u at which it occurs is distinguished. 
This construction yields a finite tree 2, with one distinguished vertex. Delete the 
branch containing the distinguished vertex (if it is not the root): the remaining 
tree is 2”. 

The proof is based upon the simple fact that sparse random graphs can be 
approximated locally by Galton-Watson trees. To indicate briefly the proof, 
consider the random graph process %(n, A), regarding s as “time,” and along 
with this construct the forest-valued process F,,(s) which evolves as Y(n, A) 
except that an edge is added only if it does not create a cycle. Thus T,, is the 
end-result of the process (Fn(s); 0 5 s 5 n - 1). Consider the component of Fn(s) 
containing vertex 1. For large n this evolves like the process Xs, the “dis- 
tinguished vertex” being the vertex at which it joins the giant component. Thus 
the fringe of F,,(s) looks like the subtree of Xs at vertex 1 (where Xs is considered 
rooted at the distinguished vertex), so the fringe of Y,, looks like the subtree of 
X=, and this is 2:. Our proofs in Sections 2 and 3 formalizing these process 
approximations are conceptually straightforward, though a little lengthy. 

Theorem 1 is intended as a worked example in the general theory of asymp- 
totic fringe distributions introduced in [l]. For any family of random trees one can 
define P,, as above (using an initial random root: in the present example, by 
symmetry this is equivalent to making vertex 1 the root). In most well-studied 
families it is easy to show the existence of a limit distribution m as in Theorem 1, 
or a related limit cycling behavior. For example, for the uniform random labeled 
tree, the limit distribution analogous to m is just 9,. The point of a result like 
Theorem 1 is that it implies convergence (to a limit defined in terms of r )  of all 
functionals of the random tree which involve only ‘‘local’’ structure. This contrasts 
with the traditional analytic techniques in combinatorics, which treat only one 
functional at a time. Propositions 2 and 3 below give specializations of Theorem 1 
to more concrete questions. 

r 
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Write D(n) + 1 for the degree of vertex 1 in Y,,. Theorem 1 implies 
D(n)+ D(m), where D(m) is the degree of the root of X!,, and one can calculate 
this limit distribution using the description of the tree-process 29,". 

d 

Proposition 2. 

1 

P(D(m) = i )  = e-"'u'(@(u))'/i! du; i 2 0 

where 

The proof is given in Section 4.1.  Similarly, Theorem 1 implies that the height 
and size of the subtree s,, converge to the height and size of %'!, though we do 
not have any simple explicit expression for these limit distributions. (Note that 
although Proposition 2 gives the degree of the root as a mixture of Poissons, it is 
not true that 7~ is the corresponding mixture of (%$I)). 

As a second application of Theorem 1 ,  we get some deeper insight into the 
well-studied problem of random minimum-weight spanning trees. The results 
stated below will be proved in Section 4.4.  Take the complete graph on n vertices. 
Attach i.i.d. edge-weights T!;) ,  and consider 

(a) the special case: i j @ )  has uniform distribution on (0, n - 1); 
(b) the general case: v("' 2 0 has some continuous distribution function G,,, 

varying arbitrarily with n .  

In the special case, the minimum-weight spanning tree (constructed using 
Kruskal's greedy algorithm) is exactly Y,,, and for each edge of Y,, the weight is 
the time s at which that edge was added in the tree-process (T,,(s); 0 5 s I n - 1 ) .  
Write W,, for the total weight of the minimum-weight spanning tree T,,. A 
well-known result of Frieze [6] says that in the special case 

m 

EW,,/n-* ((3) = c l / i 3  
i= 1 

Theorem 1 yields a stronger result on the asymptotic empirical distribution of 
edge-lengths of the minimum-weight spanning tree in the general case. 

Proposition 3. Let 6, be the weight of an edge chfsen uniformly at random from 
the edges of Y,, . Then in the general care nG,,(tl,,)-* J ,  where 0 < J < rn has density 
function f ,  defined by Equations (32) and (33) below. 

Now E W , , = ( n - l ) E O , ,  so under mild conditions we can deduce that 
EW,, - nEG,' (J /n) .  Here is the precise statement. 

Corollary 4. 
Suppose there exists x, ,  < 30 such that for all a > 0 

Let G,' be the inverse distribution function of the edge-weights T"". 



386 

G , ’ ( x l n )  
e-”” dx < p . 
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(2 )  

Then as n + 

EW,, - n lox G , ’ ( x / n ) f , ( x )  dx . 

A natural special case is where G,, E G does not depend on n and satisfies 

Then 

and a calculus exercise (Section 4.3) shows the integral term is equal to 

1 ( i - l + l / p ) !  
p j = l  i ! ( i  + 1)’+llP ’ - 2  (4) 

Putting p = 1, we recover (1). The special case (3,4) has been given by Timofeev 
[8] and by Avram and Bertsimas [3]. 

On a technical note, the continuity assumption on G,, makes the statement of 
Proposition 3 simple, but is not in itself essential. The condition (2) excludes 
examples such as 

where the total weight W,, is dominated by the weights of a vanishingly small 
proportion of edges. 

In principle, Theorem 1 could be applied to more general “cost” functionals 
associated with the random minimum spanning tree. Such functionals occur, for 
instance, in the context of set union-find algorithms [ S ,  7 , 9 ] .  But we have not 
pursued this topic. 

2. M A I N  PART O F  PROOF 

In this section we give the proof of Theorem 1, deferring until Section 3.3 a key 
lemma which requires some technical background (Section 3). 

For each edge (i, j )  of the complete graph on n vertices, create a real-valued 
random variable Zi.j distributed uniformly on [0, n - 11, independent for different 
edges. For each s E [0, n - 11 let %(n, s / ( n  - 1)) be the random graph consisting 
of those edges (i, j )  with Z,. ,  IS. Each edge has chance s l ( n  - 1) to be in this 
graph, and so we conform to the customary notation in the theory of random 
graphs. Regard s as “time” and s+ %(n, s / ( n  - 1)) as a graph process, which 
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adds new edges at random times 0 < S, < S, < - -. Associate with this process 
another process (.T,(s): 0 5 s 5 n - 1) using the rule: 

when %(n, .) adds a new edge ( ( i ,  j ) ,  say) at time S,, say, then 5,(-) adds the 
same edge, provided this does not create a cycle. 

It is clear that .T,(s) is a forest with the same connected components as 
%(n, s / ( n  - 1)). It is also clear that, given Y,(s) = t, the next edge added is 
uniform on the set of allowable edges. So the final tree 5,(n - 1) = Yn, say, has 
the same distribution as the tree described in the abstract. 

We now define another tree-valued process (9 , ( s ) ;  0 9 s 5 n - 1). Let 
a(n)+ a, a(n) /n 3 0 as n + a be constants specified later (Lemma 8). Write B ( s )  
for the component of  Y,,(s) containing vertex 1, considered as a rooted unlabeled 
tree with root 1. Write It1 for the size (number of vertices) of a tree t .  Let 

L, = min{s: IB,(s)l> a(n)} . 

At time L, some edge is added to B,(L,-): write V :  for the endpoint of that 
new edge in B,(L,-), and write V:* for the other endpoint. For s <  L, define 
S,(s) = B,(s). For s L L, define Sn(s) to be the subtree of B,(s) consisting of all 
vertices u for which the path from u to 1 does not use the edge (V: ,  V:*) added 
at time L,. In this case (SI L,), regard V: as a distinguished vertex of 9,,(s). 

Formally, regard Y,(s) as taking values in the set T U T * ,  where T* is the set 
of finite rooted trees with one distinguished vertex u* (which may be the root). 

The main part of the result is 

Lemma 5. 
d 

9,(n - l)-+ 2% , 

where 2= is the T*-valued random tree defined following Equation (18) below. 

Granted this result, we proceed as follows. For a tree t* E T * ,  define a tree 
to E T as follows. If the distinguished vertex u* of t is the root, then let to = t (with 
the root undistinguished). If not, then u* is in one of the branches o f t  (i.e., one 
of the subtrees rooted at a neighbor of the root of t ) :  define to to be t minus the 
branch containing the distinguished vertex. 

Write S;(n  - 1) and 2ift for the trees obtained in this way from 9,(n - 1) and 

It is clear from the construction that S ; ( n  - 1) is the same as the fringe tree 9, 
x .  
provided that lS,(n - 1)1 C n /2 .  So 

By Lemma 5 and fipiteness of X x ,  the bound tends to 0 as n + 30. Now Lemma 5 
implies S;(n - 1)+ X:, and so 

d 
9,-.2:. 

This is the convergence assertion of Theorem 1. The second assertion of the 
Theorem will be established in Section 4.1. 
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We now start to work toward the definition of the limit X= appearing in 
Lemma 5. For 0 i s < 00 let gS be the Galton-Watson family tree with 1 progenitor 
and with Poisson(s) offspring distribution. Regard gS as a random element of p, 
the set of rooted unlabeled finite or infinite trees. Write m, for the distribution of 

Write F(s) for the chance that the Galton-Watson tree gS is finite. It is 
3 5 -  

elementary and well-known that 

F(s) = 1, s 5 1 

F(s) = exp(s(F(s) - 1)) , s > 1 . 

The series solution 

is not very useful: calculations are better done with the inverse function 

log u 
F - ’ ( u )  = - O < u < l .  u - 1  ’ (7) 

It is well-known and elementary that 

and that the conditional distributions satisfy 

where s^=s for 0 5 ~ 4 1  and 

For future reference, using (7) it is not hard to show 

Given s, <s,, there is a natural construction of a joint distribution (grl, gS2) 
with the right marginals. Start with gS2. Delete or retain each edge independently, 
with chance sl/s2 of retention. Then let gSI be the tree-component in the retained 
graph rooted at the original root: it is easy to verify that this gS, is indeed 
distributed as the Galton-Watson tree. 

It is not hard to show that we can produce aT-valued process (3s; 0 I s < m) 

which is a continuous-time nonhomogeneous Markov process, with the two- 
dimensional distributions specified above. The evolution of this process as s 
increases can be described in words as follows. In time [s, s f ds], each vertex u 
of ?lr has chance ds to have a subtree appended to it, and such a subtree has 
distribution rr,, i.e., the distribution of the Galton-Watson (Poisson(s)) tree itself. 
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Such a process is specified by its transition rate matrix R,, whose interpretation 
is 

R,(t, u) ds = P(%s+, = uI 3, = t ) ;  t, u E ?, f # u . 

For our process we can specify R, as follows. For t ,  t ,  E ? and u a vertex of t, 
write ( i ,  u, t , )  for the tree obtained by appending to t a subtree rooted at u which 
is a copy of t,. (That is, connect f and t ,  via a new edge from u to the root of t , ,  
and regard the root of t as the root of the new tree.) 

Then 

R,(t, u)  = c c 1,,,* u ,  r , ) = U ) r s ( f l )  . (12) 
" € 1  I , € ?  

(Technical aside. We are abusing notation here, because ? is uncountable. 
Rather than set up 3, as a general-state-space Markov process, it is simpler to 
justify the arguments here by the truncation idea in Section 5.) 

In terms of the process (gS; 0 I s < m), there is a random time L at which the 
size of the tree becomes infinite: 

L = inf{s: IS,l =a} . 

Then 

P(L  5s) = P(I%,l = m )  = 1 - F(s) = F(s), say. (13) 

Then 1 < L <a a.s., and the usual convention about making Markov processes 
right-continuous gives IgLI = m. A priori, it might happen that the left limit gL- is 
an infinite tree, but it turns out that in fact this limit tree is a s .  finite. In other 
words, at time L some vertex V *  of a finite tree gL- instantaneously grows an 
infinite tree. To argue this, (12) implies 

P(L E [s, s + dsl13s = t )  = ItlF(s) ds , t E T (14) 

and so 

P(gL- = t ,  L E [s, s + ds]) = ItlP(3, = t)F(s) ds . (15) 

Thus 

P<I%J<m,  L E [ s , s + d s ] ) = b ( s ) F ( s )  ds (16) 

where 
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To verify I%L-I<co a s .  it suffices, by (13) and (16), to show 

and this follows analytically from (6,17). 
evolves by 

vertices growing subtrees, which may be finite or infinite subtrees. The process %f” 
evolves in the same way, except that the infinite subtrees are censored: also, the 
vertex V* at which the first infinite subtree in % is grown at time L is distinguished 
in Zs, s z  L. In other words, 

We now define a process (Sre,) associated with (ys). The process 

aq= q , s <  L 
ZL = %L -, with V * distinguished 

and after time L the process Xs evolves as the Markov process with transition 
rates R, given by (12), except that the sum is over t ,  E T instead of ?. 

The process (Zs; 0 5 s  <m) takes values in T U T* (recall T* indicates finite 
trees with a distinguished vertex). The limit 2fz certainly exists: we have to show 

To show this, condition on L = so > 1 and lX,l = u,,. Then the conditional 
expected size u(s)  = E12fs1, s > so satisfies 

a+) = a(s)b(s) 

establishing finiteness of 1 2% I. 
proof of 

Lemma 5 now makes sense. Let us show that its proof can be reduced to the 

Lemma 6. For fixed s < 33, 

d 
9,,(s)4 2fs as n - m .  

Given this result, to prove Lemma 5 we need only show 

s-x iim lim I,-+= sup P($,,(n - 1) f P,,(s)) = 0 .  (19) 

To argue this, recall that L,, is the first time s that vertex 1 enters a “giant 
component” (size 2 a(n ) )  of %(n, s / ( n  - 1)). Write q,,(s) = expected proportion of 
vertices outside the smallest giant component of %(n, s / ( n  - 1)). On { L,, < s}, 
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ds 
n - 1  

P(9,(s + ds) + Sn(s)/%(n, s / (n  - 1))) 5 - x 19,,(s)I 

X number of vertices outside smallest giant component of %(n, s / ( n  - 1) ) .  

So for any fixed a 

n 
n - 1  

P(S,,(s + ds) f S,,(s), l% , , (s ) l~  a, L,  < S) 5 - aq,(s) ds . 

So for s > s o ,  

Integrating over s 2 so, 

n U 
P(S,,(n - 1) # %,,(so)) 5 h,(s,] ,  a )  + - q, (s )  ds . n - 1 1 - h,(s,,, a)  6: 

(20) 

NOW from Lemma 6 and finiteness of X x ,  

Moreover, P ( L ,  > s) 5 q , ( s ) ,  so (19) follows from (20) and 

lim lim sup q, (s )  ds = 0 
%-= n 4 l  1: 

This is Lemma 8(b) below. 

3. TECHNICAL BACKGROUND 

3.1. Random Graphs 

There is a well-developed theory of random graphs, treated in detail by Bollobas 
[4]. The facts we need are comparatively simple, though not quite of the standard 
form. We state them below, and sketch them briefly without going into routine 
details. 

Recall r s ( x )  = P(%Is = x )  for a finite rooted unlabeled tree x .  We can extend 
this to finite rooted graphs x by putting z , ( x )  = 0 if x is not a tree. Let Cy(x) 
denote the (random) proportion of vertices i of %(n,  s / ( n  - 1 ) )  for which the 
component containing i, considered as a graph rooted at i, is isomorphic to x .  
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Lemma 7. For each finite rooted graph x ,  

sup I ~ : ( x >  - rs (x> l  4 o as n + 31 
055<=  

Sketch. The result for fixed s is standard, by computing first and second 
moments [4, Exercise 4.61. So for any finite set G of rooted graphs 

c c:(x)L c Ts(4 * 
XEG XEG 

Suppose the set C is closed under passing to subgraphs (same root). Then both 
sides are decreasing in s, and the right side is continuous in s, so uniform 
convergence holds. The lemma follows by applying this fact to G = 9"x]  and 
C = 9"x] - { x } ,  where Y[x] is the set of all subgraphs of G. 

The second fact we need is that there exists a deterministic sequence a(n)+ m 

such that the following lemma holds. Let a,(n) la(n)+ 1. Let A:*' [resp. A:.'] be 
the proportion of vertices of %(n, sl(n - 1)) in all components [resp. the smallest 
component] of size at least a, (n) .  Then 

Lemma 8. (a )  For u = 1 , 2, 

P 
sup 11 - F(s) - A,","l-+O as n + = .  

ass<= 

( b )  limso+m lim sup,, JP,(l- E A : . ~ )  d~ = 0. 

Sketch. It is easy to see that EA:;'+O as s,,Jl; indeed this follows from 
Lemma 7, since 2, T , ( x )  = 1. Also F(s)-+ 1 as sil, so to prove (a) it suffices to fix 
so > 1 and prove the assertion with the sup taken over s z so. But this, and (b), 
are essentially consequences of deeper results in Ref. 4, Section 6.3. 

3.2. Convergence of Finite-state Processes 

The final technical ingredient is a lemma on convergence of non-Markov pro- 
cesses to a Markov limit. Let (X(s): 0 5 s < 00) be a nonhomogeneous Markov 
process on a finite state-space T with transition rates R5( t l ,  t 2 ) ,  t, # t , .  For each 
n 1 1 let (Xn(s): 0 5 s C m) be a T-valued process adapted to a filtration (a:) and 
such that the transition intensities 

exist, for t, # X: ( w )  . 

terization.) 
(More formally, R: is defined as satisfying the appropriate martingale charac- 

Lemma 9. Suppose X"(0)  = X(0) = x(O),  deterministic. Define 

d : ( @ ,  t l ,  t z )  = IR:(w, t , )  - R,(t l ,  t2)l if X : ( w )  = t ,  and t, # t ,  
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and = 0 otherwise. I f ,  for each so and t ,  , I t ,  

P 
SUP d:(w, t , ,  t,) + 0 as n --., m (23)  

0 5 s S s O  

d 
then (X:) +- (X,) in the sense of finite-dimensional distributions, and in particular 

X : + X ,  as n-m,  s fixed. 
d 

Sketch. Such a process X" can be described via the times Uy and destinations 
Vn of the ith jump. It can be constructed in a canonical way from i.i.d. uniform 
r.v.'s ( U : ,  V:).  One can show, under the hypotheses of the lemma, that these 
canonical versions (constructed for each n and the limit process from the same 
( U y ,  V t ) )  converge a s .  to the limit canonical version as n-m.  

3.3. Proof of lemma 6 

We use a natural truncation idea. Fix a large integer K, and introduce a graveyard 
state A. Define truncated processes 

X ( S )  = X, if lXs! 4 K 
= A  if not 

X"(s)  = 3n(s) if 19,,(s)/ I K 
= A  if no t .  

Because I %,I < 33, to prove Lemma 6 it is enough to prove that for each fixed K 
the truncated processes converge. For fixed K our processes takes values in a 
finite state space (trees of size SK, and state A), and so we shall prove 
convergence by verifying the hypothesis (23)  of Lemma 9. 

There are 5 types of possible transition t ,  -+ t,, according as the ti  have or do 
not have a distinguished vertex, or are A. 

Transition type 1. Suppose neither t, nor t ,  has a distinguished vertex. Quoting 
(12)  7 

To calcualte the transition intensity for X"(s) ,  we take the filtration generated by 
the entire random graph process ($(n,  s'/(n - l)), s' c s). If two vertices are in 
different components at time s, the chance that an edge between them is created 
during [s, s + ds] is dsl(n - 1 - s). It follows that, on {X"(s)  = t , } ,  

R:(w, t t )  = e ,  + x number of pairs ( u ,  i) such that: 
n - 1 - s  

u is a vertex of t,; 
i is a vertex of $(n, s / ( n  - 1 ) )  whose component, considered as a graph rooted 

at i, is a tree x ,  say; 
i is not in the component containing 1; 
and ( t , ,  u ,  x )  = t,. 
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Here el is an error term, incorporating the possibility that a transition from t ,  to I, 
might occur by t, being attached to some nontree component. We can rewrite the 
expression above as 

el + e ,  + c c l((r,.".x)=r2)c:(x) (25 1 
uEI trees I 

where e, is another error term incorporating the possibility that the sum erro- 
neously includes the component containing 1. 

Now Lemma 7 implies that the sum in (25) converges to the sum in (24), 
because we need only consider trees x of size at most K. The error term e ,  can be 
crudely bounded by K2/(n  - s - l) ,  which tends to 0. The error term e l  can be 
bounded by 

K 
n - 1 - s  

x number of vertices in nontree components of size cK 

and this tends to 0 by Lemma 7. 
Thus we have verified (23) for this type of transition. 
Transition type 2. Suppose 1 ,  is a tree without a distinguished vertex, and t ,  is 

the same tree with vertex u ,  say, distinguished. (Of course there may be several 
u's which produce isomorphic f2's ,  but then we just sum: so let us assume there is 
a unique u. )  The limit process has transition rate 

R,(t,, t , )  = 1 - F(s) . (26) 

For the finite processes, we have: on { X " ( s )  = t l } ,  

X number of vertices i such that: 1 
- 1 - R:(% f 2 )  = 

i is not in the component of %(n, s / ( n  - 1)) containing 1; 
the size of component containing i is at least a(n) - I t , / .  

As n - m  this quantity is asymptotic to A:,', in the notation of Lemma 8 with 
a , (n )  = a(n) - I t l [ ,  and then the assertion of Lemma 8 implies convergence of the 
transition intensities to the limit (26). 

Transition type 3. Consider transitions from a tree t ,  without distinguished 
vertex to state A. We prove convergence of transition intensities by a trick: by the 
previous results, it suffices to prove convergence €or the total transition rate out of 
state t , .  But for the limit process, this total transition rate is I t , / ;  and for the finite 
processes the total transition rate is 

Transition type 4. Suppose both f ,  and I ,  have a distinguished vertex. The 
argument follows the argument for type 1, except that the error term e,  is absent. 

Transition type 5. Consider transitions from a tree I ,  with a distinguished 
vertex to state A. We repeat the trick of considering instead the total transition 
rate out of state t , .  For the limit process, this total transition rate is 
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For the finite processes, the transition intensity is 

It,/ x n - size of component of %(n, s/(n - 1)) containing 1 . 1 
n - l - s  

Since t ,  has been given a distinguished vertex, the size of that component is at 
least a(n). In the notation of Lemma 8, the proportional size of the component is 
between A:** and A:*', and so by the assertion of Lemma 8 the intensities above 
converge to those of (27). m 

4. EXPLICIT CALCULATIONS WITH THE FRINGE 

4.1. Proof of Proposition 2 

A key fact, proved later, for doing calculations with the limit X :  is 

Lemma 10. dist(X:lL = s) = dist(gj), where i was defined at (10). 

Since we know (13) the distribution of L ,  this lemma gives the distribution of 
X : ,  and the only issue is to take account of the evolution of 2; over L < s < =. 
Let D(s) ,  s B L be the degree of the root of X:. Lemma 10 implies 

dist(D(L))L = I )  is Poisson ( I ) .  (28) 

The chance that the degree increases by 1 during [s, s + ds] is F(s) ds, and so 

dist(D(W) - D(L)IL = I )  is Poisson (1 F(s) ds) 

and this increment is conditionally independent of D( L ) .  Together with (28) and 
the definition of i, we see 

dist(D(m)IL = I )  is Poisson (h ( l ) )  (29) 

where 

h(x)  = xF(x)  + J1: F(s) a3 . 
d 

To reconcile this with the expression in Proposition 2, we must show h ( L ) =  
@(U) for U uniform on [0,1]. Now h(x) = I," SF(&), by integrating by parts. 
Writing u = F(s) ,  

F-'(.r) 

h(x)  = Jo F-'(u) du 

du by (7) 
log l l u  
l - u  

= @ ( F - l ( x ) )  
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for as stated in Proposition 2. Thus h ( L ) = @ ( F - ' ( L ) ) .  But F is the tail 
distribution function of L, so F-'(L)  is uniform on [0,1], and we are finished. 

Note that 

ED@) = E@( V )  
1 

= @(u) du 

1 =-lo logxdx 

= 1  

verifying the second assertion of Theorem 1. 
Numerical values are 

1 0 1 2 3 4 5 6 
P(D(w)= i) 0.408 0.324 0.171 0.068 0.022 0.006 0.001 

Remarks. In principle one can calculate the limit r ( f )  for any finite tree t ,  but 
the results do not seem tractable. Similarly, one could attempt to study the 
distribution of size I%fe",l of the fringe tree; it is easy to write down the generating 
function of the size IXiI and a differential equation for the evolution of the 
generating function of 1x91 on s > L, but it is not clear (to the author!) how to 
extract useful information from this analysis. (Incidentally, general theory [l]  says 
that the expected size EJ2t'tI = w.) 

Proof of Lemma 10. The lemma can be proved combinatorially from (14), but 
then seems mysterious. The following probabilistic argument explains why it is 
true. 

Consider the Galton-Watson tree 91s. We can describe the tree by describing 
the number N of children of the root and the subtrees 3: rooted at each child. 
Obviously, N has Poisson(s) distribution, and the 9; are i.i.d. copies of 91s 
independent of N. We want to condition on { L = s}. Each 3; can be regarded as 
being embedded in a process (%:: 0 5 u < m), an independent copy of the process 
of Section 2, which becomes infinite at time Li say. Conditioning on { L  = s} is 
conditioning on {minis, L, = s } .  But a general fact (abstracted below) about 
Poisson distributions says that under this conditioning the number N - 1 of other 
subtrees (other than the one with Li = s) has Poisson (sP(L > s)) distribution, and 
the other subtrees are independent and distributed as 91s given L >s. Since 
sP(L > s) = s  ̂ and dist(3slL. > s) = dist(91i), and the tree formed by these other 
branches is X:, this is the assertion of the lemma. 

The general fact cited above is as follows. Let (5,) be i.i.d. Let N have 
Poisson( A) distribution, independent of the ti. Let f( 4,) be real-valued continu- 
ous. Conditional on mini,, f (  5;) = s(=f( &,>, say), we have 

N - 1 has Poisson( AP( f( 6 )  > s)) distribution 
( t i ,  i # io) are independent and distributed as 5 given f( 5) > s. 

This fact foliows from the "independence under subdivision" property of the 
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Poisson distribution, considering separately the 5’s with f( 5) < s, with f( 5) E 
[s, s + ds] and with f( 5) > s + ds. D 

4.2. The Edge-weight at the Root 

For the application to minimum-weight spanning trees, we study a certain random 
time J associated with the limit random tree-process (Xs). In words, J is the time 
of attachment of the edge leading from the root towards the distinguished vertex. 
To say this precisely, let T~ < r2 <. - - be the times s at which successive edges El, 
E 2 , .  . . are attached to the root of XS. Recall that V *  is the distinguished vertex, 
and L is the time at which it is attached. Then 

J =  L if V * = r o o t .  

J = 7; if the path from root to V *  starts along edge Ei . (30) 

So O <  J 5 L. To get an expression for the distribution of J ,  we return to the 
discription of the process (XS) in Section 2. It is clear that ( T ~ ,  r2, . . .) are the 
times of successive events in a Poisson(1) process. Consider the time when (in the 
full process gS, rather then the restriction XS) the subtree attached via edge Ei 
becomes infinite. This time can be represented as ri v L(,,, where the L(;) are 
distributed as L and are independent as i varies. One consequence of the 
representation is the distributional relation 

which leads to an alternative derivation of the fundamental identity ( 6 ) ,  which we 
restate in terms of F(s) = 1 - F(s) as follows. The distribution function 

F(s) = P(L 5 s) = P(ps : l  = 00) 

satisfies F(s) = 0 on 0 I s I 1 and 

1 - F(s) = exp(-sF(s)) , 1 I s < 00. 

SO on 1 < s < 30 we can specify F via its inverse function 

-log(l- u )  
, 

U 
P ( u )  = O < u < l .  

Now in view of (31), the definition of J becomes 

J = r1 , where I = arg min 7; v L(;) . 
1 

We can now calculate 

P(x  5 T/  I x + ah, y I L, I y + dy) 
= dx F(dy)P(m,jn 7; v L, > x v y) 

= ah F(dy) exp(-(x v y)F(x v y)) 

= dr F(dy)(l - F(x v y)) by (32) 
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where the second equality is obtained by viewing (T;, L i )  as a Poisson point 
process on the plane with rate d x F ( d y ) .  Integrating over y, we see that J has 
density 

For x 2 1 this becomes 

f , ( x )  = 1 - F2(x)  - I: F(y)F(dy)  

1 
2 = 1 - F2(x)  - - (1 - F 2 ( x ) )  

1 
2 = - (1 - F2(x) )  . 

And since F = 0 on (0, l ) ,  the formula (33) is true for all 0 5 x < w. 

(33) 

4.3. A Calculus Exercise 

Here is the argument for (4). Put a = 1 / p  for convenience. Note that the 
substitution u = 1 - F(x )  makes x = I-U and j ( d x )  = -du. log( I /u) 

[ x"f,(x) dx = x""F(x)F(dx) by parts L= 
= x""F(x)F((dr) 

1 

= lo log"+l(l /u)(l- u)-o du, putting u = 1 - ~ ( x )  

I =I log"+'(l/u) c o+;-IC;Uidu 
i = O  

Here we wrote ,,C, for "n choose m." 

4.4. Minimum-weight Spanning Trees 

Proof of Proposition 3. Regard F,, as a random tree in which each edge has 
"weight" equal to the time at which it was added, in the process (F,,(s)). Define 
Jn(l)  to be the weight of the edge (E,,(l), say) at vertex 1 leading towards the 



399 A RANDOM TREE MODEL 

distinguished edge ( V : ,  V:*). Thus J,, is analogous to the definition (30) of J ,  
with L, in place of L .  Repeat this construction for each vertex u = 1,. . . , n to 
obtain a weight J,,(u) of an edge E,,(u) incident at u.  From Lemma 5 ,  in which we 
may regard the edges being weighted, we have 

d 
J n ( l ) + J .  

It is also easy to see 

P ( E , ( l )  = E,(u) for some u # 1 ) + 0  as n - + z .  (34) 
d 

By symmetry, J , (u )  = Jn( 1)  for each u.  Let V,, be a uniform random vertex of 9,. 
Then J,(V,)$J. But (34) implies that the mean proportion of edges of F,, which 
occur exactly once in (E , (u ) ;  u = 1 ,  . . . , n)  tends to 1 .  So asymptotically, J,(V,) 
behaves as the weight 6" of a uniform random edge of Y,. This establishes 

d e , , + J .  (35) 

This in is the weight of a uniform random edge of the minimum spanning tree, 
in the special case where the edge-weights i j tn )  are distributed uniformly on 
(0, n - 1 ) .  But the case of general edge-weights 9'"' can be constructed from the 
special case by simply putting = G:l($(") / (n - l)), and so the edge-weight 
distribution 0, in the general case relates to the special case via 

Now Proposition 3 follows from (35). 

Proof of Corollary 4. What we must prove is Ee,, - E G , ' ( J / n ) ,  that is 

€G,l( i , , / (n - 1)) - EG,'(J/n) . (36) 

Now J has support [0, =) and G,' is positive nondecreasing: using (35), standard 
integration theory says that a sufficient condition for (36) is 

Gi1(6,,/n) 
G (x ,  / n ) 

is uniformly integrable (37) 

for some 0 < x,  < to. Using hypothesis (2), it is sufficient to show that there exist 
p > 0, B < Q) such that 

P(6,, > s)  I Be-Pr , s 2 2 ,  n 2 2 . 

Recall the construction above of edges E,,(u) with weights J,,(u). Because each 
edge of 9,, can occur at most twice in (E,(u);  u = 1,. . . , n ) ,  

2n 2n 
n - 1  n - 1  P(e, E .) I - P(J,(V,) E .) = - P ( J n ( l )  E .) 
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Now J,(1) 5 L,, where L, is the time at which vertex 1 gets connected to the 
giant component. So it is enough to show a bound of the form 

But this is easy, e.g., because 
(‘1 ‘(Ln >s) + P ( L  >s) = p(s) < 1 as n+a, s > 1 fixed; 
(ii) the map s 4  P(Ln > s) is submultiplicative, for fixed n.  

5. MISCELLANEOUS COMMENTS 

5.1. Convergence in Probability 

Summarizing Corollary 4 as 

EW, - W ,  

we would expect the stronger result giving convergence in probability 

to be true; and this was known in the special cases. Similarly, writing A n ( i )  for the 
empirical proportion of vertices of 9, which have degree i + 1, Proposition 2 says 

EA,(i)+ P(D(m) = i) , i 2 0 

and one would expect the stronger result 

A , , ( i ) Z P ( D ( m )  = i) . (39) 

An abstract way of proving such extensions was developed in [l]. By verifying an 
“extremality” condition on the asymptotic fringe distribution r ,  one can deduce 
that convergence in probability is an immediate consequence of convergence of 
expectations for all local functionals. The required verification for our r is 
sketched in [l], and this implies (38,39) in particular. 

5.2. The Dual Tree 

There is another model which is, loosely speaking, dual to our model. Start with 
the complete graph on n vertices. At  each stage, pick and delete an edge chosen 
uniformly from the set of edges whose deletion would not disconnect the graph. 
This gives a random graph 9; which (for n 2 5 )  is different from 9,. For 
example, for the star t, on 5 vertices centered at 1, 

4 6 1  P ( 9 ;  = c,) = - 1 
45 x105 P p - ,  = c 5 )  = - 105 ’ 
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Here we briefly outline an argument that this dual tree has the sume limit 
fringe distribution T as the original tree. 

Consider again the random graph process %(n, s/(n - l)), but now regard time 
s as decreasing from = to 0. Associate with it another graph process %,(s) with 
the properties 

%,(s) coincides with %(n,  s/(n - 1 ) )  on components of %(n, s/(n - 1)). 
Z.(s)  is connected. 

Specifically, when an edge of %(n, s/(n - 1)) is deleted (as s decreases), the same 
edge in Z,(s) is deleted, provided this would not disconnect the graph. Then 
%,(O) is the “dual random tree” under consideration. 

The component containing vertex 1 is disconnected from the giant component 
of %(n, s / ( n  - 1)) at time L,, the same as the connection time in Section 3. After 
disconnecting, 1 is in a component %(n, s ) C  %,(L,-). As n + w ,  %(n, s) 
becomes a tree-component, and X,(L,-)  consists of %(n, s) and other 
tree-components %(n, s) which disconnected from the giant component in the 
random graph process at times Si > L,. The fringe subtrees we study are 
representable as %:(I,, -), where denotes “delete branch containing vertex at 
which disconnection from giant component occurs.” Asymptotically, $(n, 5 ) 
behaves exactly as 2; in the original model. And the way that other components 
of %(n, s / (n  - 1)) disconnect from %(n, &) as m > s J L ,  is asymptotically the 
same as the way that in the original model %’: grows on L,  < sfm. 

5.3. Global Structure 

Theorem 1 does not give information about “global” properties of the trees, such 
as height and diameter. Global asymptotics for the uniform random tree on n 
vertices were treated in [Z]. I conjecture that the main result there (Theorem 8: 
convergence to the compact continuum tree) holds also for the model under 
consideration here. This would imply that the known asymptotics for height, 
diameter, etc. €or the uniform random tree can be applied also to Yn- But this 
seems difficult to prove. 
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