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Recent works by Newell [13] and Coffman et al. [2] have studied a queuing or storage model 
which is most easily visualized as the process of parking cars in a parking lot where customers 
park as close as they can to some fixed point. This paper describes several space-time processes 
which arise as heavy-traffic limits in this model, and which seem interesting in their own right. 

M/M/a queue * dynamic storage allocation * heavy-traffic * infinite-dimensional diffusion * ex- 
tremal properties of stationary processes 

1. Introduction 
Imagine a supermarket with a parking lot with parking spaces labeled 1,2, 3,. . . . 

A simple and natural model for the arrival, parking and eventual departure of cars 
is the following. 

(a) Cars arrive as a Poisson process of rate A. 
(b) Each arriving car parks in the lowest-numbered available space. 
(c) Each car remains for a random time with exponential (1) distribution, then 

departs. 
This model arises in several other contexts. It can be interpreted as an M/M/CO 

queue where the servers are ranked, and each arriving customer (car) is served by 
the lowest-ranked free server (parking space). From that viewpoint it is studied in 
a recent monograph of Newell [ 131, which is a masterpiece of classical-style applied 
probability. Coffman et al. [2] study it as a model of storage allocation in computer 
memory. 

The total number of parked cars evolves precisely as the M/M/co queue, which 
is readily analyzed. The questions of interest for this model concern the spatial 
distribution of parked cars. The model describes a space-time process, Markov in 
the time variable, whose (time-) stationary distribution is a complicated spatial 
process. In the heavy-traffic (A -+ 00) limit one would expect to find some limiting 
space-time process, whose stationary distribution would be a spatial process which 
could be used to approximate the distribution of where cars are parked. It turns 
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out that there are four different limiting processes, corresponding to different regions 
of the parking lot: 

(a) Spaces 1 to (1 - &)A : the “geometric process” (Section 2). 
(b) Spaces around A - 0( A b), 4 < b < 1: the “exponential process” (Section 3). 
(c) Spaces A f O(A”‘): the “truncated Normal process” (Section 4). 
(d) Spaces around A + J2A log log A 1’2: an ‘extremal process” (Section 5). 

The purpose of this paper is to describe these limit processes. 
Heavy traffic limit theory for queues is a well-developed subject: see Whitt [16] 

and Iglehart [8] for surveys, and Borovkov [l] for a detailed treatment. We will 
sketch proofs that our processes are indeed the heavy-traffic limits of the parking 
model, but these weak convergence arguments (some of which are implicit in [ 131) 
are not the main point of the paper. Rather, we wish to present these processes as 
interesting examples for stochastic process theory. Interesting because they arise 
naturally, they are sufficiently structured to be partly tractable yet sufficiently 
complicated to make explicit calculations hard, and because their analysis illustrates 
known general techniques and suggests new general problems. Relevant techniques 
include coupling, excursion theory, the theory of semi-local maxima of stationary 
processes and the theory of priority queues. New general problems (Section 6) are 
the approximate independence of subprocesses which run on incompatible time- 
scales; structure theory .for function-valued diffusions; and self-similarity and con- 
vergence for weak limits of parametric families of processes. 

We first record some notation and elementary properties of the basic parking lot 
process, which are contained in [2,13]. The state of the process at time t can be 
represented as a random vector (S(l, t), S(2, t), S(3, t), . . . ; S(c0, t)) where S(m, t) 
is the number of occupied spaces amongst spaces 1 through m; and S(CO, t) is the 
total number of occupied spaces. The process S(o0, t), which records the total 
number of parked cars without regard for their position, is just the familiar M/M/cc 
queue. The stationary distribution S(CO) is the Poisson (A) distribution, and starting 
from any initial value S(OO, 0) the distributions S(CO, t) converge as t --, 00 to S(a). 
It is easy to deduce (e.g. by the coupling arguments of Section 2) that the whole 
process ((S(l, t), S(2, t), . . .; S(a, t)) has a stationary distribution (S(l), S(2), . . . ; 
S(a)), to which it converges in distribution as t + CO from any initial configuration. 

For fixed m, the l-dimensional process S(m, t) evolves as the Markov chain on 
(0, 1, . . ., m} with transition rates 

i+ i+1: rate A, 

i+ i-l: rate i. 

This is the M/M/m queue where arrivals are lost if all servers are busy. The stationary 
distribution is 

S(m) has Poisson(A) distribution truncated to (0, 1, . . . , m}. (1.1) 

For fixed k < m, the bivariate process (S(k, t), S( m, t)) is again a Markov chain 
whose transition rates are easily written down. Generating function techniques yield 
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an expression [13, p. 41 for the stationary distribution (S(k), S(m) -S(k)), but this 
expression is complicated. 

Some information can be derived from (1.1). Let L be the stationary distribution 
of the lowest-numbered unoccupied space. Then L = m iff S(m - 1) = m - 1 and 
S(m) f m. So 

P(L=m)=P(S(m-l)=m-l)-P(S(m)=m) 

=P(N(h)=m-1) P(N(A)=m) 
P(N(h)~m-l)-P(N(h)~m) (1.2) 

where N(A) indicates the Poisson(A) distribution. Next, let n(m) be the stationary 
probability that space m is occupied. If we watch space m then we see transitions 

occupied + unocuppied: rate 1, 

unoccupied + occupied: rate A if L = m, rate 0 otherwise. 

The ergodic argument implies 1 . v(m) = A * P( L = m), so 

n-(m) = A 
P(N(A)=m-1) P(N(A)=m) 
P(N(A)Gm-l)-P(N(A)sm) (1.3) 

One can study the heavy-traffic behavior by taking limits in these exact expressions; 
such analytic arguments are the subject of [13]. 

We end this introduction with an intuitive description of how the heavy-traffic 
process varies over the different regions of the parking lot. Write S(m, t) = 
m - S( m, t) for the number of empty spaces amongst spaces 1 through m. 

Case (a). Let m = xA, for fixed x < 1. Empty spaces are removed by arriving cars 
(rate A) and created by departing cars (rate about xh, since for this purpose there 
are a negligible number of empty spaces). Thus S(m, t) evolves like an M/M/l 
queue with arrival rate XA and service rate A. So the mean number of empty spaces 
ES(m) = l/( 1 -x), which stays finite as A + CO. Varying x gives a space-time process 
of empty parking spaces, which in the heavy-traffic limit becomes a coupled family 
of M/M/l queues with varying arrival rates, the geometric process (Section 2). 

Case (b). Recall that the heavy-traffic limit of M/M/l queues is Brownian motion 
with drift reflected at 0. From (a), we guess that if m = m(A) satisfies m/A t 1 slowly, 
then ES(m) + co and the normalized process S(m, t) approximates this Brownian 
motion with drift. It turns out this approximation works for m(A) - A - ah b ($< b < 
l), and that by varying a we get a coupled family of Brownian motions with varying 
drifts as the heavy-traffic limit, the exponenlial process (Section 3). 

Case (c). For m(A) = A fO(A”‘) the behavior changes, because the total number 
S(m, t) of parked cars fluctuates over this region. There are typically O(A “‘) empty 
spaces to the left of m, and in discussing the departure rate of cars from this region 
we can no longer neglect the empty spaces. As the number s( m, t) of empty spaces 
increases, the drift rate of s(m) (= departure rate of cars -arrival rate of cars) 
becomes more negative. In the heavy-traffic limit the normalized process S(m, t) 
approaches an Omstein-Uhlenbeck process (Section 4). 
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Case (d). For m > A +O(h”*) let S(m, t) = S(c0, t) - S(m, t) be the number of 
cars parked in the region to the right of m. Cars park in this region only on the rare 
occasions when S(CO, t) 2 m. When this happens, a bunch of O(h”*) cars park in 
that region, and the last car in this bunch to depart stays about time log A”*. Thus 
there is a critical value of m for which the rate of distinct upcrossings of S(OO, t) 
over m is l/log A “* For m around this critical value, there is an extremal process . 

which describes when S(CO, t) goes above m and how many cars park on such 
occasions, and this extremal process controls S(m, t) (Section 5). 

2. The geometric process 

Consider the set S of sequences 0 G x1 < x2 < x3 <. . . < 1 such that #{n: x, < y} < 
co for y < 1. Such a sequence can be described via the counting function (n(x); 
OGx<l): 

n(x) = #{k: xk s x}. 

A random element of S can be written as a sequence (X,) or as a counting process 
(N(x), 0 s x < 1). 

Consider the following S-valued process. Picture the x’s as randomly-positioned 
points on [0,  1). At the times of a Poisson process (rate l), a new point is created 
and placed at a uniform random position in [0,  1). At the times of an independent 
Poisson process (rate I), the leftmost point present is destroyed. Write (N(x, t); 
0 s x < 1) for the configuration at time t. Call this the geometric process. 

For fixed x, the process N(x, t), t 2 0, evolves as the M/M/ 1 queue with arrival 
rate x and service rate 1. This has stationary distribution N(x) with the geometric 
distribution 

P(N(x)=i)=(l-x)x’, i=O,1,2 ,..., (2.1) 

and N(x, t) converges in distribution as t + ~0 to N(x). 

Proposition 2.2. The geometric process has a stationary distribution (N(x); 0 c x < 1) 
whose marginals satisfy (2.1). From any initial distribution, the process N( . , t) 
converges in distribution to N( .) as t + a. 

Technical note. S has a natural topology: start with the usual Skorohod topology 
on D[O, 00) (see [14]), map [0,03) to [0, 1) to get the Skorohod topology on D[O, l), 
and regard S as a subset of D[O, 1). For each t, N( *, t) is a random element of S, 
and Proposition 2.2 asserts weak convergence of their distributions. The result is 
rather obvious, but we write out the details as a simple illustration of coupling 
arguments. 
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Proof. Fix x,, < 1 and consider the process restricted to [0, x0]. This process regener- 
ates every time N(x,, t) hits 0, and from the M/M/ 1 nature of N(x,, t) the mean 
time between regenerations is finite; this implies the existence of a stationary 
distribution. Now consider two initial configurations n(x), h(x). There is a natural 
construction of two processes N(x, t), A(x, t) starting with the specified initial 
configurations: use the same time-space Poisson process of creation of points for 
both processes, and the same Poisson process of times of destroying points in both 
processes. This construction has the property: 

if N(x, to) 2 [ =1$(x, t,) then N(x, t) 3 [ =]fi(x, t) for t z to. 

Supposing n(xo) 3 n^(x,), say, then by considering the first time that N(x,, t) = 0 
we see that 

N( *, t) = 1cr( a, t) on [0, x0] for sufficiently large t. (2.3) 

Similarly, for any initial distributions N(x, 0), fi(x, 0) we can construct a coupling 
satisfying (2.3). By taking I?(, 0) to be the the stationary distribution N(x), (2.3) 
implies N( -, t) converges in distribution to N( .) when restricted to [0, x0]. Since 
x0 is arbitrary, this establishes the Proposition. 

Now consider the parking lot process S(m, t) with arrival rate A. Define 

M*(X,f)=[Xh]-S([xA],t/h), O~xxl,t~o. (2.4) 

This means we are first slowing down time by a factor A (so arrival rate becomes 
1 and mean sojourn time becomes A), and then M(x, t) counts the number of empty 
parking spaces at time t amongst spaces 1 through xh. 

Proposition 2.5. As A + ~0 the space-time process ( Mh (x, t); 0 G x < 1, t 2 0) converges 
in distribution to rhe geometric process (N(x, t); 05x< 1, t SO), provided that 
M,,(x, 0) converges to N(x, 0). In particular, the stationary distribution (M*(x); 
0~ x < 1) converges in distribution to the stationary distribution (N(x); 0 s x < 1). 

Technical note. For fixed t a path N( -, t) is an element of S, and so the map 
t-, N(., t) can be considered an element of D([O, oo), S) = 6. The space-time 
processes are random elements of 6. 

Remark. For the stationary distributions, straightforward calculus shows that (1.1) 
implies 

M,(x) 5 N(x) as A + 00, x fixed. (2.6) 

The point of Proposition 2.5 is to “explain” and amplify this result: for large A, 
Mh (x) has approximately geometric marginals because the process Mh (x, t) evolves 
approximately like the geometric process which has exactly geometric stationary 
marginals. 
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Sketch of proof. Fix A. Given the geometric process N(x, t) and an initial configura- 
tion S( m, 0), 1 c m s [A] for the parking lot process restricted to spaces 1 through 
[A], we can construct a version of the restricted parking lot process S(m, t) (with 
time slowed by a factor A) via the following rules. 

(a) Whenever the geometric process creates a point, (x, t) say, we make the car 
(if any) at space [xh] depart at time t. 

(b) Whenever the geometric process removes its leftmost point, at time t say, we 
make a new car arrive and park in the leftmost available space. 

The purpose of this construction is to try to match points of the geometric process 
with empty spaces in the parking lot process. Write s( m, t) = m - S( m, t) for the 
number of empty spaces in 1 through m. Fix mO. If 

s( m, to) = N( m/A, to) for all m C m, 

then, for all t 2 to, 

(c) S(m, t)sN(m/A) for all msm, 

and moreover there is equality in (c) up until the first time T > to that the geometric 
process has two point in some interval (m/A, (m + 1)/A), m < m,. 

Now fix x0< 1. Start the geometric process with 0 points, and start the parking 
lot process with spaces 1 through A full, so (c) holds for all t30 with mo= [Ax,]. 
Consider the times t at which N(x,, t) hits 0; as in the previous proof, these are 
regeneration times for the geometric process restricted to [0, x0]. Let q = 4(x0, A) 
be the chance that there is strict inequality in (c) sometime between one regeneration 
and the next. Then q+O as A -+03 by the remark below (c). Thus as A +o;, the 
proportion of time that there is inequality in (c) tends to 0; the rest of the proof is 
straightforward. 

Priority queues. It turns out that the geometric process occurs in a quite different 
context. Consider an M/M/l queue with arrival rate 1 and service rate 1. Suppose 
that each arrival is given a priority number, distributed uniformly on [0, l), and 
suppose that the server directs his attention to the customer present who has the 
lowest priority number (interrupting service to other customers when a customer 
with lower priority number arrives). Then the process whose value at time t is the 
set of priority numbers of customers present is just the geometric process. 

Classical queing theorists have studied priority queues where there are k priority 
classes, and proportion pi of customers are in class i. For such a process, with arrival 
rate A < 1, the stationary distribution of the number of customers present in the 
various priority classes is just (N(x,), N(xZ) - N(x,), . . . , N(xk) - N(xk-,)), where 
Xi -Xi-l = Api and (N(x); 0 s x < 1) is the stationary distribution of the geometric 
process. Classical results about such priority queues can be found in Jaiswal [lo, 
IV.71. The geometric process provides a conceptually elegant way of looking at such 
priority queues. 
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In the rest of this section we record some facts about the stationary distribution 
(N(x); 0 s x < 1). We were motivated by the question: can the extra structure of 
the geometric process be used to give simpler results about priority queues? The 
answer seems to be no and yes. A classical result in priority queues (Proposition 
2.18) gives the generating function of (N(x), N(y) - N(x)), and we cannot improve 
on its derivation. No useful explicit form of this joint distribution is known. For 
simpler quantities such as EN(x)(N(y) - N(x)) we shall write out more explicit 
results (2.11-2.17). These are not essentially new results, since they could of course 
be deduced from the classical generating function result (although some of the 
results refer to structure of the geometric process not present in the classical priority 
queue model). Our aim is to give a more direct derivation of these explicit results, 
relying on Lemma 2.10 below. 

Let us start by repeating (2.1): 

P( N(x) = i) = (1 -x)x’, i20. 

Let X, be the position of the kth point. Then 

P(X,5x)=P(N(x)2k)=xk, 

so Xk has density 

f&(X) = kxk-‘, OS x < 1. (2.7) 

Note in particular that X1 is uniform on [0, 1). If Lk is the position of the kth empty 
space in the storage process, 

(WA, L2/A., . . .I% (Xl, x2,. . .I asj-tco, 

and so in particular L1 is approximately uniform on [0, A] for large A. 
Let v be the intensity function for N, defined by n(y) dy = P(some point of N 

in (y, y +dy)). Then 

P(Y) =$ (EN(y)) = (1 -yr2. (2.8) 

The corresponding heavy-traffic limit result is 

l-~~(m)-A-‘(l-y)-2 as A+~,m/A+y<l (2.9) 

where n-,,(m) is the stationary probability that space m is occupied in the parking 
lot process (1.3). 

The fundamental explicit result is 

Lemma 2.10. Let O<x<y<l,j 2 0. Then P(N(x) =j, some point in (y, y + dy)) 

= (1 -x)x’{ &++-&+ dy. 
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This has a nice probabilistic proof, which we give later. One can read off the 
following. 

Corollary 

P( N(x) ~j, some point in (y, y +dy)) = xj 

P( Xi E (x, x + dx), some point in (y, y + dy)) 

(2.12) 

E(Nb); some point in b,y+dy)) =& dy. (2.13) 

The joint intensity function, defined by 

~(x, y) dx dy = P(some point in (x, x+dx), some point in (y, y+dy)), 

is given by 

1 1 2 
rr(x,y)=--- p-- 

i 

3 
___ 

(l-x)* (1-y)2 l-x+(1-x)* ’ I 

E(NY)-N(x)lN(x)=j)=E 
I 

&+j-& , 
I 

E(N(Y) - N(x))N(x) =* 
I 

&q+q2 
I 

E(N(y)-N(x)lXj=x)=E 
1 

&+j+& . 
1 

(2.14) 

(2.15) 

9 
(2.16) 

(2.17) 

These results give the correlation structure of (N(x)), but the joint distributions 
lie deeper, and to obtain them it seems necessary to resort to tedious generating 
function arguments. The key idea is that, if we watch the process N(y, t) - N(x, t) 
only at times t when N(x, t) = 0 then we see a process on (0,  1,2,. . . } which is 
skip-free downwards, and whose stationary distribution can therefore be explicitly 
found in generating function form. 

Proposition 2.18. Fix 0< x < y < 1. Let G( 8, p) = EON(x)pN(y)-N(x). Then 

-l - 1 + (8-r - p-l)/ Q(p) 
G(e,p)=(l-y) ,-el_x(l-,)_(y_x)(l_,) 

where Q(p)=l+~p(l-p)-1{l-y+(y-x)p-J{1+y-p(y-x)}2-4x}. 

Proposition 2.19. (X, , X2) has joint density 

f(x,,x,)=2(1+X2-2X,){(1+X,)2-4X,}-3’2, O<X,<X,<l. 
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We omit the details. Proposition 2.18 is essentially [lo, eq. IV.3.151. 

Proof of Lemma 2.10. Fix x0 < y. Consider the stationary geometric process N(x, t) 
run for --oo<f~cc. Let Ur, D,, U,, D, ,... be the times t > 0 of jumps of N(x,, t) 
from 0 to 1, from 1 to 0, from 0 to 1, and so on. Write N*(a) for the distribution 
of N(. , 0)  given N(xO, 0) = 0. Then 

(i) N( . , Ui-) has distribution N* (“Poisson arrivals see the stationary 
distribution”); 

(ii) the segment (N(x,, t); U, s t < Q) is independent of N( ., U, -). 
Let UC,, = max( Ui: lJi s t) and U, = max( u < 0: N(x,,, u) = 0). By ergodicity the 
distribution (N( ., Cl,,-), U,, N(x,, 0)) is the limiting empirical distribution of 
(N(., Ucl,-), f- U(r), N(x,, t)) as t+ 00; and from the independence property (ii) 
we can deduce 

(iii) N( a, U,-) is independent of (U,, N(x,, 0)). 
Now define 4(j) by 

4(j) dy = P(some point of N( *, 0) in (y, y+dy)]N(x,, 0) =j). 

Then 

4(j) dy=P(some point of N(*, -U,) in (y,y+dy)lN(x,,O)=j) 

+ P(some point created in (y, y + dy) 

during (-U,,O)IN(x,,O)=j) 

= $40) dy+ E(- UdN(xo, 0) =j) dy, 

the first because of (iii) and (i), and the second because the creation of points in 
(y, y+dy) is independent of N(x,, .). Now the process N(x,, t) is time-reversible, 
so E(- U,,l N(x,, 0) =j) is just the mean first passage time from j to 0, which works 
out as j/( 1 -x). Thus 

(iv) Hi) = +(O)+j/(l -x). 

But the intensity function v(y) satisfies 

a(y)= C @(i)P(N(x)=i)= 1 {+(O)+i/(l-x)}(l-x)x’. 
iz=O  iZ0  

Using (2.8) we can solve for 4(O), and then (iv) gives the result. 

3. The exponential process 

Fix a (0. Let Y(a, t), t>O, be Brownian motion with drift a and variance 2, 
confined to [0, ~0) by a reflecting boundary at 0. In the language of stochastic 
differential equations we can write 

(i) dY(a,t)=adt+&!dB(t)on{Y(a,t)>O}, (3.1) 
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(ii) Y( a, . ) is reflecting at 0 
where B(t) is standard Brownian motion, B(0) = 0, and where (ii) can be said 
symbolically using local time. It is well known that Y( a, t) has a stationary distribu- 
tion Y(a) such that 

Y(a) has exponential (-a) distribution. (3.2) 

By varying a, we can construct a space-time process Y(a, t) which we call the 
exponential process. 

Proposition 3.3. Let ( Y( a, 0); a < 0) be positive, continuous, increasing and indepen- 

dent of B(t). Then there exists a process (Y(a, t); a ~0, t 2 0) such that 

(i) for each a, (Y(a, t); t 3 0) is a rejecting Brownian motion satisfying (3.2); 

(ii) the sample paths are jointly continuous in (a, t), and increasing in a; 

(iii) as t + a the processes ( Y(a, t); a < 0) converge in distribution to a stationary 

distribution ( Y(a); a <. 0); 

(iv) the stationary distribution ( Y(a); a < 0) satisjies 

(a) the paths a + Y(a) are continuous, increasing; 

(b) lim,,-, Y(a) =O; lim,,,Y(a) =a; 
(c) for each a, Y(a) has exponential (-a) distribution. 

Proof. Write X(U, t) = at +v’!?B( t), so that X(a, * ) is unconstrained Brownian 
motion with drift. Let 

Y(a, t) =X(0, t) -,Fj& X(4 u). (3.4) 

Here Y( a, 0) = 0. It is well known [7] that for fixed a, Y( a, t) is reflecting Brownian 
motion (3.1). Properties (ii) are easily checked. Now consider B(t), and hence 
X( a, t), extended to --co < t <co, and consider 

Y*(a, t) =X(a, ‘)-_I$& X(a, u). (3.5) 

Then the process Y*(a, t) is stationary ergodic in t. Now 

P( Y(a, t) = Y*(a, t) for all sufficiently large t) = 1 for each a, 

and hence (iii) holds for Y(a) = Y*(a, 0), and thus (switching negative for positive 
time) for 

Y(a)=~~;(at+JZB(t)), a<O. (3.6) 

Parts (a) and (b) of (iv) are now easy, and (c) is (3.2). Finally, for a general initial 
distribution ( Y(a, 0); a < 0) we can construct some (non-Brownian) B(t), t < 0, so 

that (3.5) yields Y*(a, 0) = Y(a, 0), and then (3.5) defines the exponential process 
with this initial distribution. 
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For the parking lot process S( m, t), the exponential process describes the heavy- 
traffic limit for the distribution of empty spaces in regions between A (1 - E) and 
A - O(A1’2). To say this precisely, fix f < b < 1. Define 

Y,(a,t)=Ab-1{(A+aAb)-S(A+aAb,A1~2bt)}; a<O. (3.7) 

This means we first slow down time by a factor A2’-‘, so that cars arrive at rate 
A2-2b and each car departs at rate A l-2’. Then we count the number of empty spaces 
amongst spaces 1 through A + aA b; it turns out this has order A ‘-4 so we normalize 
by that factor. In the following limit theorem, suppose the parking lot process and 
the exponential process are started in their stationary distributions. 

Proposition 3.8. As A + 00 the space-time process ( Yh (a, t); a < 0, t 2 0) converges in 
distribution to the exponential process ( Y( a, t); a < 0, t z 0). In particular, the stution- 
ury distribution ( YA (a); a < 0) converges to the stationary distribution ( Y(u); a < 0) 
of the exponential process. 

Technical note. For fixed t the spatial process YA(a, t) is considered as a random 
element of 9 = D(-~0, 0) .  The space-time process is then considered as a random 
element of D([O, Co), 9). 

Sketch of proof. Fix a,. Convergence of the stationary marginal 

(a) Y,(a,) 3 Y(ul) as A +oo 

can be deduced from (1.1) via calculus. We now want to prove convergence of the 
l-dimensional processes 

(b) (Y,(u,, t); t30) 3 (Y(a,, t); tz0). 

This can be done by appealing to standard results [ 1, Section 1.91 about weak 
convergence of discrete-space l-dimensional Markov processes to diffusions. The 
essential condition to be verified is that, for small 6 > 0, the increment A Yh (a,, t) = 

Y,(u,, t+6)- Yh(u,, t) satisfies 

E(AK(ar, r)(Yh(or, t))=a,6+o(6), 

var(AY,(u,, t)(Y,(u,, t))=26+0(6) 

as A -+a~. Because of the resealing (3.7), this is equivalent to showing that the 
increment AS( m, t) = S( m, t + s^) - S( m, t) (where m=A+[a,Ab] and $=A’-2b6) 
satisfies 

(C) E(AS(m, t)(S(m, t))=-A’{a,$+o(&}, 
(d) var(AS(m, t))S(m, t))=A{fd+o(s^)}. 

Condition on S( m, t) = m -s*, say. The numbers of arrivals and departures of cars 
in spaces 1 through m in a time interval s^ will be approximately independent 
Poisson variables with means 

(e) Ai (arrivals), (m-s*)S*=(A+a,A’-s*)g (departures) 
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conditional mean variance) of AS(m, t) is therefore approximately the 
difference (resp. sum) of the means in (e); this verifies (c) and (d), since s* = 
O(A1-b) =o(Ab) by (a). 

Now let a, < az, and consider convergence of the 2-dimensional processes 
(f) (( Y,(a1, t), KC%, t)); 2 2 0) 4 (( YCa, 7 t), Y(%, t)); t 2 0). 

Let mi = A + [ aih “1. Arguing as above, 

var(AS(m,, t)-AS(m,, t)jS( *, t))=(az-a,)hb 

provided spaces 1 through ml do not all become occupied. Resealing, we get 
(g) var(AY,(a,,2)-AY,(a,, t)(Yh(*, t))+O as A+oo 

for Y(a,, t) bounded away from 0. We now prove (f) as follows. By (b) the family 
of 2-dimensional process in (f) is tight, and also by (b) any subsequential limit 
process has marginal processes of the form (3.1) for possibly-different Brownian 
motions Bi(t). But (g) forces these two Brownian motions to be the same. Thus it 
suffices to show that the 2-dimensional diffusion (Y(ar , t), Y(az, t)) is uniquely 
determined by the requirement that the marginals satisfy (3.1) with the same B(t); 
and this is true because in (3.1) we can write each of Y(a, t) and B(t) as a 
path-to-path function of the other, using (3.4) one way and 

X(a, t) = Y(a, t) - L(a, t), L local time of Y at 0, 

the other way. 
Similarly we get convergence of finite-dimensional processes in (f). Finally, getting 

function-space tightness (in the space variable a) presents no difficulty since Yh (a, t) 
is increasing in a and Y(a, t) is increasing continuous in a. 

Remark. Since the geometric process and the exponential process occur as limits 
for adjacent regions of the parking lot, and one would expect there to be some kind 
of “compatibility” condition between the two processes. It turns out, by copying 
the argument above, that the exponential process is a limit of resealed geometric 
processes. 

Proposition 3.9. Let (N(x, t); --CO < x < 1, t 2 0) be the stationary space-time geometric 
process, extended to x < 0 by putting N(x, t) = 0 for x < 0. As K + CO the processes 
(K-‘N( 1+ a/K, K’t); a (0, t 2 0) converge in distribution to the stationary space- 
time exponentialprocess Y(a, t). In particular, the stationary distributions (K-‘N(l+ 
a/K); a < 0) converge to the stationary distribution (Y(a); a < 0). 

From the viewpoint of heavy-traffic limit theory for the parking lot process, the 
exponential process and Proposition 3.8 are of limited interest, since the natural 
questions about the parking lot process do not concern this space-range. On the 
other hand, the exponential process seems of interest in itself as a simple example 
of coupled diffusions. Using Proposition 3.9 we can obtain some distributional 
results about (Y(a); a ~0) by taking limits in corresponding results (2.15-2.18) for 
the geometric process, as follows. 
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Corollary 3.10. Let u < b < 0. 
(i) E(Y(b)-Y(a))Y(a)=y)=(l-b/a)(y+a-’-b-r). 

(ii) E(Y(b)- Y(a))Y(a)=(6/u)(b-2-U-2). 
(iii) E(Y(b)-Y(u)~H,=u)=(l-b/u)(y-u-l-b-’), where 

Hy = min{u: Y(u) = y}, y > 0. 
(iv) The joint Lapluce transform 

G(@, P) = E exp(-eY(a) -p( Y(b) - Y(a))) 

is given by 

G(@, PU) = 
-b(CL+(e-F)/Q) 
e(e+a)-p(b-a) 

; Q = 1 -$.-‘(a +Ju2+4(b - u)p). 

These results could also be derived directly by using excursion theory, a program 
being studied in Fresnedo [4]. Fix u < b < 0; let I be inverse local time of Y(u, t) 
at the reflecting boundary 0; and consider the process Y( b, I). This is “the process 
Y( b, t) looked at only when Y( a, t) = 0” and is a downward skip-free process which 
can be analyzed using the excursion structure of Y(a, t). This approach, though 
technically more sophisticated, ought to be computationally easier, and it seems 
likely that more information could be obtained. 

Other natural questions concern the path-regularity of the stationary spatial 
process ( Y(u); a < 0). 

Proposition 3.11. There exists a positive discontinuous increasing process (Q(u); 
--oo < a < 0) such rhut 

$4 = Q(a) U.S. for each jixed a. 

Proof. Let Y( a, t) be the stationary exponential process, extended to --a3 < t < ~0. 

Define 

Q(u)=min{t~O: Y(u, -t)=O} (note “-t”). 

Then Q(u) is increasing and discontinuous. We will show 
(a) Y(a+e)=~ Y(u)+~Q(u+s),~>0. 
(b) (dlda)EY(a) = EQ(aL 

(3.12) 

and then straightforward analysis establishes the result. 
To prove (a), observe, from (3.1), 

d( Y(u + F, t) - Y(u, t)) G E dt on any interval (t, , f,) 

where Y(u + F, t) > 0. 
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Applying this to the interval (-Q(a+&), 0) gives (a). To prove (b), observe that 
for a fixed a the process Y(a, t) is time-reversible. So 

E(Q(a) 1 Y(a, 0) = Y) = mean first hitting time for 
Brownian motion with drift a from y to 0 

= -yl a, 

and hence EQ(a) = -a-‘EY(a). Since EY(a) = --a-‘, we obtain (b). 

Remark. The process (Y(a)) is not Markov, which partly explains a paradoxical 
property of Corollary 3.10: that the quantities in (i) and (iii) are unequal even 
though the conditioning events { Y(a) = y} and {H,, = a} are essentially identical. 
The process (Q(a)) is (non-homogeneous) Markov, and can again be studied via 
excursion theory [4]. 

4. The truncated Normal process 

Let Z(W, t) be a Ornstein-Uhlenbeck process, that is a diffusion on (-co, W) with 
drift k(z) = -z and variance 2. In stochastic differential equations language, 

dZ(co, t) = -Z(W, t) dt+Ji dB(t). (4.1) 

This process has stationary distribution Z(W) = Normal (0, 1). For fixed a, --CO < a < 
CO, let Z( a, t) be the Ornstein-Uhlenbeck process restricted to (-00, a] by a reflecting 
boundary at a: 

(i) dZ(a, t)=-Z(a, t)dt+&‘dB(t) on {Z(a, t)<a} 

(ii) Z(a, t) is reflecting at a. 
(4.2) 

This has stationary distribution Z(a) which is Normal(0, 1) restricted to (-co, a]. 
As in Section 3, we now construct a space-time process Z(a, t) by varying a: we 
call this the truncated Normal process. 

For f(a), --CO < a G ~0, consider the condition 

f(a) is increasing, finite, and f(b) -f(a) G b - a for b > a 

This of course implies f is continuous. 

(4.3) 

Proposition 4.4. Let (Z( a, 0); -cc < a G ~0) have paths satisfying (4.3), independent 
ofBrowniun motion B(t). Then there exists a process (Z(a, t); --03 < a s a,0 s t < 03) 
such that 

(i) Z(CO, t) is the unrestricted Ornstein- Uhlenbeck process (4.1); 
(ii) for each --OO < a <a, the process Z( a, t) is the Ornstein- Uhlenbeck process 

on (-00, a] with a reflecting boundary at a, as at (4.2); 
(iii) for each t the sample paths Z(a, t) satisfy (4.3); 
(iv) as t +CC the processes (Z(a, t); --a< a <CO) converge in distribution to a 

stationary distribution (Z(a); --CO < a G a); 
(v) the stationary distribution (Z(a); --CO < a =S CO) satisfies (4.3) and 
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(a) lim,+-, Z(a) = -a; lim,,, Z(a) = Z(a); 
(b) Z(u) has the Normal (0, 1) distribution restricted to (-00, a), 

Remarks. (a) In contrast with the exponential process of Section 3, there is no 
simple explicit representation for Z(u, t). 

(b) The path properties (4.3) are natural for the heavy-traffic limit interpretation 
below. 

Proof. For fixed a, the stochastic differential equation (4.2) has a strong solution 
[5, Section 231, that is to say a solution where Z(a, t) is a function of Z(u, 0) and 
(B(u); 0 s u 5 t). Given such a solution Z( a, t) for each rational a (to avoid worrying 
about sets of probability zero), let us consider the path properties of Z(a, t) as Q 
varies. Fix rational a < b. Let 

D(t)=Z(b, t)-Z(a, t). 

From the definition (4.2), 

(a) dD(t)=-(b-u)D(t)dt on {Z(u, t)<u, Z(b, t)<b}, 

(b) z--(b-u)D(t)dt on{Z(b,t)<b}, (4.5) 

(c) G -(b - u)D(t) dt on {Z(u, t) < a}. 

Given D(0) > 0, we will show that D(t) > 0 for all t 3 0. For if not, there is some 
first to where D( to) = 0. It cannot happen that Z( b, t,) = b, for Z( a, to) =s a. But by 
(b) it cannot happen that Z(b, t,,) < b, since there D(t) is decreasing at most 
exponentially fast. 

Now consider 

C(t) = (Z(u, t) -a) - (Z(b, t) -b). 

Given C(0) 2 0, we will show that C(t) 2 0 for all t z 0. At times to when Z(u, to) = a, 

we have Z( b, to) G b and so C( to) 2 0. Thus it suffices to show that C(t) cannot 
become negative during an excursion of Z(u, t) from the boundary a. But on such 
an excursion, 

dC(t)=-dD(t)s(b-u)D(t)zO by(c), 

so C(t) can indeed never become negative. 
The positivity of C(t) and D(f) imply that for fixed 1, the paths Z(u, t) satisfy 

(4.3) for rational a. We can now extend to general a by continuity, and verify that 
the marginal processes Z(u, t) (a fixed) are indeed reflecting Ornstein-Uhlenbeck 
processes. This completes the proof of (i)-(iii). 

For fixed a, one-dimensional theory says Z( a, t) converges in distribution as t + 00 

to a stationary distribution Z(u). The path properties (4.3) imply that as t+a the 
distributions (Z(u, t); --CO < a G 00) are tight on D(-00, a]. A coupling argument, 
as in the proof of Proposition 2.2, completes the proof of (iv). And (v) is straight- 
forward. 
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For the parking lot process S(m, t), the truncated Normal process describes the 
heavy-traffic limit for the distribution of empty spaces in the region A *O(A”‘), or 
for the “overflow” past m (that is, the number of cars parked to the right of m) for 
m in this range. To say this precisely, for the parking lot process with arrival rate 
A write 

Z,(a, t)=A-“2{S(A+aA”2, t)-A}, --co<aG~, tz0. (4.6) 

To understand this, recall that S(CO, t), the total number of cars parked, evolves as 
the M/M/a queue which has a Poisson(A) = Normal(A, A) stationary distribution. 
So 2, (~0, t) is the natural standardization whose stationary distribution is approxi- 
mately Normal(0, I), and it is well known [S] that the standardized process Z*(CO, t) 
approximates the Ornstein-Uhlenbeck process Z(c0, t) (note there is no resealing 
of time here). Here is the limit theorem, for processes started in their stationary 
distribution. 

Proposition 4.1. As A + co the space-time processes (Z,( a, t); --CO < a i 00; t 2 0) 

converge in distribution to the truncated Normal process (Z( a, t); --OO c a G a; t 2 0). 
In particular, the stationary processes (Z,(a); --M < a s CO) converge to the stationary 

truncated Normal process (Z(a); --CO < a G 00). 

This result is described, in less formal language, in [13, Section 61. The details 
of the proof are similar to those of Proposition 3.8. The asymptotic overflow 
distribution Z(a) -Z(a), and non-asymptotic corrections for S(W) - S(m), and the 
corresponding joint distributions (Z(a), Z(a) -Z(a)), are discussed in detail in 
[13, Sections 4 and 51, and we will not restate them here. 

Let us just state the analog of Proposition 3.11. 

Proposition 4.8. There exists a positive increasing discontinuous process Q(a) such 

that (d/da)Z(a) = exp(-Q(a)) a.s. for each a. 

In fact, this holds for 

Q(a)=min{t>O:Z(a,-t)=a} (4.9) 

where Z(a, t) is the stationary space-time truncated Normal process, extended to 
-co<t<cO. 

5. The extremal process 

For the stationary storage process S(m, t) with arrival rate A, let R(t) be the 
position of the rightmost occupied space at time t. Coffman et al. [2] use ingenious 
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generating function arguments to obtain an explicit 
distribution R: 

We shall 
Let N 

Define 

307 

formula for the stationary 

m 30. (5.1) 

use different methods to obtain the heavy-traffic limit of R. 
be the Poisson point process on [w2 with intensity v given by 

v(df, dx) = emx dt dx. 

t(t) = max{x: (t’, x) E X for some t’E (t - 1, t]}. 

Then (l(t)) is a stationary process, whose marginal distribution 5 is 

P( 5 S x) = P(n0 point of X in (t - 1, t] X (x, 00)) 

= exp( - v( t - 1, t] X (x, 00)) = exp( -e-“). (5.2) 

Thus 5 has the classical “double exponential” extreme value distribution, and t(t) 
can be regarded as a stationary “extremal process” (definitions of that term vary). 
Now define a = a(A) by 

@(a) log A1’2= 1 (5.3) 

where 4 is the standard Normal density. The approximation 

a?(A) =2{log log A”*+log{2 log log /C2}“*} (5.4) 

may be substituted in the sequel. Define the normalized process 

~~(t)=h~“*a(A){R(t1ogA”*)-A-a(A)A” (5.5) 

Proposition 5.6. As A + 00 the processes (c*(t); t 3 0) converge, in the sense ofjinite- 

dimensional distributions, to (t(t); t 3 0). In particular the stationary distributions 6 

converge to 5. 

Remarks. (a) More crudely, for large A, 

R = A + J2A log log A “‘. (5.7) 

This sharpens the bound R 6 A + cm given in [2]. Note that R has slightly 
less chance variability than does S(m), order u~‘A”* instead of A”‘. 

(b) It is not clear how to derive this limit from the analytic expression (5.1). 
(c) In Proposition 5.6 we do not have convergence in the usual topology on 

D[O, CO), because one jump of t(t) may approximate several nearby smaller jumps 
of &S(t). 

(d) We consider these stationary processes extended to --00 < t < ~0. 
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Let S(f) = S(OO, t) be the total number of parked cars; recall this process evolves 
as the M/M/co queue. Let b = b(h) = log A’f2, and let a = a(A) be as at (5.3). Let 

Mh(t)=h-1’2a{S(t/b)-A-aA”2} 

M?(t)= sup * M*(u) 
r-h=u<t 

and let 

th( t) = max{x: (t’, x) E X for some t’ E (t - h, t]}. 

Proposition 5.6 splits into two parts, as follows. 

Proposition 5.8. Fix h > 0. As A + ~0 the processes (M:(t); t 2 0) converge, in the 
sense of Jinite-dimensional distributions, to (th( t); t 2 0). 

Proposition 5.9. M:(O) - 6(O) + 0 in probability as A -+ ~0. 

Note that Proposition 5.8 involves only the M/M/co queue S(t), and no further 
properties of the parking lot process. Proposition 5.8 is closely related to standard 
results about extreme values of stationary processes; we will sketch the proof later. 

Proof of Proposition 5.9. Let q(K, t) be the chance that, out of a set of K cars 
parked at time to, at least one of these cars is still parked at time t,,+ t. Then 
q( K, t) = 1 - (1 - eer)K, and so for fixed E > 0 we obtain: 

if K/A”2t” -+ 0 then q(K, (1+3E)b)+O, (5.10) 

if K/A’12-e -00 then q(K, (1-3e)b)+ 1. (5.11) 

Now fix a time to, a parking space m,+ and E > 0. Suppose S( to) 5 m,+. Consider 
the set of cars parked to the right of space m, - A”2-1’2~. At time to there are at 
least A”2-E’2 such cars; so by (5.11) at time to+ (1 - 3e)b the chance that at least 
one such car remains tends to 1 as A + a. Applying this fact to the stopping time 

in place of to, we see 

P _-(l_-3E)bCf<0 S(t) 2 m,, R(0) < mh - A”2--E’2 max + 0 as A + Co. ._ 

Resealing, we see that, for any x, 

P max M,(t)sx,5~(O)<x-ah-“‘* +O as A+w 
-(1-3E)~r~o 

Thus for fixed 6 > 0 we conclude 

P(M:-3”(0)>&(0)+8)+0 as A+oo. (5.12) 
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This gives a bound in one direction. For the other, fix E >O. A result from [21, 
which can also be derived from (1.3) by calculus, is 

P(R(0)GA+A”2+E’2)+1 as A-+cO. (5.13) 

Also R(0) Z= S(O), and using Proposition 5.8 we get 

~(A<R(o)sA+h"~+"~)+i  as A-+a. (5.14) 

We want to show 

P(NO) > 
-(1+3E)bs,s0 s(t))+ O max as A + co. (5.15) 

For this event can only happen if the rightmost car at time 0 (in space r, say) has 
remained there since time -(1+3e)b. By (5.14) we may suppose r E (A, A + A”2+&‘2); 
but then by (5.10) the chance that any car from this range remains from time 
-(1+3~)b until time 0 is asymptotically 0. This establishes (5.15). Resealing gives 

P(M:‘3”(0)<[h(0))+0 as A+co. (5.16) 

It is now straightforward to derive Proposition 5.9 from (5.12), (5.16) and Proposition 
5.8. 

Sketch of proof of Proposition 5.8. We wish to describe some known results from 
a different viewpoint. Let X(t) be a stationary process. Take z large so that 
P(X(0) > z) is small, and let g(z) < z. If at time t, we have X( to) 2 z then there is 
a last time s < to and a first time s’> t,, that X(s) G g(z); let Z? be the maximum of 
X over the interval (s, s’) and let i be the time at which the maximum is attained. 
By varying t,, we can construct a time-space point process .ni^, whose points (i, 2) 
are the times and heights of “semi-local maxima” of X. Provided g(z) + cc and 
P(X(0) > z)/P(X(O) > g(z)) + 0 as z+ M, then under weak regularity conditions 
the process .N, for z large will be essentially independent of the precise choice of 
g(z), and we can regard the .NZ as the restriction to {(t, x): x3 z} of a single point 
process .Nx. For (Y, p, y > 0 the resealing map 

maps a point process X to another point process r,,p,,(X) say. Thus one can look 
for asymptotic results of the form 

r ol.,pn,yn (Nx ) 4 hf” for constants a,, IL, yn 

and such results describe the times and heights of high-level semi-local maxima of 
the stationary process X. For the Ornstein-Uhlenbeck process Z(t) = Z(CO, t) of 
Section 4, the point process N,z is, for x large, approximately the Poisson point 
process of intensity 

v(dt, dx) =x’+(x) dt dx, (5.17) 
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where C#J is the standard Normal density. To say this as a limit theorem, use the 
equations 

P@(a)=1 ay=l (5.18) 

to define (Y, y as functions of p for large /3_ These equations are chosen so that, for 
the Poisson point process j with intensity (5.17), 

T~,+~( 2) 3 A” as p + cc 

where X is the Poisson point process of intensity eCX. The precise result for the 
Ornstein-Uhlenbeck process is 

Theorem 5.19. ra,p,,(~z) 5 K US p + CO. 

Results of this type are discussed in [ 11, Section 9.5, 12.41, using the notion of 
“s-upcrossing” in place of “semi-local maximum”. 

Now let S(t) be the M/M/CO queue and as in Section 4 normalize to 

Let N* be the point process of semi-local maxima derived from 2,. Since (2, (t); 
t a 0) converges to (Z(t); t 2 0) we have JV~ 2 ,hrZ and so 

r,,p,,(.l\rh) 5 ~,,,s,,(N~) as A + ~0, fixed a, P, Y. (5.20) 

Results (5.19) and (5.20) are essentially known; the essence of Proposition 5.8 is 
that we can combine the limiting operations as follows. 

Proposition 5.21. Let p = log A 1’2 and dejne a, y by (5.18). Then I,,~,,(JV~) 3 X US 
A+co. 

Our arguments so far were designed to convince the reader that this result is 
natural; to actually prove Proposition 5.21 it seems necessary to start from the 
beginning and modify the arguments of [ll] to apply to the M/M/m queues S(t), 
an undertaking we shall omit. 

Finally, the process iI4,( t) occurring in Proposition 5.8 was defined so that its 
point process of semi-local maxima is r,,,,, (NA), which by Proposition 5.21 approxi- 
mates JV. The processes M: and th are constructed from these point processes in 
the same way, that is by taking the highest-level point which occurs in the previous 
h time units, and so convergence of these constructed processes follows fairly easily 
from convergence of the underlying point processes. 
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6. Miscellany 

(A) Function-valued difisions. The exponential process and the truncated Normal 
process are simple examples of diffusions with values in a space of continuous 
functions. Such diffusions (under alternative names like “stochastic functional 
differential equations” or “measure-valued diffusion”) arise in several contexts [3, 
9, 12, 151, and will perhaps form a standard subfield of Markov process theory in 
the near future. Different examples suggest different theoretical questions; our 
examples suggest the following problem. 

Problem 6.1. Can one describe explicitly all function-valued diffusions X( a, t) with 
the property that for each d and (a,, . . . , ad), the process (X(a,, t), . . . , X(Q, t)) 
is a d-dimensional diffusion, and such that there is a limiting stationary distribution 
(X(a)) with continuous paths? 

(B) Approximate independence of subprocesses. Let (X,(t); t 2 0) be a stationary 
process, depending on a parameter A, taking values in a space S. For i = 1, 2 let 
Xi(t) =J;(A, X,(t)) for some functions f; taking values in a space Si. Think of X,(t) 
as some complicated process, and the X:(t) as simpler subprocesses defined by 
ignoring much of X,. A principle well known in physics applications (“slaving”, 
in the terminology of [6]) states: if the times taken for the two subprocesses X;(t) 
to relax to equilibrium are of different orders of magnitude, then at equilibrium the 
subprocesses Xi(t) are approximately independent. It is straightforward to formu- 
late and prove this as a limit theorem. 

Proposition 6.2. Suppose for i = 1,2 there are constants c,(A) and processes Zi( t) in 
D([O, co), Si) such that 

(i) X1( cc,(A)) 4 Z’(t) us A + 00, in the sense ofjinite-dimensional distributions; 
(ii) cl(A)/cZ(A) + 0 us A + co; 

(iii) Z’(t) is ergodic. 
Then, us A + co, 

(iv) (X:(tc,(A)), X’,(tc,(A))) 3 (Z’(t), Z’(t)) in the sense ofjinite-dimensional 
distributions, and in particular 

(v) (X:(O), X2,(0)) 2 (Z’(O), Z2(0)), 
where in (iv) and (v) the limit processes Z’ are independent. 

Our parking lot process offers a very nice application of this principle. In Proposi- 
tions 2.5, 3.8, 4.7 and 5.6 we have seen that as A + ~0 the subprocesses Mh(x, t), 
Y,(u, t), Z,(u, t) and &(t) converge to the limit processes N(x, t), Y(u, t), Z(u, b) 
and l(t). Each result involves a different time resealing (by factors A-‘, AleZb, 1, 
log A1’2). Proposition 6.2 shows that for the stationary parking lot process, these 
subprocesses converge jointly to the limit ((N(x)); ( Y(u)); (Z(u)); 5) in which 
the four limit subprocesses are independent. Informally, for large A the stationary 
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behavior of the parking lot process is approximately independent on the four regions 
of the parking lot. In particular, for large A the position R of the rightmost car is 
appoximately independent of the number S(c0) of parked cars, a result which is 
perhaps surprising until one realizes that R(t) and S(a, t) evolve on different 
time-scales. 

(C) Relations between limit processes, and self-similarity. From partial sums of 
i.i.d. Bernoulli variables we can derive, by normalizing and taking limits, two types 
of limit process: Poisson process and Brownian motion. Moreover from the Poisson 
process we can derive, by again normalizing and taking limits, Brownian motion. 
Our parking lot process exhibits similar but more complex behavior. We have three 
limit space-time processes. Proposition 3.9 says that from the right tail of the 
geometric process we can derive the exponential process. Similarly, from the left 
tail of the truncated Normal process we can also derive the exponential process. 

Proposition 6.3. Let (Y(a)) and (Z(a)) be the stationary distributions of the ex- 

ponential and truncated Normal processes. Let Z(a) = a -Z(a). Then (a(aK); 

-0S<a<O)Z(Y(a); -W<a<O) asK+co. 

Just as we cannot recover the Poisson process from Brownian motion, we cannot 
recover the other processes from the exponential process. One explanation is that, 
like Brownian motion, the exponential process has a self-similarity property that 
the other processes do not have (and of course self-similarity is preserved under 
normalization and weak limits). 

Proposition 6.4. For c> 0, (cY(ac); a ~0) 2 (Y(a); a CO). 

The space-time exponential process thus has the properties of being a stationary 
diffusion in the time variable, and self-similar in the space variable. Perhaps there 
is an interesting class of processes with such properties? 
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