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Abstract

Under a natural hypothesis, the cover time for a finite Markov chain
can be approximated by its expectation, as the size of state space tends
to infinity. This result is deduced from an abstract result concerning
covering an unstructured set by i.i.d. arbitrarily-distributed random
subsets.

running head: Threshold limits for cover times.
key words. cover time, Markov chain, random walk on graph, threshold

limit.

J. Theoretical Probability 4 (1991) 197-211.

∗Research supported by N.S.F. Grant MCS87-01426

1



1 Results

Our results are easier to state than to motivate: so we give brisk statements
in this section, followed by a more leisurely discussion in the next section.

Let S be a finite set. Let S be a random subset of S, whose distribution
is arbitrary subject to the requirement

P (x ∈ S) > 0 for each x ∈ S. (1)

Let S1,S2, . . . be independent random subsets distributed as S. Let Rn be
the range of this process:

Rn = S1 ∪ S2 ∪ . . . ∪ Sn

and let C be the cover time

C = min{n : Rn = S} ≥ 1.

Clearly C < ∞ a.s., and C has the submultiplicity (or ”new better than
used”) property

P (C > m+ n) ≤ P (C > m)P (C > n); m,n > 0,

which implies that all moments of C are finite. We are interested in the
distribution of C in settings where C is large, and a natural question is
whether C/EC is concentrated near 1. It transpires that an answer involves
the terminal set T , that is the last uncovered portion of S:

T = S \ RC−1.

For any B ⊆ S let C(B) be the cover time of B:

C(B) = min{n : Rn ⊇ B}

and let
c(B) = EC(B).

Here is our ”abstract” result, proved in section 3.
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Theorem 1 (a) P (| CEC − 1| > ε) ≤ 4Ec(T )
ε2EC

; 0 < ε ≤ 1.
(b) var( C

EC ) ≤ κEc(T )
EC for an absolute constant κ.

(c) Ec(T ) ≤ 2 + 4s.d.(C).

Here ”s.d.” means standard deviation. The Theorem implies that C/EC
is close to 1 iff Ec(T )/EC is small. Think of Ec(T ) as the expected time
for T to be covered by an independent sequence (S ′i).

Part (a) looks like Chebyshev’s inequality applied to part (b) with κ = 4,
but the proof doesn’t go that way: in fact we use (a) to prove (b) for
some κ > 4. It is conceivable that the variance in (b) has upper bound
O(Ec(T )/EC)2, which is the order of the lower bound implied by (c).

The distribution of C is determined by (S,S). One can consider limit
results for sequences C(K) derived from sequences (S(K),S(K)): we shall
omit the superscripts. For such a sequence, the submultiplicity property
shows that convergence in probability

C

EC

p→ 1

is equivalent to convergence of moments

E(
C

EC
)m → 1; each m <∞

and to convergence of exponential moments

E exp(α
C

EC
)→ eα; each α <∞.

When these hold, say C(K) has a threshold. Theorem 1 implies

Corollary 2 Suppose EC →∞. Then C has a threshold iff Ec(T )
EC → 0.

Without any structure being imposed on (S,S) it is not clear how to
estimate Ec(T ) in order to use these results; of course, without any structure
it is unreasonable to expect any explicit results. When extra structure exists,
one can seek to use Corollary 2 as a starting point. The following result is
deduced from Theorem 1 in section 4.

Consider a Markov chain (Xm;m ≥ 0) on state-space S with initial
state s and transition matrix Q. Let Tj be the first hitting time on j, let
V = maxj Tj be the cover time (for X started at s), and let t̄ = maxi,j EiTj .
Here V is not exactly a cover time in the sense of Theorem 1, but is closely
related to such a cover time defined in terms of the i.i.d. s-blocks of the
chain.
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Theorem 3 Suppose (S,Q, s) vary in such a way that EV/t̄ → ∞. Then
V/EV

p→ 1.
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2 Motivation

This section is informal discussion.
2.1. There has been recent literature on the subject of the time V taken

by a finite Markov chain to cover (i.e. to visit all its states), in particular
in the special case of simple symmetric random walk on a finite graph. For
a survey of the latter case see [?] and the papers following that paper. As
one would expect, the existing literature deals with calculating asymptotics
for EV (and, where possible, further distributional information) in concrete
examples, and with finding general bounds for EV in some class of processes.

Our Theorem 3 has a novel form: one can show that V/EV
p→ 1 under

conditions weaker than those necessary to actually calculate EV . This result
is similar in spirit to martingale concentration inequalities which have re-
cently been of great interest in probabilistic computer science/combinatorics
settings [?]. It is designed for use in cases which are ”critical” (in a sense
explained below): here are 2 examples in the random-walk-on-graph setting.

Example: Balanced b-ary tree. The balanced b-ary tree of height K has
asymptotically (K → ∞, b fixed) bK+1/(b − 1) vertices. It is shown in [?]
that the cover time VK satisfies EVK ∼ 2K2bK+1(log b)/(b − 1), and that
Theorem 3 applies to show that VK/EVK

p→ 1. (Order-of-magnitude bounds
on EVK were previously established in [?, ?]).

Example: Discrete 2-dimensional torus. On the K × K discrete torus
(i.e. Z2

K) it is known only [?] that the cover time VK satisfies asymptotically

a1K
2(logK)2 ≤ EVK ≤ a2K

2(logK)2

for certain constants a1 < a2. Theorem 3 applies to show VK/EVK
p→ 1.

2.2. In the abstract setting of Theorem 1, two qualitatively different
behaviors are possible. First, if p(x) ≡ P (x ∈ S) is not constant, then the
cover time C may be essentially just the time until S covers a particular
point x0 (or finite set of points) for which p(x0) is small. In this setting
one naturally expects C/EC to have a non-degenerate limit distribution.
Second, in a symmetric setting where p(x) ≡ p it is easy to see that

c = log(|S|)/p

is a natural upper bound in the following sense: if p→ 0 and |S| → ∞ then

E

(
C

c
− 1

)+

→ 0; and so P (
(
C

c
> 1 + ε

)
→ 0.
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Here it may or may not be true that

EC/c→ 1; C/c
p→ 1. (2)

Loosely, one expects this when the events {x ∈ S} are not too dependent as
x varies. To prove (2) it suffices to obtain the lower estimate on EC:

lim inf EC/c ≥ 1.

We call this the ”natural method” in symmetric problems. Our results
are aimed at critical cases on the borderline between these two behaviors
(loosely, symmetric but highly- dependent cases). In the graph setting, the
”critical” graphs turn out to be those like the examples above. In the first
example, the limit is not the natural bound. In the second example, the
best known upper bound is just the natural bound.

2.3. Another application is to covering with i.i.d. blocks. Let (ξi) be
i.i.d. with distribution θ on a finite set I. Given K, consider the process
Xn = (ξn, ξn+1, . . . , ξn+K−1) as a Markov chain on IK , and let VK be its
cover time. Where θ is uniform, it is not very difficult to show that as
K →∞

EVK ∼ |I|K log |I|K

VK/EVK
p→ 1. (3)

See e.g. [?, ?] for technical treatments, and [?] Chapter F for informal
discussion. Consider the non-uniform case, and write θ0 = θ(i0), say, for
the minimum probability. In this case it is rather harder to obtain explicit
sharp asymptotics for EVK , although it is easy to get the weaker estimate
(EVK)1/K → 1/θ0. Nevertheless one can show that (3) still holds, by verify-
ing the hypotheses of Theorem 3. To outline the argument briefly, one can
show

t̄K ∼ θ−K0 (1− θ0)−1 (4)

the right side being asymptotically the mean hitting time on the string of
all i0’s. Now consider the K − 1 strings of length K, say vK,1, . . . , vK,K−1,
which contain K − 2 occurences of i0 and 2 occurences of some specified
i1 6= i0, with the first element of the string being i1. The mean hitting time
to such a string is asymptotically θ

−(K−2)
0 θ−2

1 . It can be shown that these
hitting times (TvK,i ; 1 ≤ i ≤ K − 1) are asymptotically independent, so that

EVK ≥ E(max
i
TvK,i) ∼ θ

−(K−2)
0 θ−2

1 logK. (5)

Now (4,5) establish the hypothesis of Theorem 3.
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2.4. The hypothesis of Theorem 3 is not quite a necessary condition.
One issue is the cover time depends on the starting state. It is possible that
mean cover times are asymptotically different for different starting states,
or that a ”threshold limit” holds for some starting states but not for others.
Even to get the stronger result that the same threshold limit occurs for
all starting states, the hypothesis is not necessary: consider the chain which
cycles deterministically. However, the random-walk-on-graph setting forbids
that example.

Proposition 4 For simple symmetric random walk on a sequence of graphs
G, suppose there exist constants v = v(G) → ∞ such that V/v

p→ 1 for all
starting states s. Then t̄/v → 0.

Sketch of proof. It is enough to prove the result for the associated
continuous-time random walks. Write Tiji for the time taken by the walk
started at i to hit j and return to i. The key fact is: for each x <∞ there
exists δ(x) > 0 such that for any continuous-time reversible Markov chain

P (Tiji/ETiji > x) ≥ δ(x). (6)

Under the hypothesis of the Proposition, by considering V for the walks
started at i and j, we see

P (Tiji > 3v)→ 0.

The conclusion now follows from (6).
The proof of (6) involves the complete monotonicity properties of hitting

times associated with continuous-time reversible Markov chains. Proposition
16 of [?] gives the related assertion

s.d.(Tiji)/ETiji ≥
√
e− 2
2e− 1

and similar arguments can be used to prove (6).
2.5. Let S be a compact metric space and let (Si) be i.i.d. open subsets

of S. A simple (not quite trivial) argument shows that (1) is still sufficient
to imply that the cover time C is a.s. finite. Theorem 1 extends unchanged
to this continuous setting. A variety of well-studied stochastic geometry
problems fit into this continuous set-up. Here is a typical example. On
a K × K square, throw down randomly (uniformly) centered discs of unit
radius: let CK be the number of discs needed to completely cover the square.
Then

ECK ∼ (2/π)K2 logK
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CK/ECK
p→ 1.

and there are sharper limits of the form (7). See [?] for technical treatment
and [?] Chapter H for further discussion.

One original motivation for this study was to try to unify these ”stochas-
tic geometry” and ”Markov chain” covering problems. In a superficial sense,
we succeed: Theorem 3 is a Markov chain result which is proved from the
abstracted stochastic geometry result, Theorem 1. Unfortunately, studying
the usual stochastic geometry problems via Theorem 1 gives results weaker
than those obtainable by the usual methods. It is conceivable that the the-
orem may be useful in more difficult stochastic geometry problems, but we
do not have a convincing example.

2.6. Of course the classical (uniform) coupon-collector’s problem is the
case of Theorem 1 where S is a (uniform) random singleton. Asymptotics
for this and related simple combinatorial models are easy: in uniform and
near-uniform settings one gets CK/ECK

p→ 1 and the stronger ”extreme
value distribution” limit: there exist constants (bK , cK) such that bK →∞
and

bK(CK − cK) d→ξ; P (ξ ≤ x) = exp(−e−x). (7)

Such limits also occur in stochastic geometry models, i.i.d. block models [?]
and random walk on highly-symmetric graphs [?]. It would be interesting to
give abstract hypotheses, analogous to those of Theorem 1, which implied
the stronger conclusion (7).
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3 Proof of Theorem 1.

Let Fi = σ(S1, . . . ,Si). Write Ci = E(C|Fi). In proving part (a), the
central idea is the following lemma, whose proof is deferred.

Lemma 5 var(C1) ≤ 2Ec(T ).

Fix i, and consider an event of the form

F = {S1 = A1, . . . ,Si = Ai};
i⋃

j=1

Aj 6= S.

Applying Lemma 5 to S
′

= S \ ∪Aj and the random subsets Si+1,Si+2, . . .,
we deduce

var((Ci+1 − i)|F ) ≤ 2E(c(T )|F ).

Since this holds for each atom F of Fi,

var(Ci+1|Fi) ≤ 2E(c(T )|Fi)I(C > i) (8)

where I(·) denotes an indicator r.v.. Now martingale orthogonality implies

var(Cj) =
j−1∑
i=0

Evar(Ci+1|Fi).

So, summing (8) over i,

var(Cj) ≤ 2Ec(T ) min(C, j) (9)
≤ 2jEc(T ). (10)

Now ECj = EC and

Cj = C on{C ≤ j}
> j on{C > j}

Put j = b2ECc. Then for any 0 < ε ≤ 1,

P (| C
EC
− 1| > ε) = P (| Cj

ECj
− 1| > ε)

≤ var(Cj)
ε2(ECj)2

by Chebyshev’s inequality.
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Part (a) of the Theorem now follows from (10).
To prove part (b), set α = 4Ec(T )

EC . Submultiplicity implies an absolute
bound for var(C/EC), so we may suppose α ≤ 1/2. Then part (a) implies

P (C > j) ≤ α.

Then

EC2I(C > j) =
∞∑
n=1

EC2I(nj < C ≤ (n+ 1)j)

≤
∞∑
n=1

j2(n+ 1)2P (C > nj)

≤ j2
∞∑
n=1

(n+ 1)2αn by submultiplicity

≤ j2αβ (11)

for some constant β, since α ≤ 1/2. From the definitions of α and j, we
obtain

EC2I(C > j) ≤ 4β(EC)Ec(T ). (12)

For Cj as above,

EC2I(C ≤ j) = EC2
j I(Cj ≤ j)

≤ EC2
j

= (EC)2 + var(Cj)
≤ (EC)2 + 4(EC)Ec(T ) by (10)

Combining with (12) we get

var(C) ≤ 4(1 + β)(EC)Ec(T )

which gives part (b) of the Theorem.
Proof of Lemma 5. Because C1 = 1 + c(S \ S1),

var(C1) = E(C1 − EC)2

=
∑
B

P (S = B)(1 + c(S \B)− EC)2

≤
∑
B

P (S = B)E(1 + C(S \B)− C)2 (13)
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using the inequality (EX1 − EX2)2 ≤ E(X1 − X2)2. But C(S \ B) ≤ C,
and so

E(1 + C(S \B)− C)2 ≤ 1 +
∞∑
d=2

(d− 1)2P (C(S \B) = C − d).

Combining with (13) gives

var(C1) ≤ 1 +
∑
B

P (S = B)
∞∑
d=2

(d− 1)2P (C(S \B) = C − d). (14)

We now consider Ec(T ). Let Ŝ1, Ŝ2, . . . be an independent sequence of
random subsets with distribution S, and write Ĉ(B) for cover times for this
process. Then Ec(T ) = EĈ(T ). We can write

Ĉ(T )− 1 =
∞∑
j=1

I(RC−1 ∪ R̂j 6= S).

Break over {C = i,Si = B} and sum over i:

(Ĉ(T )− 1)I(SC = B) =
∞∑
i=1

∞∑
j=1

I(C = i,Si = B,Ri−1 ∪ R̂j 6= S)

=
∞∑
i=1

∞∑
j=1

I(Si = B)I(Ri−1 ∪ R̂j 6= S,Ri−1 ∪B = S).

Take expectations, using the fact that for each (i, j) the indicator r.v.’s are
independent.

E(Ĉ(T )−1)I(SC = B) = P (S = B)
∞∑
i=1

∞∑
j=1

P (Ri−1∪R̂j 6= S,Ri−1∪B = S).

(15)
I now claim

P (Ri−1∪R̂j 6= S,Ri−1∪B = S) = P (C > i+j−1, C(S \B) ≤ i−1). (16)

For the left is the probability of a certain event defined in terms of
S1, . . . ,Si−1, Ŝ1, . . . , Ŝj , and the right is the probability of the corresponding
event defined in terms of S1, . . . ,Si−1,Si, . . . ,Si+j−1.

Since C ≥ C(S \B), algebra gives
∞∑
i=1

∞∑
j=1

P (C > i+j−1, C(S\B) ≤ i−1) =
1
2

∞∑
d=2

d(d−1)P (C(S\B) = C−d).

(17)
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Putting together (17,16,15), summing over B and comparing with (14), we
find

var(C1) ≤ 1 + 2
∑
B

E(Ĉ(T )− 1)I(SC = B)

= 2EĈ(T ) − 1
= 2Ec(T ) − 1.

This establishes Lemma 5.
We now start the proof of part (c) of Theorem 1. Extend (Si) to a

doubly-infinite i.i.d. sequence (Si : −∞ < i < ∞). For i ≥ 0 let Di be
the cover time for the sequence (S1−i,S2−i,S3−i, . . .). Thus D0 = C and
Di

d= C for each i. Now Di ≤ C+ i, and Di = C+ i iff S0∪S−1∪ . . .∪S1−i
does not cover T . In other words,

P (Di = C + i) = P (Ĉ(T ) > i)

where Ĉ(T ) is the number of terms of S0,S−1, . . . required to cover T . So

P (Ĉ(T ) > i) = P (Di = C + i)
≤ E(Di − C)2/i2

≤ 4 var(C) /i2

using the fact that Di
d= C. Now put z = 1 + [

√
4 var(C)]. Then

EĈ(T ) =
∞∑
i=0

P (Ĉ(T ) > i)

≤
∞∑
i=0

min(1, 4 var(C)/i2)

≤ 1 + z +
∞∑

i=z+1

4 var(C)/i2

≤ 1 + z + 4 var(C)/z

≤ 2 + 2
√

4 var(C)
= 2 + 4s.d.(C).

Since Ec(T ) = EĈ(T ), part (c) is established.
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4 Proof of Theorem 3.

Let (Xm;m ≥ 0) be the chain started at s. Write ξi for the time of the i’th
return to s. Then the random sets Si

Si = {Xm : ξi−1 ≤ m < ξi}

are i.i.d.. As in Theorem 1, let C be the cover time for these random subsets,
and let T be the terminal set. The cover time V for the chain satisfies

ξC−1 < V < ξC . (18)

Define
η = min

j∈S
P (Tj < ξ1). (19)

The central idea of the proof is

Proposition 6 Ec(T ) ≤ 4(EC)3/4η−1/4.

Under the limit hypotheses of Theorem 3 we shall show

ηEC →∞ (20)

ξm
mEξ

p→ 1 whenever m = Θ(EC) (21)

for deterministic m depending on (S,Q, s). Then (20), Proposition 6 and
Theorem 1 imply

C/EC
p→ 1.

It is easy to see that this, combined with (21) and (18), establishes Theorem
3.

To establish (20) and (21), first recall the hypothesis EV/t̄→∞. Since
Wald’s identity and (18) give EV ≤ (EC)(Eξ1), we obtain

t̄

(EC)(Eξ1)
→ 0. (22)

To establish (21), recall the renewal-theory relationship between inter-renewal
times and equilibrium waiting times: applied to the renewal process (ξi), we
obtain

EπTs = (
Eξ2

Eξ
− 1)/2
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where π is the stationary distribution. Thus

t̄ ≥ EπTs ≥
var(ξ)
2Eξ

.

Using (22),
var(ξ)

EC(Eξ)2
→ 0.

Now (21) follows from Chebyshev’s inequality.
To establish (20), let j achieve the minimum in the definition (19) of η.

Then

2t̄ ≥ EsTj + EjTs

= Es( time to hit j and return to s)
= Eξ1/η

the last line using Wald’s identity. Now (22) implies (20).
It remains to prove Proposition 6. From here, the arguments involve

only a fixed chain (Xm). Let Fm be the natural σ-fields associated with the
chain. We quote a martingale lemma, proved by the obvious stopping time
argument: note the inequality is in the opposite direction from the usual L1

maximal inequality.

Lemma 7 Consider a martingale Mn = P (A|Fn), where A ∈ F∞ and
M0 = P (A). Let P (A) ≤ b < 1. Then

P ( P (Mn+1 ≥ b|Fn) > 0 for some n) ≥ P (A)/b.

For k 6= s and B ⊆ S let ρk(B) be the chance that the chain, started
from k and run until it first hits s, visits all states in B. Set ρs(B) = 0.

Lemma 8 Let P (S1 = S) ≤ b < 1. Then

P (ρk(S \ S1) ≥ b for some k) ≥ P (S = S)/b.

Proof. Write

Mn = P (S1 = S|Fn)
Ωn = {P (Mn+1 ≥ b|Fn) > 0}.

Writing Bn = {X0, X1, . . . , Xn}, we have

Mn+1 = ρXn+1(S \ Bn) on {ξ1 > n}.

14



So on {ξ1 > n},
Ωn ⊆ {ρk(S \ Bn) ≥ b for some k}

and therefore

∪nΩn ⊆ {ρk(S \ Bn) ≥ b for some k, for some n < ξ1}.

But ρk(S \B) ↑ as B ↑, so

∪nΩn ⊆ {ρk(S \ S1) ≥ b for some k}.

The result now follows from Lemma 7.
To prove the Proposition, consider k ∈ S, B ⊆ S and b > 0 such that

ρk(B) ≥ b. Then P (B ⊆ Si) ≥ ηb since the chain has chance at least η to
visit k during a s-block. So

W = min{i : B ⊆ Si}

has EW ≤ 1/(ηb). Now we can write

C ≤W1 +W2

where W1 is the first i for which

ρk(S \ Si) ≥ b for some k),

and where W2 is conditionally distributed as some W above. Lemma 8
implies EW1 ≤ b/P (S1 = S), and hence

EC ≤ b

P (S1 = S)
+

1
ηb
.

Minimizing over b gives

EC ≤ 2/(ηP (S1 = S))1/2,

and rearranging gives

P (S1 = S) ≤ 4
η(EC)2

. (23)

Now the argument for (23) uses no assumptions other than the fact that
S is the random set of states visited during an s-block of a Markov chain.
Given B ⊆ S, we can consider a new Markov chain X̂ which is the original
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chain watched only when it is in B ∪ {s}. Applying (23) to this chain, we
see that

P (B ⊆ S1) ≤ 4
η(c(B))2

. (24)

This is enough for a crude bound on c(T ). Take 0 < ε < 1 and an integer
K ≥ 1.

P (c(T ) ≥ εEC,C ≤ K) =
K∑
i=1

P (C = i, c(T ) ≥ εEC)

=
K∑
i=1

P (S \ Ri−1 ⊆ Si, c(S \ Ri−1) ≥ εEC)

≤ K max{P (B ⊆ S1) : c(B) ≥ εEC}

≤ 4K
ηε2(EC)2

by (24).

Bounding P (C > K) by Markov’s inequality,

P (c(T ) ≥ εEC) ≤ 4K
ηε2(EC)2

+
EC

K + 1

≤ 4
ε(ηEC)1/2

the latter by minimizing over K. Now c(T ) ≤ EC, so

E(
c(T )
EC

) ≤ ε+ P (c(T ) ≥ εEC)

≤ ε+
4

ε(ηEC)1/2

≤ 4
(ηEC)1/4

the latter by minimizing over ε. This is Proposition 6.
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