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Abstract

For random walks on finite graphs, we record some equalities, inequalities and
limit theorems (as the size of graph tends to infinity) which hold for vertex-transitive
graphs but not for general regular graphs. The main result is a sharp condition for
asymptotic exponentiality of the hitting time to a single vertex. Another result is a
lower bound for the coefficient of variation of hitting times. Proofs exploit the
complete monotonicity properties of the associated continuous-time walk.

e —————

1. Introduction

Random walks on graphs have been studied in a wide variety of contexts. On
highly-symmetric (e.g. distance-transitive) graphs it is feasible to attempt analytic
calculations of n-step transition probabilities and exact hitting time distributions:
see [10, 16, 18]. At the other extreme, for general graphs there are various general
bounds known [5, 1, 4] and in the more general setting of reversible Markov chains
there are techniques for obtaining long-range estimates [20].

Let G = (V, &) be a finite connected regular graph, of degree r > 2. Random walk
on (¢ is the discrete-time Markov chain with transition matrix P of the form

1/r if (v,w) is an edge
P =
(0, w) {0 if not.

Regularity implies that P is symmetric and hence the stationary distribution 7 is the
uniform distribution on V. The graph G is wvertex-transitive if its group of
automorphisms acts transitively on V (see [7] for a careful account of such symmetry
conditions). This is a stronger requirement than regularity. We shall suppose graphs
are vertex-transitive except where otherwise stated.

Write E for expectation, var for variance and % for distribution : subscripts v or
m, e.g. in E,, E,, indicate that the walk starts at v or with the uniform distribution.
Write T, for the first hitting time on a vertex w. Thus &£, T, denotes the distribution
of the time for the random walk started at v to first hit w. Write X(n) for the position
of the walk at time n.

The classical matrix approach to Markov chains yields expressions for mean
hitting times and related quantities, and these may be specialized to the setting of
random walks on graphs: see [13, 11]. The only paper known to the author which
deals with precisely vertex-transitive graphs is [19] which uses matrix methods to
obtain e.g. the expectation and variance assertions of Proposition 2 below and
exhibits numerical calculations for a particular graph, the triangular prism.
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We first list equalities and inequalities for random walks on vertex-transitive
graphs. We shall show, or at least remark, later that these results are not true in
general for regular graphs. Some of the results, e.g. Proposition 1, are obvious and
are recorded for completeness.

Prorostrion 1. £, T, and hence E,7T,, does not depend on v.

A

The quantity E, 7, plays a large role in this paper: let us denote it by a to
emphasize that it is independent of ».

PropositioN 2. For each pair (v,w) we have &L, T, = %, T, and so in particular
E,7,, =E,T, and var,T,, = var,, T,.

ProrposrItioN 3. Given a distinct pair (v, w) define T = min (T, T,,) to be the first time
that the walk hits v or w. Then

F(X(T) =v) = P X(T) =w) =3
and moreover
P(T=nX(T)=v)=P(T =n,X(T)=w) foralln = 0.
Prorosition 4. E, T, < 2a for all (v, w).
Prorosrition 5. E, T, = 1|V] for all v + w.

ProrosiTioN 6. For all v + w

var, T,

(€T, " ET,

where ¢ = (e—2)/(e—1) > 04.

Proposition 6 gives a lower bound for the ‘coefficient of variation’ of first passage
time distributions. Some motivation for this result is described in Section 5.
Because the transition matrix P is symmetric, it has real eigenvalues

L=X>A2.... (1)

For k = 2 write 7, = 1/(1 —A}) and call 7, the relaxation time. The mean hitting time
a can be expressed in terms of the eigenvalues via
Vi
a= X1, (2)
k=2
(see Section 3).

Our final results concern sequences (7, of vertex-transitive graphs. Here quantities
such as a and 7, depend on K, but we shall not write the K explicitly. All limits are
as K tends to infinity. Write u, for the exponential distribution with mean 1.
Convergence of distributions means, of course, ‘convergence in distribution’.

Prorosition 7. For a sequence of vertex-transitive graphs with |V]— 0. the following
are equivalent:

(@) 75/a—0:

by LAT,/a)—>p, and var (T, /a)— 1.
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Note that, by Proposition 5, a = Q(|V]) and so condition (a) is implied by

72/IV1=>0. (3)
Informally, condition (3) is ‘only just’ stronger than condition (a).

ProrositioN 8. Consider a sequence of vertex-transitive graphs with |V]— oo and
satisfying condition (a) of Proposition 7. Then

(c) max, ,(E,T,/a)> 1.

(@) Suppose v = vy, w = wy are such that €, T, /o — 6. Then

LT, o) > O, + (1—6) 8,
where 8, is the distribution degenerate at 0.

Section 4 contains discussion of Propositions 7 and 8, and a version of assertion (d)
for L-tuples. Results similar in spirit to Propositions 7 and 8 hold for very general
Markov processes; but the setting of random walks on vertex-transitive graphs
permits cleaner statements and proofs.

This ends the list of results. Loosely speaking, we shall see in Section 2 that
everything is obvious from classical techniques except for the final three Propositions.
In Section 3 we discuss complete monotonicity, and in Sections 4 and 5 use it to prove
the remaining results.

2. Easy results
Proposition 1 genuinely is ‘obvious by symmetry’: considering an automorphism
v taking v to w does lead to the conclusion %, T, = %, T,,. Proposition 2 is similarly
obvious under the hypothesis
for each pair v, we V there exists an automorphism y
such that y(v) = y(w) and y(w) = y(v). (4)
But (4) turns out to be strictly stronger than vertex-transitivity, so we resort to the
analytic argument below.

Proof of Proposition 2. For Markov chains there is the following classical
relationship between the generating functions of the n-step transition probabilities
and the generating functions of the hitting times:

Iol?) = hvw(z)/hww(z)r (5)

where hyw(z) = § P(X(n)=w)2", g¢,,() = ;‘, PAT, = n)2".

n=0 n=0

On any regular graph, the symmetry of P implies A,,, = k,,. On a vertex-transitive
graph we have

P (X(n) =v) = P,(X(n)=w) forallv,weV,n=0 (6)

and hence h,,, = h,,. Then (5) implies ¢, = ¢,,, and hence &, T, = &%, T,.
This argument shows that on a graph the condition

LT, =%,T, foralv,weV

is equivalent to (6).



182 Davip ALpous

Problem 9. If random walk on a graph satisfies (6), is the graph necessarily vertex-
transitive ?

Proof of Proposition 4. For any v,w, z
E,7T,<E,T+ET,=E,T,+E, T,
by Proposition 2. Averaging over x gives
t,7,<ET,+E,T, =2a.

Proof of Proposition 5. Let Ty > 1 be the first return time to ». Markov chain theory

says E, T = 1/(m(v)) = |V] in our setting. So if w % v then
IVl = [EUT: <t 7,+E, T, = 2E, T,

by Proposition 2.

Proof of Proposition 3. This is a variation on the classical proof of (5). By
conditioning on 7,

PXn)=v,T,>n)y= Z P(T,=m,T,>m)P(X(n—m)=0v7T,>n—m).
m=0

This leads to the generating function relationship

@po(2) = byp(2) €4 (2), (7)
where Ayp(2) = ; P(X(n)y=vT, > n)z",
n=0

bvw(z) = Z 1)17(71) =n, Tw > n) zny

n=0

o
cwlz) = X P(X(n)=v1,>n)z".
n=0
To establish the proposition it suffices to show that b,,, is symmetric in (v, w). By (7)
it is enough to show that a,, and c,, are symmetric in (v, w).
For0<m<n,

PU(X(’IL) =v,T,=m)= Pv(Tw =m) P, (X(n—m)=v)

and this is symmetric in (v, w) by Proposition 2 and the symmetry of P. Sum-
ming over m we see that P,(X(n) = v, T, < n) is symmetric in (v, w). It follows that
P(X(n) = v,T,, > n) is symmetric, and hence c,,, is symmetric. The same argument,
with P, in place of P,, shows that a,, is symmetric.

Remarks. Let us briefly indicate a way to produce counter-examples to these
Propositions for regular graphs. Suppose (v, w) is an edge in a graph G such that
removing this edge splits the graphs into two components, say ve C,, we C,. It is easy
to show (see [5]) that

E, T, =21C,|+1, E,T, =2|Cy+1.

We can construct such an edge in a 3-regular graph G where |C,| = 5 and where |C,|
is arbitrarily large. Thus (cf. Proposition 2) the ratio £, 7,/E, T,, may be arbitrarily
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large. Moreover #(C,) is arbitrarily close to 1, so (cf. Proposition 1) it is easy to see
that the ratio E,7,/E, 7, may be arbitrarily large, and (cf. Proposition 3) that
P (T, < T, may be arbitrarily close to 1. Moreover (cf. Proposition 5) E,T,,/|V]|
may be arbitrarily small.

Somewhat more complicated examples (ladders attached to expanders: see [4])
show that for regular graphs the ratio E,7,,/E, 7, may be arbitrarily large (cf.
Proposition 4).

3. Complete monotonicity and continuous-time reversible chains

A function f(¢) defined for ¢t = 0 is completely monotone if

fie) = J. e™* B(dz)

0

for some positive measure £ on [0, c0). A probability distribution v on [0, 00) is
completely monotone if it satisfies the following equivalent conditions:

(@) t—vp(t, 00) is a completely monotone function;

(b) v is a mixture of the distribution §, degenerate at 0 and some distribution on
(0, 00) with completely monotone density function;

(¢) v is the distribution of £V, where £ and V are independent, £ has the
exponential(1) distribution g,, and 0 <V < c0.
Write CM for the set of completely monotone distributions. The following result is
straightforward ; since it is central to our later arguments, let us sketch the proof.

LeEmMA 10. For 1 <k < o0, let v eCM.
(@) If vy~ v then ve CM.
(b) Suppose each v, has mean 1, and suppose var (v} — 1. Then v, —pu,.
Proof. Use form (c) of the definition of CM. By passing to a subsequence, we may
d
suppose that v, = Z(£,V,) and (§., V)~ (£, V) say, and then £ and ¥V must be
independent. Thus v = £ (£V)e CM. In setting (),

var (v,) = var (§, V) = 1 +2var (V) > 1.

d d
So var (V,) >0 and so V,— 1. So §, V,,—§, as required.
A Markov transition matrix P can be used to define a continuous-time Markov
chain X(¢) for ¢t = 0 via

PX(t+0) =j|X(t) =1i) ~6P; asd—0.
Equivalently, the continuous-time chain can be derived from the discrete-time chain
by replacing the deterministic (unit time) interval between jumps with a random
(exponential, mean 1) interval. So in particular we can talk about continuous-time
random walks on graphs. It is usually easy to transfer results from one setting to the
other. In particular
E, 7, is the same in discrete or continuous time;

(continuous—) var, 7}, = (discrete—) var,T,,+ E, 7,,. (8)

The Propositions already proved are identical in the two settings. We now switch
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to the continuous-time setting; the relations above show that conclusions of later
Propositions can be applied back in the discrete-time setting.

Continuous-time random walks on graphs are a special case of continuous-time
reversible Markov chains. Basic properties of such chains are discussed in [14], which
contains the following two lemmas. Write T, for the first hitting time on a set 4 of
states.

LeMMA 11. For a continuous-time reversible Markov chain, and for any set A of states,
ZL(T,)eCM. Also L(T,)eCM, where p is the first-exit-place distribution

p=2%,(X(S)), S=min{t:X(¢)eA4}.

This complete monotonicity property is the main reason for working in continuous
time.

LeEMMaA 12 (spectral representation). For a continuous-time reversible Markov chain

with stationary distribution m,
g

PyX(t) = w) = v(m(w)/m(v)) T € Uyt

k=1
where U = (u,,) is an orthonormal matrix and where, for P symmetric, A, = 1 — Ay in (1).
Here are some relations between hitting times and the spectral representation.
LemMa 13. For a continuous-time Markov chain with stationary distribution m let A,
for 2 < k < |V] be as in the spectral representation and let 7, = Ag'. Then
(a) Zw 7T('LU) IEn Tw = EJ]k‘:/:=|2 Tis
(b) +f m is uniform then

1 v
VI ZE, T, =2V E(E, T,) +5 X 73
w w k=2
Specializing to continuous-time random walks on vertex-transitive graphs, where
a=E,T,, we obtain -
a= X7, (9)
k=2
v
E, 7% =2a*+- % 7% (10)
2 k=2

Formulae of this type are standard, though usually given in settings where more
symmetry is present, e.g. [12]. Result (@) is given explicitly in [8]; we end this section
with the proof of ().

Proof of Lemma 13. Fix j. We quote some results about general (i.e. not necessarily
reversible) finite continuous-time chains.

Zsy= Jm (P(X(t) = 5)—m(y)) dt exists;
)

[Etg; = (Zﬂ—Zij)/"(j)§ (11)

E. T = Zy/n(j); (12)

E, T3 = 25 yG)E,T; (13)
t

where y(2) = E, (number of visits to ¢ before T}) = Z,;n(¢)/m(j)—Zy. (14)
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Here (11), (12), (14) follow from the classical matrix approach to mean hitting
times (see [15]; a direct approach via renewal theory is in [4]). Identity (13) is an
‘occupation measure identity’ in the sense of [17]; it can be obtained directly by
writing E, T? = 2% E(T;—t)*dt and conditioning on X(t).

In the setting of our lemma, 7 is uniform and reversibility implies Z;; = Z,,.
Putting the identities together,

[En Tj2 =2z (ij_Zij)2
i
= 2AVI*PZ5 +2|V| 2 Z because T7(i) Zy; =0
i i

= 2(E, T2 +2|VI S 23 (15)
i

Then, writing p,;(t) = F,(X(t) = j),
2, =3( [ wyo-ninas)( [ wy-mina)
0
=f z_:(pij(s)_”(j))(pij(t)_ﬂ(j))det

= Jt(ij(m)—”(j))dt because ?Pu(s)pu(t) = iji(s)pij(t) = pyuls+t)

g

Z uf te"'dt by the spectral representation
k=2
1 IV 1 g
=— Z Uy At X ud Ty
4e ! k=2
By orthogonality, L
PIPH thj Z Ti-
i3 4 s

Now averaging over j in (15) gives the result.

4. Asymptotic results

We first discuss, and then prove, Propositions 7 and 8. There is a general heuristic
idea that, for finite Markov chains, if the time to approach stationarity is small
compared to the number of states then hitting times on small subsets have
approximately exponential distribution. A general, though not easily applicable,
formulation is given in [2]. In the particular context of random walks on vertex-
transitive graphs, our results show that 7, = o(E, 7} is essentially the necessary and
sufficient condition for approximate exponentiality. In particular, a sufficient
condition is 7, = o(|V]), which is often very easy to verify. Thus results of [12]
concerning card-shuffling processes, and simple random walk on the d-dimensional
torus Z% (d > 2 fixed, K- o) can be derived from our results without extensive
calculation. Incidentally, the 2-dimensional torus provides an example where

IVl=K? ET,~c,K'logK, 7,~c,K?

so the weaker sufficient condition does not hold although the full necessary and
sufficient condition does hold. See [9] for direct treatment of this example.
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So far we have implicitly been considering the case where the walk starts with the
uniform distribution. In considering 7,, for the walk started at v, there may be some
chance (0, say) that the walk hits w within time o(a), e.g. if v and w are ‘close’. Thus
T,,/a has chance 6 to be nearly 0; Proposition 8 says that the remaining part of the
distribution is approximately exponential.

Proof of Proposition 7. With the machinery already established, the proof is easy.
From (9), (10},
|
var (T,/a)—1=- 3 13/’ (16)
P
Since 7, < 7, for £ > 2 we have
vl
Y 1 < ar,.
k=2

So for a sequence of vertex-transitive graphs G, K - 00, the right-hand side of (16)
tends to O if and only if 7,/a— 0. Moreover if 7,/a—0 then (16), Lemma 10 and
Lemma 11 combine to imply %,(7,,/a)— #,. This establishes Proposition 7.

Proof of Proposition 8. Now suppose the conditions of Proposition 7 hold, so in
particular
LT/ )~ . (17)

Note that the distribution £, 7, is not CM (its density at 0 is 0), so we cannot
directly apply Lemma 10 here. Instead we use an indirect argument exploiting
Proposition 7.
Take v = vy, w = wy as in the hypothesis of Proposition 8. Define
T =min(T,,T,).

We assert that (all limits are as K — c0)

liminfE (T/a) 2 1. (18)

d

By considering subsequences we may suppose %, (7'/a) =S, say, and so (using the

variance assertion of Proposition 7) ES = lim E,(7'/a). Write fX, f¥ for the densities
of Z(T,/a) and Z,(T/a). Then

PR <SS rE = o
But f¥ tends to f, the density of S, and fX(f) tends to e™* by Proposition 7, so

f(t) < 2¢* and in particular f(0) <2. Now by Lemma 11 G()=P(S>1) is a
completely monotone function, which easily implies

G(t) > e, where f=—G'(0)<2
Thus ES = f tydt > f “Hdt =4, (19)

establishing (18). Next, consider computing [, 7, by conditioning on 7'":
t,7,=E,T+P,(T,<T,)E,T,=E,T+iE,T,
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by Proposition 3. Rearranging,

E,7T,/a = 2(1—E, T/a). (20)

Using (18), we have limsupE, 7, /a < 1. But trivially max, ,, E,7,,/a > 1 for each K,
so we have established
max E, T, /a—1,

which is the first assertion of Proposition 8.

Now we shall prove the second assertion in the special case # = 1, that is when
E,7,,/a— 1. We use the argument above in the reverse direction. By (20), E, T'/a - }.
Thus if S is a subsequential weak limit of (7'/a) then ES = } and so the inequality in
(19) must be an equality : P(S > t) = e7*. This shows that

T/~ p,

where u, denotes the exponential distribution with mean 3. Now consider the walk
started with the uniform distribution #, and calculate the distribution of 7,,, by
conditioning on 7% = min (7, ,T,, ). Using Proposition 3,
T, = TX+ By, (21)

where

(i) By has distribution &, (T, ),

(i) PUgy =1)=P(x =0) =4

(iii) T%, By and I, are independent.
But we know £(7,,, /)~ p, and £ (T /a) > p,, and then by considering transforms
in the identity (21) we deduce that Z(B,/a)—u,. This is assertion (d) of the

Proposition, in the special case 8 = 1.

For the general case we need a lemma, whose proof is deferred.

LevMa 14. For any subset A of vertices in a vertex-transitive graph,

max E, T, < (|49/14}) max E, T,
v

v, w

Let v = v, w = wy be such that
E,7,/E,T,—6.
Consider sets of vertices of the form -
A¥ ={aeV E, T, > (1—e,)E, T,}.

On choosing ¢, tending to O sufficiently slowly, assertion (c) of the proposition
implies [4%|/{V,] -1, and then Lemma 14 implies

E(T,/a)—>0. (22)
Now consider 6, = P(T,, > T,«). By conditioning on this latter event,
t,T./a = E,min(T,, T,)/a+6,E, T,/a, (23)

where p = p, is the distribution of X(7)) given T, < 7},. From the definition of 4,
and the special case already proved,

lqu'w/a—> 1: '%)(Tw/a)_)/l'l
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The hypothesis of part (d) of the proposition is E, 7;,/a - 6, so using (22) and (23) we
see that 6,—60. The same argument, applied to distributions rather than
expectations, shows that

gv(Tw/a) = 0Op, +(1-06) 80,
the desired conclusion.

Proof of Lemma 14.
WVIE, T, = ZE,T,
w
=¥E,T, by Proposition 3 (24)
w

z X quL

weA

Z (quh*-mqu)

weAd

where p is the first hitting place distribution on 4

|4|E, T, + 2 E,T,

weA
=|A||EvTA+Z[EpTw— ¥ k7T,
w weA®
> |A|E, T, +IVIE, T, — |4 max E, T, (25)
v, w

where the middle term is obtained by considering the p-average over v in (24). The
result follows on rearranging.

Remark. Proposition 8 has an extension from singletons to L-tuples. Suppose
(Wo, Wy, -, W) = (Wk 0, W 1, -+ Wk, 1) E Vi,
where L is fixed. Suppose
Ey, Ty /a1 foralli+1l (26)
Then LTSt Ty J) > (&5, .-, EL)

where the (£;) are independent with exponential(1) distribution. This can be proved
using the same argument as in the ‘special case’ above. The general case where (26)
fails is treated heuristically in [3], section B12.

5. Coefficient of variation

We first discuss the significance of Proposition 6, and then give its proof. Let M be
a set of continuous-time Markov chains. Let (M) be the set of distributions £ (a7,
where a > 0 is constant and 7" is a first passage time between some pair of states for
some chain in M. Let T(M) be the closure of T(M), under convergence in distribution.
It is classical that

T (all Markov chains) = (all distributions on [0, c0)).
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See [6] for a modern account. It is natural to ask how far the class of chains can be
restricted without affecting this result. A slightly complicated construction [4] shows

T (random walks on regular graphs) = (all distributions on [0, 0)).

On the other hand, Proposition 6 suggests (and it is not hard to verify formally) that
T (random walks on vertex-transitive graphs) does not contain all distributions:
there is a lower bound for the coefficient of variation in this set.

Problem 15. What is T (random walks on vertex-transitive graphs)?

This is perhaps difficult. In view of (5) it is related to the problem of finding all
possible rescaled limits of functions

Pun(t) = Py(X(t) = w)

for sequences of vertex-transitive graphs.
Proposition 6 will be deduced from the following more general bound.

Prorosition 16. Consider a continuous-time reversible Markov chain which starts at
a state 1. Let A be a subset of states with i€ A°. Let T be the time of first return to i after
hitting A -
T=min{t > T,: X(t) = 3}.

varT _ e—2
(ET)2 ™ 2e—2°

Then

Given Proposition 16, the proof of Proposition 6 is almost obvious. Consider a
continuous-time random walk on a vertex-transitive graph started at v. Write 7,,, for
the first hitting time on w and T,,+ U, for the time of the subsequent hit on v. Then
Proposition 16 can be applied to ' =T, + U,. But T,, and U, are independent and,
by Proposition 2, have the same distribution. Thus

var, T, _ 2varT> 6—2.
(E, T,,)* (ETY? ™ e—1

This is the conclusion of Proposition 6 for continuous-time walks. Relation (8) now
yields the stated form of the Proposition in the discrete-time setting.

Remark. For general continuous-time reversible chains, the argument above
shows that, if %, T, is almost constant (i.e. has small coefficient of variation) then
t,T,/E, T, must be large.

Proof of Proposition 16. Let T} be the first return time to ¢. Write
p=PT{<Ty), g=1—-p=P(T,<T}),

and suppose R’ has the conditional distribution (T} |Tf <T,), 8 has the
conditional distribution £ (T'f | T} > T,) (recall we are assuming that the chain starts
at 7). The distribution of 7% is a mixture of the distributions of R’ and §":

ZL(T}) =pZL (R)+q2L(5) (27)
and so in particular

ET = pER'+4¢ES’, (28)
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var T} = pvarR +qgvar S+ (ER" —ES")% pq. (29)

Now the time interval [0, T'] consists of a geometric number N of returns to < which
avoid 4, followed by one return after hitting 4. So

T=R,+..+Ry+S, (30)

where R; has the distribution of R, P(N=n) = p"¢ (n = 0) and these random
variables are independent of each other and §’.

Relations (28)—(30) allow us to express the mean and variance of 7' in terms of the
underlying quantities p, R’, etc. After some algebra we get

ET = ¢ 'ETY,
var T = g 'var T + pq~%(2(ET}) ER' — (ET})?).

The chain started at ¢ holds in ¢ for an exponential time £, independent of its
subsequent behaviour, before its first jump. So we can write

R ={+R, 8 =(+8 T'=£(+2.

By scaling time, we may assume E£ = 1. Note that Lemma 11 implies that Z has a
CM distribution. Write ¢ = EZ. Substituting into the equations above and doing
straightforward calculations gives

varT 1+qvarZ+p((2+2a) ER—a?)
(ET)2 (1+a)? '

Now consider p and £ (Z) fixed. Then R satisfies the ‘mixture’ constraint implied
by (27):

L(Z) = pL(R).

Clearly, subject to this constraint ER is smallest when R has the distribution of Z
given Z < ¢, for ¢ defined by P(Z < t) = p. So for this ¢,

ERZ2KZIZ<t)=p'EZ1 4.
Now varying p, or equivalently varying ¢, gives

varT > inf1+P(Z >t)yvarZ+(2+2a) EZ1 , ., —a’P(Z < {)

(€T~ 5o (1+a)?
The numerator may be rewritten as 1+2EZ1 ; , +a®+h(t) where
h(t) = P(Z > t)EZ* —2akEZ1 4.,

(31)

By calculus this is minimized at ¢, = (EZ?)/(2a). So
h(t) = k(t,) = —E[2aZ —EZ*)* = —2a%/e
by Lemma 17 below. Substituting into (31),

varT S 1+a%(1—2/e)

(ET)*™  (1+a)*
Minimizing over a >0 gives minimum value (e—2)/(2e—2), establishing the
proposition.



Hitting times for random walks 191
LemMMA 17. Suppose that X has a CM distribution, EX = a, EX? = s*. Then

E(2aX —s?)* < 2a%/e.

Proof. If £ has exponential(1) distribution and b, ¢ > 0 then by an easy calculation
E(bE —c)* = be~“/®. Write X = V¢, so that EV = a, EV? = Ls®. Then

E(2aX —s%)* = E(2aVE—s*)*
= E(2aVe /%)) by conditioning on V
= E(da’V?/s*)(s*/(2a)) €722
< E(4a?V?/s%) e”! because xe™* < ¢!

= 2a 2 —l
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