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0. Introduction

If you had asked a probabilist in 1970 what was known about
exchangeability, you would 1ikely have recaived the answer "There's de Finetti';
theorem: what else is there to say?" The purpose of these notes is to dispel
this (still prevalent) attitude by presenting, in Parts 1I-1V, a variety
of mostly post-1970 results relating to exchangeability. The selection of
topics is biased toward my own interests, and away from those areas for
which survey articles already exist. Any student who has taken a standard
first year gradﬁate course in measure-theoretic probability theory (e.g.
Breiman (1968)) should be able to follow most of this article; some sections
require knowledge of weak convergence.

In Bayesian language, de Finetti's theorem says that the general infinite
exchangeable sequence (Zi) is obtained by first picking a distribution &
at random from some prior, and then taking (Zi) to be 7.i.d. with distribu-
tion ©. Rephrasing in the language of probability theory, the theorem says
that with (Zi) we can associate a random distribution a(w,+) such that,
conditioné1 on a = 8, the variables (Zi) are i.i.d. with distribution 8.
This formulation is the central fact in the circle of ideas surrounding
de Finetti's theorem, which occupies most of Part I. No previous knowledge
of exchangeability is assumed, though the reader who finds my proofs overly
concise should take time out to read the more carefully detailed account in
Chow and Teicher (1978), Section 7.3.

Part II contains results complementary to de Finetti's theorem.
Dacunha-Castelle's "spreading-invariance" property and Kallenberg's stopping
time property give conditions on an infinite seauence which turn out to be
equivalent to exchangeability. Kingman's "paintbox" description of exchange-

able random partitions leads to Cauchy's formula for the distribution of
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cycle lengths in a uniform random permutation, and to results about compo-
nents of random functions. Continuous-time processes‘with interchangeable
increments are discussed; a notabie result is that any continuous-path
process on [0,=)} (resp. [0,1]) with interchangeable increments is a mix-
“ture of processes which are Tinear transformations of Brownian motion (resp.
Brownian bridge). The subsequence principle reveals exchangeable-Tike
sequences Turking unsuspectedly within arbitrary sequences of random
variables. And we discuss exchangeability in abstract spéces, and weak
convergence issues.

The class of exchangeable sequences is the class of processes whose
distribﬁtions are invariant under a certain group of transformations; in
Part ITI related invariance concepts are described. Affer giving the
abstract result on ergodic decompositions of measures invariant under a
group of transformations, we specialize to the setting of partial

exchangeability, where we study the class of processes (X1: i€1l) idnvariant

under the action of some group of transformations of the index set 1.
Whether anything can be proved about partially exchangeable classes in
general is a challenging open problem; we can only discuss three particular
instances. The most-studied instance, investigated by Hoover and by myself,
is partial exchangeability for arrays of random variab]eé, where the picture
is fairly complete. We also discuss partial exchangeability on trees of
infinite degree, where the basic examples are reversible Markov chains; and
on infinite-dimehsiona] cubes, where it appears that the basic examples are
random walks, though here the picture remains fragmentary.

Part IV outlines other topics of current research. "A now-classical
result on convergence of partial sum processes from sampling without replace-

ment to Brownian bridge leads to general gquestions of convergence for



triangular arrays of finite exchangeable sequences, where the present picture -
is unsatisfactory for applications. Kingman's uses of exchangeability in
mathematical genetics will be sketched. The theory of sufficient Statistic;
and mixtures of processes of a specified form will also be sketched--actually,
this topic is perhaps the most widely studied relative of exchangeability,

but in view of the existing accounts in Lauritzen (1982) and Diaconis and
Freedman (1982}, 1 have not emphasized it in these notes. Kallenberg's
stopping time approach to continuous-time exchangeability is illustrated

by the study of exchangeable subsets of [0,=). A final section provides
references to work related to exchangeability not elsewhere discussed:

I apologize in advance to those colleagues whose favorite theorems I have

overlooked.

General references. Chow and Teicher (1978) is the only textbook (known to

me) to give more than a cursory mention to exchangeability. A short but
elegant survey of exchangeability, whose influence can be seen in these notes,
has been given by Kingman (1978a}. 1In 1981 a conference on "Exchangeability
in Probability and Statistics" was held in Rome to honor Professor Bruno
de Finetti: the conference proceedings (EPS in the References) form a sample
of the current interests of workers in exchangeability. Dynkin (1978) gives
a concise abstract treatment of the "sufficient statistics" approach in
several areas of probability including exchangeability.

The material in Sections 13 and 16 is new, and perhaps a couple of

proofs elsewhere may be new; otherwise no novelty is claimed.

Notation and terminology. The mathematical notation is -intended to be stan-
dard, so the reader should seldom find it necessary to consult the list of

notation at the end. As for terminoclogy, "exchangeable™ is more popular



and shorter than the synonyms "symmetrically dependent” and "interchangeable”.
I have introduced "directing random measure" in place of Xallenberg's
"canonical raﬁdom measure", partly as a more vivid metaphor and partly for
more grammatical flexibility, so one can say "directed by ...". I use
"partial exchangeability" in the narrow sense of Section 12 (processes with
certain types of invariance) rather than in the wider context of Section 18
(processes with specified sufficient statistics). "Problem" means "unsolved

problem" rather than "exercise": if you can solve one, please let me know.

Acknowledgements. My thanks to Persi Diaconis for innumerable invaluable

discussions over the last several years; and to the members of the audiences
at St. Flour and the Berkeley preview who detected errors and contributed
to the presentation. Research supported by National Science Foundation

Grant MCSB80-02698.



PART 1

The purpose of Part I is to g%ve an account of de Finetti's theorem
and some straightforward consequences, using the language and techniques
of modern probability theory. I have not attempted to assign attributions
to these results: historical accounts of de Finetti's work on exchangeability
and the subsequent development of the subject can be found in EPS (Foreword,

and Furst's article) and in Hewitt and Savage (1955).

1. Definitions and immediate consequences

A finite sequence (Z],...,ZN) of random variables is called
exchangeable {or N-exchangeable, to indicate the number of random variables)

if
9 Ry
(]'1) (Z]:---sZN) - (Z,ﬂ.(]):---:ZW(N)) »

each permutation w of {1,....,N}. An infinite sequence (21’22"") is

called exchangeable if

0

(1.2) (2452y5--2) & (20 Za(z)re-)

for each finite permutation 7w of {1,2,...}, that is each permutation

for which #{i: m(i)#1i} < =. Throughout Part I we shall regard random

variables Zi as real-valued; but we shall see in Section 7 that most

results remain true whenever the Zi have any "non-pathological" range space.
There are several obvious reformulations of these definitions. Any

finite permutation can be obtained by composing permutations which trans-

pose 1 and n > 1; so (1.2) is equivalent to the at first sight weaker

condition



) 2 (Zn,Z Z,,Z ee) 3

--,z -I, n+-l,-

(1.3) (Z L L ,Z

]"-- n-]: n n+]g--- 2,. n-]’

gach n > 1. In the other direction, (1.2) implies the at first sight

stronger condition

(1.4) (Zy255255-+) 2

each sequence (ni) with distinct elements. In Section 6 we shall see some

non-trivially equivalent conditions.

sampling variables. The most elementary examples of exchangeability arise

in sampling. Suppose an urn contains N balls labelled XpoweesXye The

results Z,,Z of an infinite sequence of draws with replacement form

12Lpse-
an infinite exchangeable sequence; the results Z]""’ZN of N draws without
replacement form a N-exchangeable sequence (sequences of this Jatter type

we call urn sequences).

Both ideas generalize. In the first case, (Zi) is i.i.d. uniform on

{x ,X,}; obviously any i.i.d. sequence is exchangeable. In the second

| R
case we can write

(1.5) (ZyseensZy) = (Xoagqyaess X))

where m* denotes the uniform random permutation on {1,...,N}, that is
P(n*=xw) = 1/N! for each m. More generally, let (Y1""’YN) be arbi-

trary random variables, take 7% independent of (Yi)’ and then

(1.6) (21""’ZN) = (Yﬁ*(])""’Yﬁ*(N))

-

defines a N-exchangeable sequence. This doesn't work for infinite sequences,
since we cannot have a uniform permutation of a countable infinite set

(without abandoning countable additivity--see (13.27)). However we can



define a uniform random ordering on a countable infinite set: simply define
i¥i to mean 5i(w)-i gj(w), for i.i.d. continuous (51,52,...). This

trick is useful in several contexts--see {11.9), (17.4), (19.8).

Correlation structure. Exchangeability resiricts the possible correlation

structure for square-integrable sequences. Let (Zi) be N-exchangeable.

Then there is a correlation p = p(Zi,Zj), i# j. Me assert

(1.7) o > =1 , with equality iff }Z, is a.s. constant.
— N-1 i

In particular, p = -1/(N-1) for sampling without replacement from an
N-element urn. To prove (1.7), linearly scale to make EZi = 0, EZ? =1,
and then

0<e(z)?=ers+ ]] E2.2

.= N+N(N-T)o .
T<igjeN 19 :

So o> -1/(N-1), with equality iff [Z, = 0 a.s.

Observe that {1.7) implies
(1.8} p > 0 for an infinite exchangeable sequence.

Conversely, every p < 1 satisfying (1.7) (resp. (1.8)) occurs as
the correlation in some N-exchangeable (resp. infinite exchangeable)

sequence. To prove this, let (gi) be i.i.d., Egi = 0, Eg? = 1. Define

I, =g, +c 1<i<N,

N.
1 E
J:

i

for some constant c. Then (Zi) js N-exchangeable, and a simple computation
gives p =1 -(Nc2-+2c-+1)-]. As ¢ varies we get all values 1 > p > -(N-])-].
(The case ¢ = -1/N which gives p = -1/(N-1) will be familiar from

statistics!). Of course we can get p =1 by setting Z1= see = ZN' In



the infinite case, take (§.: i>0) i.i.d. and set

1

) Zi = CcEgtEy s T > 1
for some constant c¢. Then (Zi) is an infinite exchangeable sequence with

2

p = cz/(c +1), and as c¢ varies we get all values 0 <p < 1.

Gaussian exchangeable sequences. Since the distribution of a Gaussian

sequence is determined by the covariance structure, the results above enable
us to describe explicitly the Gaussian exchangeable sequences. Letl

XO’X1’X2"" be independent N{0,1). The general N-exchangeable Gaussian

sequence is, in distribution, of the form

N

L

(1.9) Z; = a + in +C
J

X. , 1<1<N
19 -

for some constants a, b, c. The general infinite exchangeable sequence

is, in distribution, of the form

(1.10) Z,=a+bXg+ Xy, 121

0

for some constants a, b, ¢.

Extendibility. An N-exchangeable sequence (Zi) is M-extendible (M > N) if

],...,iN) for some M-exchangeable sequence (ii)' By (1.7)

there exist N-exchangeable sequences which are not (N+1)-extendible; for

, D (5
(Z]""’ZN) (Z
example, sampling without replacement from an urn with N elements. This
suggests several problems, which we state rather vaguely.

(1.11) Problem. Find effective criteria for deciding whether a given

N-exchangeable sequence is M-extendible.



(1.12) Problem. What proportion of N-exchangeable sequences are M-extendible?

Such problems seem difficult. Somé results can be found in Diaconis (1977),

Crisma {1982) and Spizzichino (1982).

Combinatorial arguments. Many identities and inequalities for i.i.d. sequences

are proved by combinatorial arguments which remain valid for exchangeable
sequences. Such results are scattered in the Jiterature; for a selection,

see Kingman (1978) Section 1 and Marshall and 0lkin (1979).

2. Mixtures of i.i.d. sequences

Everyone agrees on how to say de Finetti's theorem in words:
"An infinite exchangeable sequence is a mixture of i.i.d. sequences.”

But there are several mathematical formalizations (at first sight different,
though in fact equivalent) of the theorem in the literature, because the
concept of "a mixture of i.i.d. sequences" can be defined in several ways.

Our strategy is teo discuss this concept in detail in this section, and defer
discussion of exchangeability and de Finetti's theorem until the next section.

be probability distributions on R, and Tet

Let 6.,....0

1 k
PysesesPy > 0, Xpi = 1. Then we can describe a sequence (Yi) by the

two-stage procedure:

(2.1) (i) Pick e at random from {8;,....8. 1, P(6=0.) = p;3
(ii) then let (Yi) be i.i.d. with distribution 8.

More generally, write P for the set of probability measure on R, Tlet @

he a distribution on P, and replace (i) by

(i') Pick © at random from distribution 8.
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Here we are merely giving the familiar Bayesian idea that (Yi) is i.i.d.
(8), where 8 has a prior distribution @. The easiest way to formalize

this verbal description is to say

1>

(2.2) P(YEA) = J e”(M)e(ds) 3 ACR
~ p

where Y = (Y1’Y2"")’ regarded as a random variable with values in Rw, and

8° = gx@x-+++ 135 the distribution on R® of an i.i.d. (8) sequence.

This describes the distribution of a sequence which is a mixture of i.1.d.

sequences. This is a special case of a general idea. Given a family
{uYi vET} of distributions on a space S, call a distribution v a

mixture of (uY)'s if

f
(2.3) v(e) = ery(-)e(dy) for some distribution @ on T .

But in practice it is much more convenient to use a definition of “(Yi) is

a mixture of i.i.d. sequences" which involves the random variables Yi
explicitly. To do so, we need a brief digression to discuss random measures
and reguiar conditional distributions.

A random measure a« 1is simply a P-valued random variable. So for

each w there is a probability measure o(w) and this assigns probability
olw,A) to subsets A CR. To make this definition precise we need to

specify a o-field on P: the natural o-field is that generated by the maps
9 — B(A) ; measurable ACR .

The technicalities about measurability in P that we need are straight-
forward and will be omitted. We may equivalently define a random measure

as a function ofw,A), w€, A CR, such that
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alw,*) is a probability measure; each w €0 .

a{+,A) is a random-variable; each A CR .

Say o = a, a.s. if they are a.s., equal as random variables in P; or
equivalently, if a1(-,A) N az(-,A) a.s. for each A CR.

Given a real-valued random variable Y and a o-field F, a regular

conditional distribution (r.c.d,) for Y given F is a random measure o
such that

a+,A) = P(YEA|F) a.s., each ACR .

It is well known that r.c.d.'s exist, are a.s. unique, and satisfy the

fundamental property

(2.4) E(q(X,Y)|F) = Jg(x,y)u(w,dy) a.s.; XE€F, g(X,Y) integrable.

We now come to the key idea of this section. Given a random measure
a, it is possible to construct (Yi) such that conditional on « = 6 (where
8 denotes a generi¢ probability distribution), the sequence (Yi) is i.i.d.
with distribution 6. One way of doing so is to formalize the required
properties of (Yi) in an abstract way_(2.6) and appeal to abstract existence
theorems to show that random variables with the reguired properties exist.
We prefer to give a concrete construction first.

Llet F(8,t) = 8(-»,t] be the distribution function of 6, and let
F'1(8,x) = inf{t: F(B,t) >x} be the inverse distribution function. It is
well known that if £ is uniform on (0,1) ("€ is U(0,1)") then F™ (8,E)
is a random variable with distribution 6. So if (gi) is an i.i.d. U(0,1)
sequence then (F-](S,Ei)) is an i.1.d. (8) sequence., Now given a random

measure a, take (Ei) as above, independent of «, and let

5o el
(2.5) | (PR CR-P I
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This construction captures the intuitive idea that, conditional on o = 8,

~

the variables ?1 are i.1i.d. {8).  The abstract properties of (Yi’ i>1; o)

are given in

(2.6) Definition. Let o be a random measure and let Y = (Yi) be a

sequence of random varibles., Say Y is a mixture of i.7.d.'s directed by

a if

(a(w))” 4is a r.c.d. for Y given ofa) .

Plainly this impiies that the distribution of Y is of the form (2.2),
where @ is the distribution of a. We remark that this idea can be
abstracted to the general setting'of (2.3); X is a mixture of (uY: YET)
directed by a random eiement 8: Q—T if Ha(w) is a r.c.d. for X
given of{B). Think of this as the "strong" notion of mixture corresponding
to the "weak" notion (2.3).

The condition in {2.6) is equivalent to
(2.6a) P(YiEEAi,'Igjﬂgnla) = ?a(m,Ai) ; all AT""’A , n>1.

And this splits into two conditions, as follows.

(2.7) Lemma. Write F = o{a). Then Y is a mixture of i.i.d.'s directed

by a iff

(2.8) (Yi:

P(Y.€A,, 1<i<nl|F) = T P(Y, €A, |F).
L - i i

i>1) are conditionally independent given F, that is

{2.9) the conditional distributicn of Yi given F is a; that is, -

P(Yi EA_] |F) = a(w,Ai).
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Readers unfamiliar with the concept of conditional independence defined in
(2.8) should consult the Appendix, which lists properfies (A1)-(A9) and
references.

Lemma 2.7 suggests a definition of "conditionally i.1.d." without

explicit refernece to a random measure.

(2.10) Definition. Let (Yi) be random variables and let F be a o-field.

Say (Yi) is conditionally i.i.d. given F if (2.8) holds and if
{(2.11) P(YiEA[F) = P(YjEA]F) a.s., each A, i # j.
Here is a useful technical Temma.

(2.12) Lemma. Suppose (Yi) are conditionally i.i.d. given F. let o be

ar.c.d. for Y, given F. Then

(a) (Y;) is a mixture of i.i.d.'s directed by <.

(b) Y and F are conditionally independent given .

Proof. By (2.11), for each i we have that o is a r.c.d. for Y,
given F. So by (2.8), P(YiGEAi, T<iz<n|F) =1 a(-,Ai). Now o 1is
F-measurable, so conditioning on o gives P(YiLEAi, T<i<nla) =T a(-,Ai).
This implies (a) by (2.6a). And it also implies i

P(YEA|F) = P(YEA]a) a.s., AC R,
which gives (b) by a standard property of conditional independence (A3).

We have been stating results for infinite sequences (Yi)’ but the
results so far are true for finite sequences also. Suppose now we are toid
that a sequence (Y{) is a mixture of i.i.d.'s for some unspecified random

measure &. Can we determine a from (Yi)? For finite seguences the
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answer is no, in general (4.7). But for infinite sequences we can.

befine A : R"—7P and A: E—P by

(2.13) A {xXs...sx.) =0V T6 , the empirical distribution of (x,);
n"l n ¥ X j

(2.14) A(x)

-~

weak-1imit An(X]""’xn)
N+

=6 say, if the 1imit does not exist,

0 -
(8, denotes the degenerate distribution SX(A) = 1(xEA))' If X = (Xi)

is an infinite i.i.d. {8) sequence, then the Glivenko-Cantelli theorem says
that A(X) = © a.s. Thus for a mixture (?1) of i.i.d.'s directed by «

we have A(Q) = a a.s. by (2.6) and the fundamental property of r.c.d.'s.

Hence

(2.15) Lemma. If the infinite sequence Y is a mixture of i.i.d.'s, then

it is directed by a = A(Y), and this directing random measure is a.s.

unique.

So we can talk about "the" directing random measure. Since A{x) is

unchanged by changing a finite number of coordinates of x, we have

-~

(2.16) Lemma. Let the infinite sequence Y be a mixture of i.i.d.'s, Jet

o be the directing random measure. Then o 7is essentially T-measurable,

where T 1is the tail o-field of Y.

Keeping the notation of Lemma 2.16, we see that the following are a.s.

equal.

(2.17) (a) P(YiEAi,lf_if_nlYm,Y .}, m>n

mel e

(b) P(YiEAi,Tiif_nlYm,Y ..30), M >N

ml 7
(c) P(Y €A, T<izn|T)
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(d) P(Yi EAi’ 1<i<n|a)

(e) Ha('sAi)-
i
Indeed, (a) = (b) since the conditioning is the same by Lemma 2.16; (b) =

(d)} by conditional independence; (d) = (e) by Lemma 2.7; and (b) = (¢} = (d)

since ofa) CT C U(Ym,Y .3¢) a.s. These identities establish the

m+l’T

next lemmas.

(2.18) Lemma. (Y,) is a mixture of 1.i.d.'s if and only if (Y;) is

conditionally i.i.d. given T.

(2.19) LEEEé- If the infinite sequence Y s a mixture of 1.i.d.'s then
it is directed by
(a)
(b) ar.c.d. for Y, given (Y yo¥pepe--c)s M2 1.

»H]

r.c.d. for Y, given T;

Observe that Lemmas 2.15 and 2.19 provide three ways to obtain (in
principle, at least) the directing random measure. Each of these ways is

useful in some circumstances.

Facts about mixtures of i.i.d.'s are almost always easiest to prove
by conditioning on the directing measure. Let us spell this out in detail.

For bounded g: R—R define g: P—R by

(2.20) 3(6) = Jg ds .

By (2.9) and the fundamental property of r.c.d.'s

(2.21) E(Q(Yi)lﬂ) = g{a} a.s., and hence Eg(Yi) = Egla) .

And using the conditional independence (2.8),
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(2.22) E(g1(Y1)g2(Yj)la) = a](a)éz(a) a.5., 1 # j,. and hence

These extend to unbounded g provided lg(Y])I, lgl(Yi)gz(Yj)l are inte-
grable. Llet us use these to record some technical facts about moments of
Y. and o. For a distribution 8 1let mean(8), var(e), absr(e) denote
the mean, variance and rth absolute moment of 6. Let V(Y) denote the

variance of a random variable Y. The next lemma gives properties which

follow immediately from (2.21) and (2.22).

(2.23) Lemma.
(a) ElYilr = E abs (o).

(b) If E|Y1.| is finite, then EY, =& mean{a}.

(c) If EY? is finite, then

[t}

(i) EY.Y, E(mean(a))z, i# 3

i
(i) v(yy)

1

E absz(a)- (E mean(u))2 = E var{a) + V{mean{a)).

Most classical limit theorems for i.i.d. sequences extend immediately to

mixtures of i.i.d. sequences. For instance, writing Sn = Y] oo +Yn,
(2.24) 1im n']Sn = mean{a) a.s., provided EIY}l < @,
F s

Sn- nemean(a) 5
(2.25) 1im sup 77 * 1 a.s., provided E Y.I <o,
n  {var(a)+2n logTlog{n)}

2

Sn-n-mean(u) D
» Normal{0,1) as n-—w, provided E Y] <=

(2.26) 72

{n var{a)}

Let us spell out some details. The fundamental property of r.c.d.'s says
P{Tim n_1Sn==mean(a)]a) = h(a), where h(8) = P{1im n'1(x]+---+xn) =mean(8))

for (Xi) i.i.d. (8). The strong law of Targe numbers says h(8) =1
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provided abs1(e) < e, So {2.24) holds provided abs1(a) < » a,s., and by
Lemma 2.23 this is a consequence of EIY]I < e, The same argument works
for (2.25), and for any a.s. convergence theorem for i.i.d. variables.

For weak convergence theorems like (2.26), one more step is needed. Let

g: R—R be bounded continuous. Then

Sn - nemean(a)
2) IU-) = gn(o'-)

E(g(
{n Var(a)}]/

where
n

Xs - n-mean(8)

(8) = € g{
°n ? {n var(8)}

The central Timit theorem says qn(e)-—+Eg(V) when absz(e) < o, where

V indicates a N(0,1) variable. Hence

Sn -nemean(a)
}]/2

E gf ) — Eg(V)

{n var(a}

provided absz(a) < = a,5., which by Lemma 2.23 is a consequence of

E Y2 < =, The same technique works for any weak convergence thecrem for

1
j.i.d. variables.

The form of results obtained in this way is slightly unusual, in that
random normalization is involved, but they can easily be translated into a
more familiar form. To ease notation, suppose EY% <o and mean{a) =0
a.s. (which by Lemma 2.23 is equivalent to assuming EY, =0 and (Yi)

uncorrelated). Then (2.25) translates immediately to

S
1im sup n 177 = {var*(oz)}w2 a.s.
n=  {2n loglog(n)}

And (2.26) translates to
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n-1/2 D 1/2

(2.27} Sn — Ve{var(a)} 3

where V is Normal(0,1) independent of «. To see this, observe that

the argument for (2.26) gives

Sn - n-mean{a) D
(var(a), 177) — (var{a) V),
{n var{a)}

and then the continuous mapping theorem gives (2.27). Finally, keeping

the assumptions above, (2.22) shows that var{a) = 02, constant, iff

EY? = 02 and EY%Y? = 04, so that these extra assumptions are what is

_T/ZSn N N(O,cz). Weak convergence theorems for

needed to obtain n
mixtures of i.i.d. sequences are a simple class of stable convergence
theorems, described further in Section 7.

Finally, we should point out there are occasional subtleties in
extending results from i.i.d. segquences to mixtures. Consider the weak law
of large numbers. The set S of distributions 6 such that

-1 8 .
(2.28) n ; X; 20 for (X;) i.i.d. {9)
is known. For a mixture of i.i.d. sequences to satisfy this weak 1aw, it
is certainly sufficient that the directing random measure satisfies
a{w) € § a.s., by the usual conditioning argument. But this is not neces-
sary, because {informally speaking) we can arrange the mixture to satisfy
the weak law although o takes values 6 such that convergence in (2.28)
holds as n—e through some set of integers with asymptotic density one
but not when n— through all integers. (My thanks to Mike Klass for
this observation.)

Another instance where the results for mixtures are more complicated

is the estimation of LP norms for weighted sums Eaixi‘ Such estimates
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are given by Dacunha-Castelle and Schreiber (1974} in connection with Banach
space questions; see also (7.21).
We end with an intriguing open problem.
n R n o _
(2.29) Problem. tLet S = 1Z1xi’ S, = izlxi, where each of the sequences
(xi), (ii) is a mixture of i.i.d. sequences. Suppose Sn 2 §n for each
n. Does this imply (X.) 2 (ﬁi)?

3. de Finetti's theorem

Our verbal description of de Finetti's theorem is now a precise

assertion, which we restate as

(3.1) de Finetti's Theorem. An infinite exchangeable sequence (Z;) is a

mixture of i.i.d. sequences.

Remarks
(a) The converse, that a mixture of i.i.d.'s is exchangeable, is plain.
(b) As noted in Section 1, a finite exchangeable sequence may not be
to an infinite sequence, and so a finite exchangeable sequence may not be
a mixture of i.i.d.'s.
(¢) The directing random measure can in principle be obtained from

lemma 2.15 or 2.19.

Most modern proofs of de Finetti's theorem rely on martingale conver-
gence. We shall present both the standard proof (which goes back at least
to Lodve (1960)) and also a more sophisticated variant. Both proofs

contain useful techniques which will be used later in other settings.
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First proof of Theorem 3.1 Let
Gn = o{fn(Z},...,Zn): f symmetric}
Hn = G{Gn, Zn+1’zn+2""} .

Then H OH 4. N2 1. Exchangeability implies
0 .
(Z.i:Y) - (ZI sY) s 1 f.1 f_n 3

for Y of the form (fn(zi""’Zn)’zn+1’zn+2"")’ f symmetric, and hence

for all Y € Hn. So for bounded ¢,

1

E(o(Zy) M) = E(e(Zg)[H) » T <i<n

IR
E(n ,E]qb(z,-)lHn)
1:

(3.2) !

¢(Zi) , since this is Gn-measurab1e.

13

i=]

The reversed martingale convergence theorem implies

n
n- )

j=]

(3.3)

6(Z.) — E(o{Z;)IH) a.s., where H =NH .
i 1 n n

For bounded ¢(x],...,xk), the argument for (3.2) shows that for n > K

1 n n _
E($(Zys.0esZy ) |H ) = Yoeee Y o(Zs . 2

where Dk,n = {(J],...,Jk): 1_nghgn, (Jr) distinct}. VUsing martingale

convergence, and the fact that #0, _ is D(nk']) as n— for fixed Kk,

H

. ""’Zj ) — E(¢(Z1,...,Zk)]H) a.s.

k

By considering ¢(x],...,xk) of the form ¢1(XI)¢2(XZ)"'¢k(Xk) and using
(3.3),
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K k
EC 16 .(Z )IH) = 1 E(e (Z)){H) -
r=1 : r=1

This says that (Zi) is conditionally i.i.d. given H, and as discussed in
Section 2 this is one of several equivalent formalizations of "mixture
of i.1.d. sequences".

For the second proof we need an easy lemma.

(3.4) lemma. Let Y be a bounded real-valued random variable, and let

FCG be o-fields. If E(E(Y]G))2 = E(E(YIF))Z, in particular if
e(v[F) 2 E(Y|6), then E(Y[G) = E(Y|F) a.s.

Proof. This is immediate from the identity
2 _ 2 2
E(E(Y|G) -~ E(Y]F))" = E(E(Y]G))" - E(E(Y]F))" .

Second Proof of Theorem 3.1. Write F = G(Zn+1’zn+2"")’ 50 ? Fo=Ts

the tail o-field. We shall show that (21) is conditionally i.i.d. given

ea s P
T. By exchangeability, (z}’ZZ’ZS"") z {21’Zn+]’zn+2"") and so
E(¢(Z1)]F2) 2 E(¢(Zi)an) for each bounded ¢: R—R. The reversed
martingale convergence theorem says E(¢(21)]Fn)-—+E(¢(Z])IT) a.s. as
n—«, and so E(¢(Z])|F2) 2 E(¢{ZT)|T). But Lemma 3.4 now implies there

is a.s. equality, and this means (A4)

Z and F

1 o are conditionally independent given T.

The same argument applied to (zm,zm+1,...) gives

Zm and Fm+ are conditionally independent given T; m > 1.

1

These imply that the whole seguence (Zi; i>1) {is conditionally indepen-

dent given T.
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. [,
For each n > 1, exchangeability says (ZI’Zn+1?Zn+2"") z

(zn,zn+1,zn+2,...), and so E(¢(Zj)|Fn) = E(¢(Zn)[Fn) a.s. for each
bounded ¢. Conditioning on T gives E(¢(Z1)IT) = E(¢(Zn)|T) a.s. This

is (2.11), and so (Zi; i>1) is indeed conditionally i.i.d. given T.

Spherically symmetric sequences. Ancther classical result can be regarded

as a specialization of de Finetti's theorem. Call a random vector

n n

YU o= (Y ..,Yn) spherically symmetric if uy" = ¥'  for each orthogonal

1
nxn matrix U. Call an infinite sequence Y spherically symmetric if y"

is spherically symmetric for each n. It is easy to check that an i.i.d.
Normal N(O,v) sequence is spherically symmetric; and hence so is a mixture
(over v) of i.i.d. N{O,v) seguences. On the other hand, computations

with characteristic functions (Feller (1971) Section II1.4) give

(3.5) Maxwell's Theorem. An independent spherically symmetric sequence has

N(O,cz) distribution, for some 02 > 0.

Now a spherically symmetric sequence is exchangeable, since for any permu-
tation © of {1,...,n}, the map (y],...,yn)-—»(yw(]),...,yﬁ(n)) is a

rotation. We shall show that Maxwell's theorem and de Finetti's theorem

imply

(3.6) Schoenberg's Theorem. An infinite spherically symmetric sequence Y

is a mixture of i.1.d. N(O,cz) sequences.

This is apparently due to Schoenberg (1938), and has been rediscovered many
times. See Eaton {1981), Letac (198la) for variations and references.
This result also fits naturally into the "sufficient statistics" setting

of Section 18.
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Proof. Llet U be a nxn orthogonal matrix, let v o= (Y]""’Yn)’
0

y" ). By considering v , ah orthogonal
‘ OIm h

yem ooy LY

n+l’""’ n+m
(m#n) x {m+n) matrix, we see (UYn,?n’m) 2 (Yn,Vn’m). Letting m—« gives
ngny, P ,,ngn =n P
(UY ' ,Y') ={Y ,Y'), where Y = (Yn+1’Yn+2"")' By conditioning on the
tail o-field T C o(Yn), we see that the conditional distribution of "
and of UY" given T are a.s. identical. Applying this to a countable
dense set of orthogonal nxn matrices and to each n > 1, we see that the
conditional distribution of Y given T s a.s. spherically symmetric.
But de Finetti's theorem says that the conditional distribution of Y

given T s a.s. an i.i.d. sequence, so the result follows from Maxwell's

theorem.

Here is a slight variation on de Finetti's theorem. Given an exchange-

able sequence Z, say Z is exchangeable over V if

D . .
(3.7) (V,Z],Zz,...) z (V,Zﬂ(1),2ﬂ(2),...) , all finite permutations .

Similariy, say Z 1is exchangeable over a g-field 6 if (3.7) holds for

each V € G.

(3.8) Proposition. lLet I be an infinite sequence, exchangeable over V.

Then {(a} (Zi) is conditionally i.i.d. given (V,a), where o 1is the

directing random measure for Z.

(b) Z and V are conditionally independent given o.

Proof. Let 21 = (V,Zi). Then 2 is exchangeable, so de Finetti's

theorem implies

(ii) is conditionally i.i.d. given &,

where & 1is the directing random measure for Z. So in particular,

-~
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(Zi) is conditionally i.i.d. given & .

But applying Lemma 2.15 to 7, wesee o= 6V><a, and so o{a) = o(V,a).

This gives (a). And (b) follows from {a) and Lemma 2.12(b).

We remark that the conditional independence assertion of (b) is a
special case of a very general result, Proposition 12.12. Proposition 3.8
plays an important role in the study of partial exchangeability in Part III.
As a simple example, here is a version of de Finetti's theorem for a family

of sequences, where each is "internally exchangeable".

(3.9) Corollary. For 1< <k let 23 =(Z}, i>1) be exchangeable,

Suppose further that for each jo and each finite permutation Eg_héve

(z) Y (23), where

33 _ =3 . .
Z._Z]"J#JO

55 .
iy » 3= dg -

Let o5 be the directing measure for 7', and let F = o(aj, 1<3<k).

Then (a) (Zg: 1<j<k, 1>1) are conditionally independent given F.

{b) o, is a r.c.d. for Zg given F.

This result goes back to de Finetti, and has been rediscovered many
times. In Bayesian language, the family is obtained as follows.
(i) Pick a k-tuple (81""’9k) of distributions according to a prior
€ on Pk;
(ii) then for each j let the sequence (Zg, i>1) be i.i.d. (ej),

independent for different j.
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Proof. Fix J. Proposition 3.8 shows
Zj and _o(Zm: m#3j) are conaitionally independent given aj.
Then de Finetti's theorem for Zj yields

Z%,Zg,...; o(Z™: m#j) are conditionally independent given E

. i .
aj is a r.c.d. for Zi given @
Since o(aj) CFC c(aj, M. m#j) this is equivaient to

z%,zg,...; o(Z™: m#3j) are conditionally independent given F;

aj is & r.c.d. for Zg given F.
Since j is arbitrary, this establishes the result.

Here is another application of Proposition 3.8. C(Call a subset B of

R® exchangeable if

(x],xz,...) €B implies (xw(]),x“(z),...) € B

for each finite permutation =. Given an infinite sequence X = (Xi)’

call events {X€B}, B exchangeable, exchangeable events, and call the

set of exchangeable events the exchangeable o-field Ey. It is easy to check

that €, 2T, &.5., where T

X X X is the tail o-field of X.

(3.10) Corollary. If Z is exchangesble then E, =T, = o(a) a.s.

Proof. For A€E, the random variable V = 'IA satisfies (3.7), and
so by Proposition 3.4, V and Z are conditionally independent given a.
Hence &, and Z are conditionally independent given «. But EZ C a(2)

and so EZ and EZ are conditionally independent given a, which implies
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(A6) that E, C ola) a.s. But o(a) C T, a.s. by Lemma 2.16, and

z
TZ - Ez a.s.

In particular, Corollary 3.10 gives the well-known Hewitt-Savage 0-1 law:

{3.11) Corollary. I X is i.1i.d. then EX is trivial.

This can be proved by more elementary methods (Breiman (1968), Section 3.9).
There are several other equivalences possible in Corollary 3.10; let

us state two.

(3.12) Corollary. If Z is exchangeable then o(a) coincides a.s. with

(a) the invariant o-field of Z

(b} the tail o-field of (Zn ,Zn ,...)s for any distinct (ni).
1 2

In particular, for an exchangeable process (Zi: —o<{<») the "left tail"
and "right tail" o-fields each coincides a.s. with o(a). In the partial
exchangeability setting of Part III, we shall see that subprocesses may
generate different o-fields.

Coroliary 3.10 is one generalization of the Hewitt-Savage law.
Another type of generalization is to consider which random sequences X
have the property that EX is trivial. For independent sequences, the

condition
(3.13) } variance(¢(xi)) = 0 or » ; each bounded ¢

is necessary in order that EX be trivial, since if (3.13) fails for ¢
then E(¢(Xi)-E¢(Xi)) defines a non-degenerate Ex-measurab1e random
variable. For finite state space sequences, condition (3.13) is sufficient
(see Aldous and Pitman {1979) for this and equivalent conditions}. But

still open is
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(3.14) Problem. For an independent sequence (Xi) taking values in a

countable set, is (3.13) sufficient for E, to be trivial?

Results about E, for Markovian sequences have been given by Blackwell and

X
Freedman (1964), Grigorenko (1979), and Palacios (1982).

4. Exchangeable sequences and their directing random measures

Convention. In this section 1 = (Zi) is a real-valued exchangeable

-~

infinite sequence directed by some random measure a.

The purpose of this section is to point out some concrete ways of
constructing exchangeable sequencés, and to investigate how particular
properties of Z correspond to particular properties of o. The results
are mostly straightforward consequences of de Finetti's theorem, but will
give the reader some experience in manipulating random measures.

There are two ways in which an exchangeable sequence may be considered
"degenerate”. First, if it is i.i.d. This corresponds to o« = 6 a.s.,
for some fixed distribution &. Second, if Z]==22==-°- a.s. This
corresponds to o = GX a.s. for some random variable X.

The “"simple" exchangeable sequences described at (2.1)(1) are those
with a = 9; a.s., where {6,...,8, 1 are distributions and I is a
random variable taking values in {1,...,k}.

One natural way to construct an exchangeable sequence is to take a
parametric family of distributions, choose the parameter randomly, and take
an i.i.d. sequence whose distribution has this random parameter, For
example, let Yo, denote the Norma](e,sz) distribution. For random
(0,5), we can define an exchangeable seqguence (Zi) which is i.i.d.

Normal{8,s2) conditional on (©=8, S=s). This is the exchangeable
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sequence directed by o = Because the Normal family is a location-

Ho,s°
scale family, we can construct (Zi) very simply by putting Zi = @-+SX1,
for (Xi) i.i.d. Normal{0,1).

In general, 1 is a mixture of a parametric family (ue) if o€ (ue)
a.s. It is natural to ask for intrinsic conditions on Z (rather than a)
which determine whether g is a mixture of a specified family; results of
this kind are given in Section 18. Such processes arise naturally in the
Bayesian analysis of parametric statistical problems. For the Bayesian
analysis of non-parametric problems, one needs tractable random measures
whose values are not restricted to small subsets of P; the most popular
are the Dirichlet random measures'(Ferguson (1974)), described briefly in
Section 10.

Here are two more ways of producing exchangeable sequences.

Let (Y],Yz,...) be arbitrary;

(4.1) et (XI’XZ"") be i.i.d., independent of Y,
taking values {1,2,...};

let Zi = Yxi.

—~

Then Z is exchangeable, and using Lemma 2.15 we see a = ) PiSy . (w)?
i i

where p, = P(X] =1i).

Let X],X be i.i.d., distribution 6;

93ent
(4.2) let Y be independent of X, with distribution ¢

tet Z, = f(Y,Xi), for some function f.

Then Z 1is exchangeable. Indeed, from the canonical construction (2.5)

-~

and de Finetti's theorem, every exchangeable seguence is of this form (in

distribution). However, exchangeable sequences arising in practice can
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often be put into the form (4.2) where 8, ¢, f have some simple form with
intuitive significance (e.g. the representation (1.10) for Gaussian
exchangeable sequences). To describe the directing random measure for such

a seguence, we need some notation.
(4.3) Definition. Given f: R—R define the induced map f: P-—=P by
F(L(Y)) = L(F(Y)) .
Given f: RxR—R define the induced map f: RxP—P by
F(x,L(Y)) = L(Ff(x,Y)) .

This definition and Lemma 2.15 give the next Temma.

(4.4) Lerma. (a) Let Z be exchangeable, directed by o, let f: R—R

have induced map f, and let 21 = f(Z;). Then Z is exchangeable and

is directed by fla).

(b) Let Z be of the form (4.2) for some f: RxR—R, and let

f: RxP—P be the induced map. Then Z is exchangeable and is directed

-

by F(Y,8).

In particular, for the addition function f{x,y) = x+y we have %(x,e)

= éx*e, where = denotes convolution. So (1.10) implies:

(4.5) Z s Gaussian if and only if alw,-) = SX(w)*e’ where 8 and

-~

L{X) are Normal.

Another simple special case is 0-1 valued exchangeable sequences.
Call events (A;, 1>1) exchangeable if the indicator random variables

Zi = ]A are exchangeable. In this case o must have the form
i
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X(m)61-+(1 -x(m))ao, for some random variable 0 < X < 1. Informally,
conditional on {X=p} the events-(Ai) are independehg and have
probability p.

There is a curious connection between exchangeable events and a
classical moment problem. let p = P(A1rWA2f1---r7An). Since
P(A fW---fWAn]X) = X" a.s. we have

1

R
(a) p, = EX".
Now the distribution of the sequence (Ai) is, by exchangeability, determined
- . c .. ~gC .
by the numbers 4k ~ P(A1f1 rWAkaAk+1rW fWAn). But the relation

Bk = 91,k ~ I k4] shows that the numbers (qn,k) are determined by

(pn) (= qn,n)‘ But the distribution of (Ai) determines the distribution
of X, so

(b} the numbers (pn) determine L{X).
Since any distribution 6 on [0,1] is possible for X, facts (a) and

(b) imply

(4.6) a distribution & on [0,1] is determined by its moments

Py = ane(dx), n> 1.

This is the classical "Hausdorff moment problem". The sequence (pn) is
completely monotone; for further discussion of monotonicity and exchange-

ability, see Kallenberg (1976) Chapter 9; Daboni (1982); Kimberling (1973).

(4.7) Remark. Given N we can find different distributions 61, 6, on
E— ¢ _
[0,1] such that [xne}(dx) = anez(dx), n < N. Consider the corresponding

finite exchangeable sequences (1A ""’]A ). These have the same distribu-
1 N

tion, by the argument above. Thus a finite exchangeable sequence may be

extendible to more than one infinite exchangeable sequence.
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We now consider covariance properties. Llet Z be exchangeable, and
suppose EZ% <o, let p = E(Zi —EZi)(EZj -EZj), 1 # j, be the covariance.
In (1.8) it was proved directly that o > 0. But de Finetti's theorem gives

more information: by Lemma 2.23,

{4.8) o =0 if and only if mean(a) = c a.s., some constant c.

O0f course, from de Finetti's theorem
(4.9) mean{a) = E(lea) = E(Z][T) a.s.

In particular, an exchangeable Z with EZ] = 0 1is uncorrelated if and
only if the random variable in (4;9) is a.s. zero. Curiously, thjs implies
the (generally stronger) property that Z is a martingale difference

sequence,

(4.10) Lemma. Suppose Z 1is exchangeable, EZ, = 0. Then Z isa

martingale difference sequence if and only if mean(a) = 0 a.s.

Proof. By conditional independence,
E(Zn[Z],...,Zn_],a) = E(ana) = mean{a) a.s.

So if mean{a) = 0 a.s. then E(Zn[Z],...,Zn_1) =0 a.s., andso Z fisa
martingale difference sequence. Conversely, if E is a martingale
difference sequence then E(ZnIZ],...,Zn_1) =0 a.s., 50 by exchangeability
E(Z1IZZ""’Zn) = 0 a.s. The martingale convergence theorem now implies
E(Z1|Zi, i>1) = 0 a.s., and since o(a) C c(Zi, i >1)_ we have mean(a)

-~

= E(Z1|a) = 0 a.s.

Here is another instance where for exchangeable sequences one property

implies a generally stronger property.
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(4.11) Lemma. If an infinite exchangeable sequence (Z,,Z,,...) 1is pairwise

independent then it is i.i.d. S

~

Proof. Fix some bounded function §: R—R. The sequence IZ; f(Zi)

1~y

is pairwise independent, and hence uncorrelated. By Lemma 4.4(a), is
directed by f(a), and now (4.8) implies mean{f(a)) is a.s. constant,

Ce Say. In other words:

ff(x)a(-,dx) = Cg a.5.3 each bounded f.

Standard arguments (7.12) show this implies o« = 6 a.s., where 9 is a

-~

]
distribution with Jf(x)ﬁ(dx) = cee So Z is i.i.d. (8).

(4.12) Example. Fix N> 2. let (Y],...,YN) be uniform on the set of
sequences (y],...,yN) of 1's and 0's satisfying Xyi = 0 mod (2). Then
(a) (Y1""’YN) is N-exchangeable;
(b) (Yl""’YN-1) are independent.

So Lemma 4.171 s not true for finite exchangeable sequences. And by
considering Xi = 2Yi -1, we see that a finite exchangeable sequence may
be uncorrelated but not a martingale difference sequence.

Qur next topic is the Markov property.

(4.13) Lemma. For an infinite exchangeable sequence Z the following are

equivalent.

(a) z is Markov.

(b) of(a) C o(Z]) a.s.

(¢) ofa) =n O(Zi) a.s.
i

Remark. When the support of o 1is some countable set (ej) of distributions,

these conditions are equivalent to
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(d) the distributions (ej) are mutually singular,
Tt seems hard to formalize this in the general case.

Proof. Z 1is Markov if and only if for each bounded ¢: R—R and

o~

each n > 2,
(') E(&(Z)1Zy5-.07, ) = E(6(Z)]Z, ) a.s.
Suppose this holds. Then by exchangeability,
E(¢(Z IZ]s 3: ..,Z _'l) = E(¢(ZE)121) d.5.
So by martingale convergence
ECO(Z,)12,) = E(6(Z)Z1:255245..-) = E(6(Zp)]a) -

In particular, of-,A) =:P(22€EA]a) is essentially 0(21)-measurab1e, for
each A. This gives (b).

If (b) holds then by symmetry o(a) C U(Zi) a.s. for each i, and so
ola) CN O(Zi) a.s. And Corollary 3.10 says ofc) =T D Flo(Zi) 2.5.,
which gives (c).

If {c) holds then

E(O(Z )1Zys---0Z, ) = E(O(Z)1Zq50 002 0) by (c)

E(¢(Z IZ 1,& by conditional independence

E(¢(Zn)‘zn-] by (c)

I

f

and this is (a').

-

This is one situation where the behavicr of finite exchangeable

seguences is the same as for the infinite case, by the next result.
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(4.14) Lemma. Any finite Markov exchangeable sequence (21""’ZN) extends

to an infinite Markov exchangeable-sequence 7, provided N > 3.

This cannot be true for N = 2, since a 2-exchangeable sequence is

vacuously Markov.

Proof. The given (21""’ZN) extends to an infinite sequence Z

~

whose distribution is specified by the conditions

(4.15) (i) Z is Markov;
.. - D
(]1) (21’21‘1‘]) - (Z-l 322)-

We must prove Z is exchangeable. Suppose, inductively, that (Z;,...,Z)

is m-exchangeable for some m > N. Then (22,...,Zm) D (Zl,...,Z ), so

m-1
by (i) and (i1) we get

f 0
(4.186) (22""’Zm+1) = (Zl""’zm) .

So these vectors are m-exchangeable. Hence (ZZ""’Zm+1) ?

(22,...,2 VA 7 ) and so by the Markov property (at time 2)

m=-12"m+H1° m

Y2z, 2,2 .

(4.17a) (Z ,Z 1L 1 2

12 2 Lm

Similarly, using the Markov property at time m,

L
(4.17b) (Z]""’Zm+1) £ (22,21,23,...,Zm+1) .
Finally, for any permutation w of (2,...,m) we assert

",
(4.17¢) (24 2,05) - Lo(m) 2wt - (ZyseeesZ )

For et Y = (22:-.-:Zm)s Y = (Z,n_(z):---sz.n.(m))' Then the tr-[p]es

~ _ ’Q L
(Z],Y,Zm+1) and (21,Y,Zm+]) are Markov, and (4.16) shows (Zl’Y) 2 (Z},Y)
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and (Y,Z 2 (Y,2

m+1)

m+1)’ which gives (4.17¢c). Now (4.17a-c) establish

the (m+1)-exchangeability of (Zy,+..,Z ).

m+]1

Let us digress slightly to present the following two results, due to
Carnal (1980)}. Informally, these can be regarded as extensions of Lemmas

4.13 and 4.14 to non-exchangeable sequences.

(4.18) Lemma. Llet X;, X,, X3 be random variables such that for any

ordering (i,j.k) of (1,2,3), Xi and Xj are conditionally independent

given Xk. Then X1, XZ’ X3 are conditionally independent given

F=alX

(X;) No(X,) No(Xy).

(4.19) Lemma. For an infinite sequence X, the following are equivalent:

(a) (X ,X_ ,...) 1is Markov, for any distinct n;,n,,...

(b} (Xi; i>1) are conditionally independent given G = f\o(xi).
i

Proof of Lemma 4.18. We shall prove that for any ordering (i,3,k),

(a) o(Xi)fﬁo(Xj) = F a.s.;

{b) Xi and U(Xj,X are conditionally independent given G(Xj)fﬂc(xk).

o
These imply that Xi and o(xj,xk) are conditionally independent given F,
and the Temma follows.

- For AE c(X.) and B € G(Xj)’ conditional independence given
P(ANB|X ) = P(A[X)-P(BIX ). So for A€ c(xi)rwc(xj) we have P(A]X )
= {P(A[Xk 2, so AE c(Xk) a.s., giving (a).

For bounded ¢: R—R, conditional independence gives
~ E(6(X) Xy ) = ELo(X, XD = B %)

So E(¢(Xi)[Xj,Xk) is essentially U(Xj)rﬁc(xk)—measurabie, proving (b).
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Proof of Lemma 4.19. Suppose (a) holds. For distinct i, j, k, the

hypothesis of Lemma 4.18 holds, so by its conclusion
E(6(X;)1X;) = ECalx;)]o(X5) Na(X;) a(X))
Since this holds for each k # i, J,

E(¢(X1-)|Xj) S mr;c(xm) = G a.s.

In other words, Xi and Xj are conditionally independent given G. But
the Markov hypothesis implies that X, and G(Xk; k#i) are conditionally
independent given Xj. These last two facts imply (A7) that Xs and

o(xk; k#1) are conditionally independent given G, and the result follows.

5. Finite exchangeable sequences

As mentioned in Section 1, the basic way to obtain an N-exchangeable
sequence is as an urn process: take N constants Yyseea¥yo not neces-

sarily distinct, and put them in random order.

(5.]) ) Z—’* (Y],...,YN) = (y,ﬁ.(]),---,y.ﬁ.(N)) 5

T the uniform random permutation on {1,...,N}. In the notation of (2.13),

Y has empirical distribution
(5.2) alY) = T8, = ALY)
: N = Loy T A

Conversely, it is clear that:

-

(5.3) if Y 1s N-exchangeable and satisfies (5.2) then Y has

distribution (5.1).

Let uN denote the set of distributions L{Y) for urn processes Y.
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Let uﬁ denote the set of empirical distributions %Eiéy . Let ¢: UN-—+U§
: i

be the natural bijection &(L(Y)) = AN(Y). The following simple result is

a partial analogue of de Finetti's theorem in the finite case.

(5.4) Lemma. Let Z = (Z be N-exchangeable. Then @il(AN(Z))

is a regular conditional distribution for Z given AN(Z).

A

In words: conditional on the empirical distribution, the N (possibly
repeated) values comprising the empirical distribution occur in random
order. In the real-valued case we can replace "empirical distribution” by

"order statistics", which convey the same information.
Proof. For any permutation = of {1,...,N},

0
(Zysm e s oty (2)) = (2 gy e Ly My (2D)

So if BR{w,*) 1is a regular conditional distribution for Z given AN(E)
then {a.s. w)
(a) the distribution B8(w,+) 1is N-exchangeable.
But from the fundamental property of r.c.d.'s, for a.s. w we have
(b) the N-vector with distribution B(w,+) has empirical distribution
A (Z(w)).
And (5.3) says that {(a) and (b} imply B{w,*) = Q-](AN(E(w))J a.s.

Thus for some purposes the study of finite exchangeable sequences
reduces to the study of "sampling without replacement" sequences of the
form {5.1). Unlike de Finetti's theorem, this idea is not always useful:

for example, it does not seem to help with the weak convergence problems

discussed in Section 20.
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From an abstract viewpoint, the difference between finite and infinite
exchangeability is that the group of permutations on a finite set is compact,
whereas on an infinite set it is non-compact. Lemma 5.4 has an analogue
for distributions invariant under a specified compact group of transforma-
tions; see (12.15).

We know that an N-exchangeable sequence need not be a mixture of
i.i.d.'s, that is to say it need not extend to an infinite exchangeable
sequence. But we can ask how "close" it is to some mixture of i.i.d.'s.

Let us measure closeness of two distributions wu, v by the total variation

distance
(5.5) Tu-vll = SKPIU(A)-\)(A)I .

The next result implies that an M-exchangeable sequence which can be extended
to an N-exchangeable sequence, where N s large compared to MZ, is close

to a mixture of i.i.d.'s.

" (5.6) Proposition. Llet Y be N-exchangeable. Then there exists an infinite

exchangeable sequence Z such that, for 1 <M <N,

M-1
JL0Y oeensYy) - L(Zgsen T <1 - T (1 -4/N) iM(?riU .

i=1

This is one formalization of the familiar fact that sampiing.with
replacement and without replacement are almost equivalent when the sample
size is small compared to the population size. See Proposition 20.6 for

another formalization.
Proof. We quote the straightforward estimate

(5.7)  BL(V)-L{VviB)l <1-P(B) ; all random variables V, events B
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where L{V|B) 1is the conditional distribution. Let (11,12,...) be i.i.d.

uniform on {1,2,...,N}. Llet BM N be the event {11""’IM all distinct}.

Then
M1
(5.8) P(BM,N) = .g (1-14/N) .
i=1
Let Z, =Y i >1. Then (Zi) is an infinite exchangeable sequence.

Ii’

Since, by exchangeability of Y,
(Y1""’YM) ; any distinct (jk) ,
we see that

L((Z1,...,ZM)|BM,N) = L(Y],...,YM) .

Now (5.7) and (5.8) establish the first inequality of the Proposition; the

second is calculus.

Better bounds can be obtained if there are bounds on the number of
possible values of Yi’ but more delicate arguments are required. We guote
a result from Diaconis and Freedman (198Ca), which also contains Proposition

5.6 and further discussion.

(5.9) Proposition. Let (Y1""’YN) be N-exchangeable, taking values in a

set of cardinality c. Then there exists an infinite exchangeable sequence

Z such that for 1 <M <N

-~

1LY see oY) = L(Zqaee s Z) < /N

-~

Diaconis and Freedman {unpublished} also have a similar result relating

to Schoenberg's theorem.



40

(5.710) Proposition. Let (Yl""’YN) be spherically symmetric. Then there

exists a sequence Z which is a mixture of i.9.d. N(O,oz) sequences such

that

ﬂL(Yl,...,Y L(Z .,ZM)H <bM/N, T<M<N,

M)‘ 120"

).

where b 1is a constant not depending on (Y,

The obvious way of getting M-exchangeable sequences from N—éxchangeab1e
sequences {N > M) is by taking the first M variables; Proposition 5.6 and
the discussion of extendibility in Section 1 show that the M-exchangeable
sequences obtainable in this way are restricted. Here is another way of
getting new exchangeable sequences from oid. Let N, K> 1. Let

N

Z=(Z,: 1<i<KN) be exchangeable, and Jet f: R"—R be a function.

Define

(5.]]) Yj = f(z(j_'[)N_‘_]s'--stN) L] ] _<__j f,_K -

Then V = (?j: 1 <j<K) 1is exchangeable. Now any given K-exchangeable

sequence Y may or may not have the property
(5.12) for each N there exists a NK-exchangeable Z and a function f

such that Y 29, for § defined at (5.11).
This can be regarded as a non-linear analogue of "infinite divisibility".

{5.13) Problem. Give an intrinsic characterization of K-exchangeable

sequences Y with property (5.12}.

~

(5.14) Example. Llet (Y1,Y2,Y3) be the urn sequence from urn {a,b,c}.
Then (5.12) fails for N = 2. Here is an outline of the arqument. Suppose

(5.12) held, so some (f(21,Zz),f(23,24),f(z5,26)) is a random ordering
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of {a,b,c}. Using Lemma 5.4, we may suppose (Zi) is an urn process, with

urn (Zi) say. Since f(ZS,ZG) is -determined by (21,22,23,24), we may

take f symmetric. Now picture a, b, ¢ as colors; consider the
graph on the & points (Zi) and paint the edge (Zi’zj) with color
Then édges with distinct endpoints must have different colors, and

easy to verify this is impossible.

(5.15) Example. The Gaussian exchangeable sequences {1.9) do have

property (5.12).

Finally, let us mention a curious result given in Dellacherie

complete
f(zi,zj).
it is

and Meyer

(1980), Vv.51: any finite exchangeab1e sequence is a "mixture" of i.1.d.

sequences, if we allow the mixing measure to be a signed measure.
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PART I1

In Part II we present those extensions and analogues of de Finetti's
theorem which are close in spirit to the theorem itself; subsequent parts

will take us further afield.

6. Properties eguivalent to exchangeability

In Section 1 we pointed out some conditions which were trivially equi-
valent to exchangeability. The next result collects together some remarkabile,

non-trivial equivalences.

(6.1) Theorem. For an infinite séquence of random variables Z = (Zi)’

each of the following conditions is equivalent to exchangeabiiity:

(AY 1Z 2 (Zn]’znz"") for each increasing sequence 1_5n] <ny <t
of constants.

(B) Z g (ZT]+]’ZT2+]’ZT3+1"") for each increasing sequence
0_511 <Té <--- of stopping times.

(¢) 22 (Zoii\2,psZens...) for each stopping time T > 0

T+ oT+2° 1437

{Stopping times are relative to the filtration Fn = 6(21,...,Zn), FO

trivial.)

Remarks

(a) Ryll-Nardzewski (1957) proved (A} implies exchangeability.
Property (A), under the name "spreading-invariance”, arises naturally in
the work of Dacunha-Castelle and others who have studied certain Banach
space problems using probabilistic technigques. A good survey of this area

is Dacunha-Castelle (1982}.
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(b} The fact that (B) and (C) are equivalent to exchangeability is due
to Kallenberg (1982a), who calls property (C) "strong.stationarity“. The
jdea of expressing exchangeability-type properties in terms of stopping times
seems a promising technique for the study of exchangeability concepts for
continuous-time processes, where there is a well-developed technical machinery
involving stopping times. See Section 17 for one such study.

{¢) Stopping times of the form T+l are predictable stopping times.

(d) The difficult part is proving these conditions imply exchangeability.

Let us state the (vague) question

(6.2) Problem. What hypotheses prima facie weaker than exchangeability do

in fact imply exchangeability?

The best result known seems to be that obtained by combining Lemma 6.5 and

Proposition 6.4 below, which are taken from Aldous (1982b).

For the proof of Theorem 6.1 we need the following extension of Lemma 3.4,

(6.3) Lemma. Let (G ) be an increasing sequence of o-fields, let G =V G,
n

and let FCG. Llet Y be a bounded random variable such that for each n

there exists F G F such that E(Y!Fn) 2 E(YEGn). Then E(Y|F) = E(Y|G)

a.5.

Proof. Write MUl = EUZ. Then HE(YlGn)ﬂ = BE(Y]Fn)ﬂ < DE(Y|F)E.

2

Since E(Y|Gn)——+E(Y]G) in L° by martingale convergence, we obtain

IE(Y|G)I < IE(Y]F)U. But FCG implies IECY]F)I < 1E(Y|G)I. So

IE(Y]G)T = 1E(Y{F)I, and now Lemma 3.4 establishes the result.

(6.4) Proposition. Let X be an infinite sequence with tail o-field T.

Suppose that for each Jj, kK > 1 there exist n],...,nk such that n, > i
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0 s
and (Xj’xj+1""'xj+k) = (Xj’xj+n]""’xj+nk)' Then (X5 121) are

conditionally independent given T.

Proof. Fix my, n>1, let F-= o(Xm,Xm+],...) and let Gn = U(XZ,...,Xh).

By repeatedly applying the hypothesis, there exist Gos---50, such that

Preeest) 0 (xl,xqz,...,an). So for bounded ¢: R—R we

have E(o(X,)16,) E(o(X))|F,), where F, = o(X,q

g; >m and (X

,...,X ) CF., Applying
2 4
Lemma 6.3,

E(¢(X])IX23X3:---) E(@(X'I)lxmsxm*_]:-“) d.s.

E(¢(X1)IT) a.s. by martingale convergence.

This says that X] and o(XZ,Xa,...) are conditionally independent given

T. But for each j the seguence (xj,x .} satisfies the hypotheses

54170
of the Proposition, so Xj and G(Xj+],xj+2,...) are conditionally indepen-

dent given T. This esfab?ishes the result.

(6.5) Lemma. Let X be an infinite sequence with tail o-field T. Suppose

(X, X L% o uX a2

1° n+1 2 n+3 (X X X X ..); each nz_].

n’“n+1*"n+2°"n+3°°

Then the random variables Xi are conditionally identically distributed

given T, that is E(¢(X])|T) = E(¢(Xn)[T), each n > 1, ¢ bounded.

Proof. By hypothesis E(¢(X])!Xn+1,xn+2,...) = E(¢(xn)|xn+1,xn+2,...).

Condition on T.

proof of Theorem 6.1. It is well known {and easy) that an i.i.d.
sequence has property (B)}. It is also easy to check that any stopping time
T on (Fn) can be taken to have the form T = t(Z],ZZ,...), where the

function t(x) satisfies the condition



(*) if t(§) =n and X i <n, then t(x') =n.

let Z be exchangeable, directed Sy o say, and let Tr = tr(Z) be an
increasing sequence of stopping times. Conditional on «a, the variables
Zi are i.i.d. and the times (Tr) are stopping times, since the property
(%) is unaffected by conditioning. Thus we can apply the i.i.d. result to

see that conditional on o the distributions of Z and (ZT]+1’ZT +],...)

2
are identical; hence the unconditional distributions are identical. Thus

exchangeability implies (B).

Plainly property (8) implies (A) and (C). It remains to show that
each of the properties (A), (C) implies both the hypotheses of (6.4) and
(6.5), so that (Zi) are conditionally i.i.d. given T, and hence
exchangeable. For (A) these implications are obvious. So suppose (C)

holds. let j, k, n > 1. Applying (C) to the stopping times S, T, where

T=13] on {ZJ.EF},

j+n on {ZJ.$F},

D . . .
we have (Zj+1’zj+2"") = (ZT+1’ZT+2"")' Since these vectors are identical
on {ZjEEF}, the conditional distributions given {ZjﬁiF} must be the same.
That is, conditional on {ZjEEF} the distributions of (zj+],zj+2,...)

) are the same. Since F is arbitrary, we obtain

and of (Z Z

jHn+17jn+22° 70

, 4
(6-6) (ZJ,ZJ'*'] szj+2:---szj+k) - (stzj+n+]s---szj+n+k) »

and this implies the hypothésis of (6.4). Finally, property {C) with T =1

“shows Z s stationary, so

(Z3nZjsnet - Ljensk) = EpZiro L)

[Eh o S [ e

(Zj,Z by (6.6)

sena10 e Lyanek!

and this gives the hypothesis of {6.5).
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Remark. Here we have used Proposition 6.3 for sequences which eventually
turn out to be exchangeable. However, it can also give information for

sequences which are in fact not exchangeable; see (14.7).

Finite exchangeable sequences. For a finite sequence (21""’ZN) condi-

tions (A)-(C) do not imply exchangeability. For instance, when N = 2 they
merely imply Z1 2 22. On the other hand an exchangeable sequence obviously
satisfies (A); what is less obvious is that (B) {(and hence (C)) holds in the
finite case, where the argument used in the infinite case based on

de Finetti's theorem cannot be used.

(6.7) Proposition. Let (Z1""’ZN) be exchangeable and let
0<T <Ty<-=+<Ty <N be stopping times. Then (ZTl”""'ZTk”) 2
(Z],...,Zk).

This result is related to a gambling game called "play red". I shuffle a
standard deck of cards (52 cards; 26 red and 26 black) and slowly deal them
out, face up so you can see them. At some time, you bet that the next card
will be red; and you must make this bet sometime before all the cards are
dealt. What is your best strategy for deciding when to make the bet? One
strategy is to bet on the first card, which gives you chance 1/2 of winning:
is there a better strategy? By counting the colors of the cards already
dealt, you can know the proportion of red cards remaining in the deck, so a
natural strateqy is to wait until this proportion is greater than 1/2 and
then bet; intuitively, this should give-you a chance greater than 1/2 of
winning. However, this intuitive argument is wrong. Let Zi be the ith
card dealt, and let T be the time you decide to bet; then Proposition 6.7

says that the next card ZT+1 has the same distributicn as Zl’ that is

uniform over the deck of 52 cards.
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Proposition 6.7 is due to Kallenberg (1982a}. The fact that ZT -
- 1

is easy. For the process

P(Z,, EAIZ caZy) = P(ZNEA|Z],...,Z1-)

1’

is a martingale, so for a stopping time T <N

P(Z.,,EA) = E P(Z EAIZ],...,ZT)

T+1
£ P(Z,€AlZy,-0u2;)

T+1

i

1)

P(ZNEEA) by the optional sampling theorem.

However, making an honest'proof of the k-stopping-times result requires

some effort; we take a slightly different approach. Recall that (Zi) is
. [
exchangeable over VYV if (V,Z],...,ZN) = (szﬁ(]),...,lﬂ(u)) for all

permutations m. The following lemma is immediate.

(6.8) Lemma. Let (21""’ZN) be exchangeable over V, jet 0 <1 <N,

3
lEE. AE G(V,ZI,.. j j’

LZy) and Tet Vo= (V,Zq,....0), 2
1 < j < N-i. Then conditional on A, (Zi,...,Z&_]) is exchangeable

= Z1+

i
over V.

We now establish Proposition 6.7 by proving, by induction on k >1, the

following more general fact.

(6.9)(k) Assertion. Whenever (Zi) is exchangeable over V and

0<T, <>+ <T are stopping times relative to Gn = O(V,Z],...,Zn), then

1

Z

D
(V,ZT]+1’-.-’ZTk+1) - (VaZN_k+1:---s N) .

2y

1
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Proaf. P(VEA, ZTT_HEB) g P(VEA, ZMEB' T] =1)

] P(VER, 2] €B|T, = 1)P(T, =)
1'

i

[ P(vER, Z} . €B|T, =1)P(T;=1) by (6.8)

Z P(VEA, Z
:

HVEA,ZNEB),

NGEB, T]= i)

|

establishing (6.9) for k = 1. Suppose (6.9) holds for some k. We shall
prove it for k+1. Consider first the special case where T1 = (0. Then

the sequence (22,...,ZN) js exchangeable over - (V,Z.), so

2 by {6.9) for k

(V,Z1,Z sl ])

3 2 (VJZ QZ
P Teart 1

M-k 127 Iy
(V,ZN_k,...,ZN) by exchangeability over V,

[Tuw TR |1 e

establishing (6.9) for k+1 in the special case T, = 0. In the general
case, fix i, and define V', z} as at (6.8). On the set {T;=1i} we
have Tj = i-k?j, where ?1 =0 and ?j is a stopping time with respect

-y iy _ -
to Gn = g(V',Z ,...,Zn) = Gin- So by {6.8) and the special case,

HS

(vl z! o,z

N-j-k>"""? N-i)’ conditional on {T]= i}.

wizl o, )
?1+1 Tk+1+1
This implies

- _ D L . s
(V’ZT]+1""’ZTK+1+1) (V,ZN_k,...,ZN), conditional on (TI il}.

Since this holds for each 1, it holds unconditionally, establishing (6.9)

for k+1.
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7. Abstract spaces

Let S be an arbitrary measurable space. For arsequence
= (21,22,..{) of S-valued random variables the definition (1.2) of
"exchangeable" and the definition (2.6) of "mixture of i.i.d.'s" make sense.
So we can ask whether de Finetti's theorem is true for S-valued sequences,
i.e. whether these definitions are equivalent. Dubins and Freedman (1979)
give an example to show that for general S de Finetti's theorem is false:
an exchangeabie sequence need not be a mixture of i.i.d. sequences. See
“also Freedman (1980). But, loosely speaking, de Finetti's theorem is true
for "non-pathological” spaces. One way to try to prove this would be to
examine the proof of the theorem for R and consider what abstract properties
of the range space S were needed to make the proof work for S. However,
there is a much simpler technique which enables results for real-valued

processes to be extended without effort to a large class of abstract spaces.

We now describe this technique.

(7.1) Definition. Spaces S are Borel-isomorphic if there exists a

10 52
bijection ¢: 51'_+32 such that ¢ and ¢'1 are measurable. A space S

is a Borel (or standard) space if it is Borel-isomorphic to some Borel-

measurable subset of R.

It is well known (see e.g. Breiman (1968) A7) that any Polish (i.e.
complete separate metric) space is Borel; in particular Rn, R® and the
familiar function spaces C€{0,1) and D(0,1) are éore?. Restricting
attention to Borel spaces costs us some generality; for instance, the general
compact Hausdorf space is not Borel, and it is known (Diaccnis and Freedman

(1980a)) that de Finetti's theorem is true for compact Hausdorf spaces, but
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has the great advantage that results extend automatically from the real-valued
setting to the Borel space-valued setting.

We need some notation. Let P(S) denote the set of probability measures
on S. As at {(4.3), for functions f: S]-+52 or g: S] xSy =S, define
the induced maps £: P(S])——rP(SZ), g: S1x:P(52)-u+P(S3) by

(7.3) FL(Y)) = LOF(Y)) , g(x,L(Y)) = L{g(x,Y)) .

(7.4) Proposition. Llet z be an infinjte exchangeable seguence, taking

values in a Borel space S. Then Z is a mixture of i.i.d. sequences.

Proof. Let ¢: S—B be an isomorphism as in (7.1) between S and a
Bore] subset B of R. Let Z be the real-valued sequence (¢(Zi))'
Then Z s exchangeable, so by the result (3.1) for the real-valued case,

-~

7 is a mixture of i.i.d. sequences, directed by a random measure a, say.

“~

Since 21 €B we have 4&(+,B) =1 a.s., so we may regard & as P(B)-valued.

1. B—S induces a map ¥: P(B)—P(S), and a = P(a)

The map ¢ = ¢
defines a random measure on S. It is straightforward to check that Z s

a mixture of i.1.d.'s directed by «.

Exactly the same arguments show that all our results for real-valued
exchangeable sequences which involve only "measure~theoretic” properties of
R can be extended to S-valued sequences. We shall not write them all out

explicitly. Let us just mention two facts.

(7.5) There exists a regular conditional distribution for any S-valued

random variable given any o-field.

(7.6) Let &£ be U(0,1). For any distribution u on S there exists

f: {0,1)—S such that f(g) has distribution pu.
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Topological spaces. To discuss convergence results we need a topology on

the range space S. We shall simply make the
Convention. A1l abstract spaces S mentioned are assumed to be Polish.

Roughly speaking, convergence results for real-valued exchangeablie processes
extend to the Polish space setting.

Let us record some notation and basic facts about weak convergence in
a Polish space S. We assume the reader has some familiarity with this
topic (see é.g. Billingsley (1968); Parthasarathy (1967)).

For bounded f: S—R write
(7.7) ) - J[f(x)e(dx) .

tet C(S) be the set of bounded continuous functions f: S—R. Give P(S)

the topology of weak convergence:
o, —6 iff %(en)—ﬁ(e); each f € C(S) .

The space P(S) itself is Polish: if d is a bounded complete metric on

S then
(7.8) d(u,v) = inf{EA(X,Y): L(X)=u, L{Y)=v}
defines a complete metrization of P(S).

(7.9) Skorohod Representation Theorem. Given en-—+e, we can construct

random variables X, —X a.s. and such that L(Xn) =9 L(X) = 8.

A seguence (en) is relatively compact iff it is tight, that is for each

e > 0 there exists a compact Ko C S such that inf en(KE) > 1-e. There
n

exists a countable subset H of C{S} which is convergénce-determining:
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(7.10) if 1im E(en) = h(8), h €H, then 8§ —6.
n .

In particular H is determining:

(7.11) if h(8) = h(u), h€H, then & = yu.

For a random measure o on S, that is to say a P(S)-valued random variable,

and for bounded h: S—R, the expression H(a) gives the real-valued random

variable [h(x)a(v,dx). By (7.11), if
J

(7.12) F\(a]) = ﬁ(az) a.s., hE&EH,

where H is a countable determining class, then a, = o, a.s.

For a random measure o on S define
(7.13) a{A) = Ea(+,A), ACS,

so o 1is a distribution on S.

Here is a technical lemma.

(7.14) Lemma. Let (an) be random measures on S.

(a) If (3) is tighton P(S) then (L)) is tight in P(P(S)).

(b) If (an) is a martingale, in the sense that
E(an+1(-,B)|Fn) = an(-,B) a.s.; BCS, n>1,

for some increasing o-fields (Fn), then there exists a random

measure 8 such that anéa-B a.s., that is

P(w: ap(ws+) —+8(w,+) in P(S)) = 1.

n

Proof. (a) Fix e > 0. By hypothesis there exist compact Kj S

such that
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(7.15) an(Kg) < 82_2‘j; j, n>1.

So by Markov's inequality i
(7.16) P(an(-,K§)>2'j) < e2®27d = 2y g,
So, setting

(7.17) 0 = {e: e(xg)iz'j, all j>13,

we have from (7.16)
P(anee) >1-g; n>1.

Since © is a compact subset of P(S), this establishes (a).
(b) For each h € C(S) the sequence ﬁ(an) is a real-valued

martingale. So for a countable convergence-determining class H we have (a.s.)

lim h{a_(w)) exists, each h €H,
noeo N

Thus it suffices to prove that a.s.
(7.18) the sequence of distributions an(w,-) is tight.

By the martingale property, &n does not depend on n. Take (Kj) as at

(7.15). Using the maximal inequality for the martingale an(-,Kg) gives
P(an(-,Kg) >273 for some n) 5_52'j.

So for © as at {7.17),
Plw: an(w,-)ee for all n) > 1-¢ .

This establishes (7.18).
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Weak convergence of exchangeable processes. First observe that the class

of exchangeable processes is closed under weak convergence. To say this

precisely, suppose that for each k > 1 we have an infinite exchangeable

(resp. N-exchangeable) sequence %k = (Z?). Think of gk as a random

element of S (resp. SN), where this product space has the product tech-

nology. If zk11+x, which in the infinite case is equivalent to

ke D .
.,Zm) — (X],...,Xm) as k—=; each m>1,

k

(7.19) (Z],..

then plainly 5 is exchangeable. Note that by using interpretation (7.19)
we can also talk about Ek A 5 vihere %k is Nk-exchangeable, Ny ==,
and X fis infinite exchangeable.

Note also that tightness of a family (gk) of exchangeable processes
is equivalent to tightness of (Z#). Given some class of exchangeable pro-
cesses, one can consider the "weak closure" of the class, i.e. the (neces-
sarily exchangeable) processes which are weak limits of processes from the
given class.

e know that the distribution of an infinite (resp. finite) exchangeable
process Z is determinediby the distribution of the directing random measure
(resp. empirical distribution) a. The next result shows that weak conver-
gence of exchangeable processes is equivalent to weak convergence of these

associated random measures. Kallenberg (1973) gives this and more general

results.

(7.20) Proposition. Llet Z be an infinite exchangeable sequence directed

by «. For k>1 let Zk be exchanqeable, and suppose either

(a) each 7N is infinite, directed by o, Say; or

(b) Ek ié_Nk—exchangeab]e, with empirical distribution s and Ny —o




Proof. (a) Recall the definition (7.8) of d. 1t is easy to check
that the infimum in (7.8) is attained by some distribution L(X,Y) which
may be taken to have the form g(%,u) for some measurable g: P(S)xP(S)
— P(SxS). To prove the "if" assertion, we may suppose o, —>x 3.5., by
the Skorohod representation (7.9). Then E(ak,a)-—+0 a.s. For each k Tlet
(V%) = (v
directed by g(ak,a). Then

?); i>1) be the 52~va1ued infinite exchangeable seguence

(1) ykvzk W22 each k> 1.

Also E(d(V},w )Ig(ak,a)) = d(a,a), and so

k) — 0 as k-—re,

W
Properties (i) and (ii) imply Zk-ELZ.

(i) Ed(Vk

Conversely, suppose Zt—2+2. Since &k = L(Z:), Lemma 7.14 shows that

(ak) is tight. If & is a weak_1imit, the "if" assertion of the Proposition
implies & 24, so ak—2>a as required.

(b} Let zk be the infinite exchangeable sequence directed by o -
By Proposition 5.6, for fixed m > 1 the total variation distance

k D

.,?;)-L(z']‘,...,z;)ﬂ tends to 0 as k—oe. So Z°B7 iff
(b

ELZ, and part (b) follows from part (a).

Propbsition 7.20 is of little practical use in the finite case, e.g.
in proving central limit theorems for triangular arrays of exchangeable
variables, because generaT]y_finite exchangeable sequences are presented in
such a way that the distributié; of their empirical distribution is not

manifest. Section 20 presents more practical results. Even in the infinite

case, there are open problems, such as the following.
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Let Z be an infinite exchangeable real-valued sequence directed by
a. . For constants (a],...,am) we can define an exchangeable sequence Y

‘ by taking weighted sums of blocks of Z:

m

Y. = ) a:Zi s .
T35 j+(i-1)m

By varying (m;a],...,am) we obtain a class of exchangeable sequences; Tet

C(g) be the weak closure of this class.

(7.21) Problem. Describe explicitly which exchangeable processes are in

C(g).

This problem arises in the study of the Banach space structure of subspaces
of - L]; see Aldous (1981b). There it was shown that, under a uniform inte-
grability hypothesis, C(g) must contain a sequence of the special form
(VYi), where (Yi) is i.i.d. symmetric stable, and V 1is independent of
(Yi)' This implies that every infinite-dimensional linear subspace of L'|
contains a subspace linearly isomorphic to some Rp space. Further infor-

mation about Problem 7.21 might yield further information about isomorphisms

between subspaces of L].

(7.22) Stable convergence. For random variables xl,xz,... defined on the

same prpbabi1ity space, say Xn converges stably if for each.non-nu?i event
A the conditional distributions L(Xn]A) converge in distribution to some
limit, My say. Plainly stable convergence is stronger than convergence

in distribution and weaker than convergence in probability. This concept

is apparently due to Rényi (1963), but has been rediscovered by many authors;

a recent survey of stability and its applications is in Aldous and
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Eagleson (1978). Rényi and Révész (1963} observed that exchangeable processes
provide an example of stable convergence. Llet us briefly outline this idea.

Copying the usual proof of existence of regular conditional distributions,

one readily obtains

(7.23) Lemma. Suppose (Xn) converges stably. Then there exists a random

measure B(w,+) which represents the 1imit distributions wu, via
P(A)uA(B) = J?A(w)B(w,B)P(dm); ACQ, BCS.
Let us prove

(7.24) Lemma. Suppose (Z.) is exchangeable, directed by «. Then (Z))

converges stably, and the representing random measure B = a.

Proof. Let f &€ C(S}) and AE U(Z],...,Zm). Then for n >m

1]

P(A)E(f(zn)IA) E]AE(f(Zn)|Z1,...,Zm,a)

ETy E(f(Zn)Ia) by conditional independence

ETAJf(x)u(w,dx) .

Thus P(A)E(f(zn[A))——»E]Ajf(x)a(w,dx) as n—e for A€a(Zi,....l )

and this easily extends to all A. Thus L(anA)"*UAs where

P(A)HA(°) = E1Aa(w:')

as required.

Note that our proof of Lemma (7.24) did not use the general result
(7.23). It is actually possible to first prove the general result (7.23)
and then use the type of argument above to give another proof of de Finetti’s

theorem; see Rényi and Révész (1963).
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If X defined on (Q,F,P), converges stably, then we can extend the
space to construct a "limit" variable X* such that the representing measure
8 is a regular conditional distribution for X* given F. Then (see e.q.

Aldous and Eagleson {1978))
(7.25) (Y.X) D o(v,x*); all YEF.

Classical weak convergence theorems for exchangeable processes are

stable. For instance, let (Zi) be a square-integrable exchangeable sequence
n

directed by a. Let Sn = po1/2 Z(Zi-mean(a)). Then Sn converges stably,
1

and its representing measure 8(w,+) is the Normal N(O,var(a)) distribu-

tion. If we construct a N(0,1) variable W independent of the original

D 1/2

probability space, then not only do we have Sn 2 s* = {var{a)} /"W as at

(2.27), but also by (7.25)

(Y’Sn) WA (Y,5*); each Y 1in the original space.

8. The subsequence principle

Suppose we are given a sequence (Xi) of random variables whose

distributions are tight. Then we know we can pick out a subsequence Yi = Xn
i
which converges in distribution. Can we say more, €.g. can we pick (Yi)

to have some tractable kind of dependence structure? It turns out that we
can: fnforma?]y,
(A} we can find a subsequence (Yi) which is similar to some
exchangeable sequence 7.

Now we know from de Finetti's theorem that infinite exchangeable sequences

are mixtures of i.i.d. sequences, and so satisfy analogues of the classical
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1imit theorems for i.i.d. sequences. 50 (A) suggests the equally informal
assertion |
(B) we can find a subsequence (Yi) which satisfies an anaiogue of
any prescribed limit fheorem for i.7.d. sequences.

Historically, the prototype for (B) was the following result of Komlds {1967)}.

(8.1) Proposition. If sup E]Xil < o then there exists a subsequence (Yi)
N i

such that N JY;—V a.s., for some random variable V.
1

This is (B) for the strong law of large numbers. Chatterii (1974) formulated

(B) as the subsequence principle and established several other instances of

it. A weak form of (A), in which (Yi) is asymptotically exchangeable in

the sense

D .
(VjaVgagrene) = (Zplpoeeed 28 I

arose independently from several sources: Dacunha-Castelle (1974), Figiel
and Sucheston (1976), and Kingman (unpublished), who was perhaps the first
to note the connection between (A) and (B). MWe shall prove this weak form
of (A) as Theorem 8.9. Unfortunately this form is not strong enough to imply
(B}; we shall discuss stronger results later.

The key idea in our proof is in (b} below. An infinite exchangeable
sequence Z has the property (stronger than the property of stable conver-
| gence) that the conditional distribution of Zn+1 given (Zl,L..,Zn)
converges to the directing random measure; the key idea is a kind of converse,
that any sequence with this properly is asymptoticél]y exchangeable. Qur
arguments are rather pedestrian; the proof of Dacunha-Castelle (1974) uses
ultrafilters to obtain limits, while Figiel and Sucheston (1976) use Ramsey's
combinatorial theorem to prove a result for general'Banach spaces which is

readily adaptable to our setting.
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Suppose random variables take values in a Polish space S,

(8.2) Lemma. Let Z be gg_infinife exchangeable sequence directed by o.

(a) Let & be a regular conditional distribution for Z ., given

(Z .,Zn). Then o —a a.s.

17"

(b) Let X be an infinite sequence, let be a regular conditional

“n
distribution for Xn+1 given (X],...,Xn), and suppose o —a

a.s. Then

D
(8.3) (X_y1sXpapoeee) = (ZsZpsnss) 3S Do,

Proof. (a) Construct ZO so that (Zi; i>0) 1is exchangeable. Let

h € c(S), and define h as at (7.7). Then

Ala) = E(h(Z ) [Z1aeeenZy)
= E(h(ZO)IZ],...,Zn) by exchangeability
— E(h(ZO)lli; i>1) a.s. by martingale convergence
= E(h(zo)[a)
= h{a).

Apply (7.10).

(b) Given X and o, let Fm=cr(X],...,Xm), F=G(X1.; i>1) and

~

construct Z such that Z 1is an infinite exchangeable seguence directed

by a-rand.a1so

(8.4) Z and F are conditionally independent given «a.

We shall prove, by induction on k, that

(8.5) (VX 4pseesX ) B (VZ1seennZy) as nwes each VEF;

for each k. This will establish (b).
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Suppose (8.5) holds for fixed k > 0. let f: Skx S—R be bounded

continuous. Define T sk P(S)—R by

f(xl,...,xk,L(Y)) = Ef(x],...,xk,Y) .

Note F 1is continuous. By the fundamental property of conditional

distributions,

(8.6) E(f(xn+]""’xn+k’xn+k+1)]Fn+k) = f(xn+1""’xn+k’un+k)
(8.7) E(f(Z],...,Zk,Zk+])]F,Z1,...,Zk) = f(Z],...,Zk,a), using (8.4).
Fix m>1 and A€ Fm. By inductive hypothesis

Y2 (01,.2 2) as n—e .

(T Xpqae Xy prlyeee By

Since an+k-+a d.5.,

(8.8} (a,1 5 X (a’]A’Z1""’Zk’u) as n—e,

D
A’xn+1"" n+k’an+k) -

Now

EF(X ypoe X ) Ta = EF (K pqoee s X ot dTpe 1 2ms by (8.6)

— Ef(Zy5...5Z,5a)1, as n—w, by (8.8)

and continuity of ¥;

= Ef(21,...,Zk+1)1A by (8.7).

Since this convergence holds for all f, we see that the inductive asser-
tion (8.5) holds for k+1 when V = 1A’ AE Fm‘ But m is arbitrary,

so this extends to all V&€ F.

-~
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be a sequence of random variables such that L{X;)

(8.9) Theorem. Let X be 5

is tight. Then there exists a subsequence Y, = K. Such that

1

(Yj_l_‘l,Yj_'_zg---);D*(Z'I)ZZ’"') ._a_§_ j—)m

for some exchangeable Z.

We need one preliminary. A standard fact from functional analysis is
that the unit ball of a Hilbert space is compact in the weak topology (i.e.
the topology generated by the dual space): applying this fact to the space

L2 of random variables gives

(8.10) Lemma. Let (Vi) be a uniformly bounded seguence of real-valued

random variables. Then there exists a subsequence (Vn_) and a random
i
variable V such that EVn 1A-+EVIA for all events A.
i

Proof of Theorem 8.9. By approximating, we may suppose each Xi takes

values in some finite set Si' Let (hj) be a convergence-determining class.
By Lemma 8.10 and a diagonal argument, we can pick a subsequence (Xn) such

that as n—=
(8.13) Ehj(Xn)IA—rEVj1A; each A, j .
We can now pass to a further subsequence in which
-n
(8.14) IE(hj(XnH)[A) - E(VJ.|A)| <2
for each n > 1, each 1< Jj <n and each atom A of the finite o-field

Fn = C(Xl""’xn) with P{A) > 0. Let o be a regular conditional distri-

bution for Xn+] given F . We shall prove o — B a.s. for some random

measure B, and then Lemma 8.2(b) establishes the theorem. Note
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(8.15) E(hj(XnHIFn) = hj(o:n) .
Fix m>1 and an atom A of Fm. By (8.13},
(8.16) L{X ]A)-—+UA, say, where h, (”A) V A} .

Let B be the random measure such that Bm(w,-) = uA(-) for w€A. So

hj(Bm) = E(Vj]Fm), and so by (8.14) and (8.15)
-n . .
(8.]7) [hJ(aﬂ)-hj(Bn)‘ _<_2 > 1 23 :I-n ¢

We assert that (Bm) forms a martingale, in the sense of Lemma 7.14. For
an atom A of Fm is a finite union of atoms Ak of F 41 and by (8.16)
uA(B) = ZP(Ak]A)uAk(B), B CS, which implies E(B m+1 |F ) = Bm(-,B).
Now by Lemma 7.14 we have B — B a.s., for some random measure 8. And
(8.17) implies h (a )——»h (8) a.s. for each Jj, and so o — B8 a.s.

as required,

Let us return to discussion of the subsequence principle. Call (Yi)

almost exchangeable if we can construct exchangeable (Zi) such that

ZIYi—ZiI < @ a.s. (we are now takfng real-valued sequences). Plainly such
a (Yi) will inherit from (Zi) the property of satisfying analogues of

classical limit theorems. So if we can prove

(8.18) Every tight sequence (Xi) has an almost exchangeable subsequence

(¥;)

i
then we would have established a solid form of the subsequence principle (B).
Unfortunately (8.18) is false. See Kingman (1978) for a‘counterexampTe,

and Berkes and Rosenthal (1983) for more counterexamples and discussion of

which sequences (Xi) do satisfy (8.18).
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Thus we need a property weaker than "almost exchangeability" but stronger
than "asymptotically exchangeable". Let ek-LO. Let (Xn) be such that
for each k we can construct exchangeable (Z?, j>k) such that

P(Ixj-2§|> ek) < g, for each J > k. This property (actually, a slightly

k
stranger but more complicated version) was introduced by Berkes and Péter

(1983), who call such (Xn)' strongly exchangeable at infinity with rate

(ek). They prove

(8.19) Theorem. Let (Xi) be tight, and let ek-LO. Then there exists a

subsequence (Y,) which is strongly exchangeable at infinity with rate (e).

(Again, they actually prove a slightly stronger result). From this can be
deduced results of type (B), such as Proposition 8.1 and, to give another

example, the analogue of the law of the iterated logarithm:

(8.20) Proposition. If sup EX? < o then there exists a subsequence (Yi)
N
and random variables V, S such that 1im sup (2N log 109(N))”]/2.E (Yi-V)
‘ n-oe i=

=5 a.s.

A different approach to the subsequence principle is to abstract the
jdea of a "1imit theorem”. Let A CP(R}x R” be the set
_]N
{(6,x): mean(8) =« or 1im N in =mean(8)} .
~ 1

Then the strong Taw of large numbers is the assertion
(8.21) P((e,x],xz,...)EEA) = 1 for (Xi) i.i.d. (8) .

Similarly, any a.s. limit theorem for i.i.d. variables can be put in the

form of (8.21) for some set A, which we call a statute. Call A a limit

statute if also
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if (8,x) €A and if JiX;-x;| <= then (8,%) €A .

Then Aldous ({1977) shows

(8.22) Theorem. Let A be a limit statute and (Xi) a tight sequence,

Then there exists a subseguence (Yi) and a random measure o such that

(GSY]Jyzgo-o) €A a.s.

Applying this to the statutes describing the strong law of large numbers or

the law of the iterated logarithm, we recover Propositions 8.1 and 8.20.

To appreciate (8.22), observe that for an exchangeable sequence (Zi) directed
by « we have (3’21’22"") € A a.s. for each statute A, by {8.21).

So for an almost exchangeable sequence (Yi) and a 1imit statute A we

nave (a,Y],Yz,...) € A a.s. Thus {8.22) is a consequence of (8.18), when
(8.18) holds; what is important is that (8.22) holds in general while (8.18)
does not.

The proofs of Theorems 8.19 and 8.22 are too technical to be described

here: interested readers should consult the original papers.

9. QOther discrete structures

In Part IIl we shall discuss processes (Xi:‘iEI) invariant under
specified transformations of the index set I. As an introduction to this
subject, we now treat some simple cases where the structure of the invariant

nrocesses can be deduced from de Finetti's theorem. We have already seen

one result of this type, Corollary 3.9.

Two exchangeable sequences. Consider two infinite S-valued sequences (Xi)’

(Yi) such that
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{9.1) the sequence (Xi’Yi)’ i > 1, of pairs is exchangeable.

Then this sequence of pairs is a mixture of i1.1.d. bivariate sequences,

directed by some random measure a on SxS, and the marginals ax(m),

says that the stronger condition

2
(9.2)  (XysXyuenes¥yu¥puennd = (X qyoXoayeee 3501y Yoy o)

for all finite permutations m, ©

holds iff afw) = ax(m)><ay(m).
If we wish to allow switching X's and Y's, consider the following

possible conditions:

i)

(9-3) (x-lsx2,X3,o—.;Y-I,Y23Y3,.¢.) (Y]’YZ’.'.;X],XZ’-..):

W3

AP0 SUDIES S8 SR ) .

(9.4) (X‘I’XZ,XB,.-‘;YT’YZ, 31---) -]; 23 3,- -l’ 23 3,0&0

Let h(x,y) = (y.,x); let h: P(SxS)—P(SxS) be the induced map, and

let S be the set of symmetric (i.e. h-invariant) measures on SxS.

(9.5) Proposition.
(2) Both (9.1) and (9.3) hold iff a 2 A(a).

(b) Both (9.1) and {9.4) hold iff ofw) €S a.s.

(c) Both (9.2) and (9.3) hold iff alw) = ax(w):<aY(w) a.S., where

( 2
aysay) = (aY,aX).
(d) Both (9.2) and (9.4) hold iff afw) = ay(w) xay(w) a.s., where

= a

x %Y
is exchangeable.

ay(w) are the directing measures for (Xi) and for (Yi)° Corollary 3.9

a.s., that is iff the whole family (X1,X2,...;Y],Y2,...

)
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This is immediate from the remarks above and the following lemma, applied

to Zi = (Xi’Yi)’

(9.6) Lemma. Let h: S—+S be measurable, 1et h: P(S)—P(S) be the

induced map, and let P, be the set of distributions u which are

h-invariant: A(p) = u. Let Z be an infinite exchangeable S-valued
seqguence directed by «a.
(1) 22 (h(z)).h(2)oh(Zy),000) iFF @ B,

(i) % (h(Z]),Zz,Z3,Z4,...) iff a= h(a) a.s., that is o € P 2.s.

[[ine}

e

Proof. Lemma 4.4(a) says that (h(Zi)) is an exchangeable sequence

directed by h(a), and this gives (i). For (ii), note first

a is a r.c.d. for 21 given a;

R(a) is a r.c.d. for h(Z;) given a.
Writing W = (22,23,...), we have by lLemma 2.19

a is a r.c.d. for Z] given W;

h(a) is a r.c.d. for. h(Z]) given W.

Now  (Z;,W) 0 (h(z,),4) iff the conditional distribution for Z; and h(Z;)

given W are a.s. equal: this is (i1).

It is convenient to record here a technical result we need in

Section 13.

(9.7) Lemma. Let (Xi)’ (Yi) be exchangeable. Suppose that for each subset

-

A of {1,2,...} the sequence <Z defined by
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satisfies Z 2 X. Then the directing random measures Q75 Oy satisfy

oy = oy a.s. for each Z. -

Remark. This says that conditional on o = 6, the vectors (xi’Yi) are

indepedent as i varies and have marginal distributions 8.

Proof. In the notation of Lemma 2.15, oy = A(X1,X2,...). Now a
function of infinitely many variables may be approximated by functions of

finitely many variables, so there exist functions 9y such that
(9.8) E d(ax,gk(x],...,xk)) = Sk s

where d is a bounded metrisation of P(S), and Gk-—+0 as k—e, Fix

Z and define Zk by

~
n

X., 1<k
1 —

Zss i > k.o

By hypotheses z 2 X, so by (9.8) E d(o k,gk(Zﬁ,...,Zt)) = § . But
- - z

Gy = ay a.S. because o 1is tail-measurable; and Z? = X for i <k; so
Z ‘
by {9.8)

E d(uz,ax) 5_26k ]
Since k 1is arbitrary, a, = oy a.s.

A stratified tree. We now discuss a quite different structure, a type of

stratified tree. For each n&Z let I = {je": j>0}, and let

I ={{(n,i): n€Z, ieEIn}. The set I has a natural tree structure--see

the diagram. A point (n,i) has a set of.ﬂdescendants?, the points (m,i')
such that m<n and i <i' < i+2” ", Given n and i i, €1, we can
define a map vy: I—1 which switches the &escendants of (n,i]) with

those of (n,iz):
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v(m,i) = {(m,i) if {(m,i} is not a descendant of (n,i]) or (n,iz)
= (m,i+12-il) if (m,i) is a descendant of (n,iI)
='(m,i+i]-i2) if (m,i) is a descendant of (n,i,).

Llet T be the set of maps vy of this form. Ue want to consider processes

X = (Xi:'iEI) invariant under T; that is

-~

D

. . 1ET1), €T,
(9.9) 5 (XY(T) i€l), each vy

Suppose also that each Xn ; Isa function of its immediate descendants:

X

(9.10) X .= Ff (X 4 s,
n,i n n-l,l n_151+2n-1

(9.11) Lemma. Under hypotheses (9.10) and (9.10), there is a o-field F

such that for each n the family (Xn i;'iEIn) is conditionally i.i.d.
1

given F.

Proof. For fixed n the family (X_ .; ifEIn) is exchangeable, and

n,i
so has directing random measure o say. Now consider k < n, The

variables (X  .; iEEIn). are functions of the variables (Xk 53 1€EIk)

n,i

which are conditionally i.i.d. given s and hence (X_ .; iGIn) are

n,i

conditionally i.i.d. given oy - Appealing to Lemma 2.12 we see

(X

23

s i E nd «, .are c.i. given
n,1 In) a k giv %n

a € o(ak) a.s.

Setting F = .V o(ak), we obtain
k<=
e . .
(Xn i3 1 In) and F are c.i. given o

]

.3 1€EIn) is conditionally i.i.d. given o _, the

Since the family (Xn ;

result follows.
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(9.12) Problem. What is the analogue of Lemma 9.11 in the finite case, where

we set 1= {j2": 0<j<2™", n<0}?

\
; descendants,
| of (n,iz) {
\

)

!

ldescendants

{of (n,i
‘ (n, 1) (

H {

10. Continuous-time processes

de Finetti's theorem can be extended to uncountable families of random

variables. But a process ({X,: t>0) with i.i.d. values has sample paths

t
which are either constant or non-measurable, and this makes the concept of
an exchangeable process (Xt: t>0) rather uninteresting. However, by

considering instead the continuous analogue of processes of partial sums of

exchangeable sequences, we get the concept of processes with interchangeable
increments, and this leads to the simplest continuous-time analogues of
discrete-time results. This theory has been aeve1oped in detail by
Kallenberg (1973, 1974, 1975), who gives the results through (10.19) and

many further results.
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Consider real-valued processes X = (Xt), 0<t<e or 0<t<l,
with sample paths in the space D (= D(0,=) or D(O;])) of functions which

are right-continuous with left limits. Say X has interchangeable increments

if

(10.1a) for each & > 0 tihe sequence (Zi) = (Xia_x(i—l)d) of
increments is exchangeable;

(10.1b) X0 = 0.

Assumption (b) entails no real loss of generality, since we can replace Xt
by Xt-XO and preserve (a). Informally, think of interchangeable increments
t

processes as integrals Xt =J Zs'ds of some underlying exchangeable

0
“generalized process” Z.

Here is an alternative definition.
Given disjoint intervals (a1,b1], (a2,b2] of equal length, Jet

7: R"—R" be the natural map which switches these intervals:

(10.2) T(t) =t; t€ ? (ai’bi]
+t, T(a2+t) = a]-+t; 0 <t f-bi"ai'

T(a1+t) 2,

let T be the set of such maps T. Let B be the set of finite unions of

disjoint intervals. With any real-valued point function f = (f(t): t>0)

we can associate a set function (f(B): BEB) defined by
f(B) = J{f(t,)-f(s;)): B = U(sy,t;], disjoint.
i

Given a function f and a map T, Tlet Tf be the function whose associated

set functicn is

(TF)(B) = F(T(8)) .
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The diagram is more informative than the formulas: Tf s obtained from f
by switching the increment of f .over (al’b1] with the increment over
(az,bz]. Now T maps D to D. It is easy to see that definition (10.1a)

is equivalent to

(10.3) $x) 2x; each TET.

i

~ |

f :

]

: .

] ]

i 4

- e . — §

; by

: Feme e
% b, & o,

Recall the theory of L&vy processes, 1.e. processes with stationary

independent increments. For a Lévy process X, the distribution of X1 is
infinitely divisible; conversely, to any infinitely divisible distribution
there corresponds a Lévy process for which X] has the given distribution.

A continuous-path Lévy process is of the form

(10.4a) Xy = at%‘bBt; By Brownian motion; a, b constants.

A Lévy'process which is a counting prdcess is of the form

-~

(10.4b) Xp = Nigs Nt Poisson process of rate 13 X constant.
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It turns out that processes with interchangeabie increments on the
time-interval [0,=) (resp. [0,1]) are analogous to infinite (resp. finite)
exchangeable sequences. Here is the analogue of de Finetti's theorem, first

noted by Bihlmann (1960).

(10.5) Proposition. A process X with interchangeable increments on the

time-interval [0,=) 1is a mixture of LEvy processes.

Proof. For n€Z, j>0 set i=j2" andset X .= (X(i+t)-X(i):

0<t<2™. So X_ . is a random element of D[0,2"]. We assert that
- n,i

(Xn,i) satisfies the hypdtheses of Lemma (9.11). In fact (9.10) is
immediate, and assertion {9.9) is a reformulation of the property of inter-
changeable increments for intervals with dyadic rational endpoinfs. Now
Lemma (9.11) concludes that, conditional on a certain o-field F, the family

(X ; J>0) is i.i.d. for each n. By approximating arbitrary intervals

oM
n,j2
by intervals with dyadic rational endpoints, we deduce that conditicnal on

F the process X is Lévy.

Using (10.4a,b) we get

(10.6) Corollary. Let X be a process with interchangeable increments on

the time-interval [0,»). If X has continuous paths then

{(a) Xt = Gt'FBBt; Bt Brownian motion; a, B r.v.'s independent

B.

IS

If X 1is a counting process, then

the Poisson process of rate 13 A a r.v.

(b) X, =N N

t -t Nt
independent of N.

We should also mention the analogue of Theorem 6.1. For a process X

write Xt for the process XE = Xt+u' Xt. The strong Markov property shows
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that X is a Lévy process iff

X7 is independent of G(XS, s<T); XT 2 X; for each stopping time T.

Kallenberg (1982a,b) defines a process X to have strongly stationary

increments if

(10.7) XT D X; each stopping time T,

and shows that this property is equivalent to the interchangeable increments
property. The proof requires only Theorem 6.1 and the arguments of Proposi-

tion 10.5.

Now consider processes on the time-interval [0,1]. Two processes with

interchangeable increments are

(a) the counting process N® of m draws from the uniform distribution:

m
(10.8) N’Q = 1_211(@]_), (g;) i.1.d. U(0,1).

(b) the Brownian bridge BO.
It turns out that these are the basic examples of counting processes (resp.

continuous-path processes) with interchangeable increments on [0,1].

(10.9) Lemma. Let X be a counting process on [0,1] with interchangeable

increments, and suppose Xy = m. Then x 2 N, for N as at (10.7).

Proof. Let D {iZ-k: 0_<_1'<2k} and let qbk(x) = max{t <x: t€D L.
Let 0 < By <---<B <1 be the jump times of X, and let 5(1)""’€(m)

be the increasing ordering of (Ei)' Let Ak be the event that the random
variables ¢k(ei)’ 1 <i<m, aredistinct; tet ﬁk be the corresponding

event for (Ei). Then
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(1) P(Ak)——+1 and P(Ek)-—+1 as k—roy
(i1) ¢k(8i)-+ei a.s. and ¢k(gi)'"+gi a.s. as k—=;

(iii) the distribution of (¢k(e}),...,¢k(em)) conditional on A, is
the same as the distribution of (@k(E(1)),...,¢k(g(m))) condi-
tional on Ek’ because each is the distribution of the order
statistics of m draws without replacement from Dk‘

Properties {(i)-(iii) imply (8],...,8m) g (g(]),...,a(m)), so X g N,

From Lemma 10.9 we see the form of the general counting process with inter-
changeable increments on [0,1]: Tet M have an arbitrary distribution on
(0,1,2,...} and then, conditional on {M=m}, let X have distribution
(10.8).

We now consider continuous-path processes. Let (Bg: 0<t<1) be the

Brownian bridge, that is the Gaussian process with Bg = B? = 0 and

(10.10) e300 - s(1-1), O<s<ts<l.

S 0O

) _ 0 . ]
For fixed k put Z; =By, B(i-1)/k' Then (Z],...,Zk) is Gaussian,

"2 (1#3), and so

and using (10.70) we compute EZ? = (k-I)k"Z, EZizj = -k
(Zi) is exchangeable. It follows that BO has interchangeable increments.
From this we can construct more continuous-path interchangeable increments

processes by putting

-(10.17) Xt = aBg-FBt; where (a,8) 1is independent of BO.

Note that Brownian motion on [0,1] is of this form, for a =1 and B8

having N(0,1) distribution.

(10.12) Theorem. Every continugus-path interchangeable increments process

(X,: 02t<1) is of the form (10.11).
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This is a non-trivial result. The natural method of proof (Kallenberg (1973))
is via weak convergence of discrete approximations. However, we shall later
(Section 20) use Theorem 10.12 as a starting point for proving weak conver-
gence results, and so for aesthetic reasons we would 1ike a proof of

Thearem 10.12 independent of weak convergence ideas. The following proof

uses martingale techniques, and assumes
2
(10.13) EXt < o, each t.
We shall later indicate how to remove this restriction.

be a continuous-path process adapted to

(10.14) Lemma. Let (X, :

¢ 0<t<1)

a filtration (Gt) and satisfying
(1) XO = X.| = 0
y __u-t
{i1) E(Xu—Xt[Gt) = -1% Xeo t2uc< 1

(i11) var(x,-X.16,) = iﬂl’%)—%ﬂ t<uc<l.

Then X 4 B0 and X is independent of G; = NG,.
t>0
Proof. Write

Then Y0 = 0, Y has continuous paths and by (ii} and (iii),

H

E(Yu-YtlFt) 0, var(Yu*YtlFt) = uy-t; t < u.

So by Lévy's Theorem (see e.g. Doob (1953) p. 78) Y s Brownian motion.
Inverting (10.15) gives X, = (T't)Yt/(1-t)’ which impiies X {is Brownian
bridge. Finally, for any event A 1in GE the process X conditioned on

A satisfies the hypotheses of the lemma, so the conditioned process is also

Brawnian bridge; this proves independence.
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Proof of Theorem 10.12. Consider first the special case

For m>1 let D = (12 0<i<2™. Let V4= (x(32"™u) - x(G2™™):
tJiz_m), considered as a random element of D(O,E_m). For t € Dm Tet

G? be the o-field generated by (Xs: s<t) and the empirical distribution

of (V_ IE j2"™>t). Then conditional on G? the variables

(X - X : jz"mgit) are an urn process, in the language of section

(34102 2™
5. The elementary formulas for means and variances when sampling without

replacement (20.1) show that for u&D, u > t,

u-t
E(X,-X,167) = -7¢ %

(10.16) (a-t) (1-u) 2—mx2
Var‘(X X GlTI) - u-t 1-u {Qm_ Ql’l‘I+ t}
U' tl t (-I_t)(-l_t_z"m) 1 t 1-t
where
(10.17) m t2§'1( x )2 te
0. Q" = X -x )% teon_.
IR/ S E TS DP R m

For fixed t, the og-fields G? are decreasing as m increases; for

ted=uUDbD  let G, =N Gm, and for general t Tlet G = N G . Suppose
m M t m t t u>t u

L =)

we can prove there exists a random variable o >0 such that

(10.18) Q? —» ot each tED.

Then reverse martingale convergence in (10.16) shows that for t <u

(t, u € D)

E(X,X, 16,)

var(Xu—thGt) = S
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These extend to all t < u, by approximating from above. Note «a S GS.

On {a>0} set Vt = a‘i/zxt. Then V satisfies thé hypotheseé of Lemma
10.13, and so V 1is Brownian bridge, independent of a. Since Xt = aT/ZVt,
this establishes the theorem in the special case X1 = 0. For the general

case, set i = Xt-tX1, define @m using X as G? was defined using

t t
X, and include X] in the o-field. The previous argument gives that
Vt = u"]it js Brownian bridge independent of GS 2 G(G,X1), and then writing
Xt = th-+X]t establishes the theorem in the general case.

To prove (10.18), we quote the following lemma, which can be regarded
as a consequence of maximal inequalities for sampling without replacement

(20.5) or as the degenerate weak convergence result (20.10).

(10.19) Lemma. For each m > 1 let (Zm ],...,Zm km) be exchangeable. If

(a) ; Z,;=0 for each m,

(b) g: Zfi,i — {0 as m-—r,
then

(c} max | % Z .| —0 as m—rw,

j i ™t P
- 2  ,-m.m
Proof of (10.18). Set Z_ . = (X oo X )7 -2 Then (a)
: (i+1)2 i2 -

is immediate. For (b},

2 _ _
Tz ﬁamz;lzm,il, 5, = max |7 |

i : m m i
5-5m'2Q]
—E+ 0 since Gm-—5+ 0 by continuity and QT converges a.s.

by reverse martingale convergence in (10.16).

So conclusion (c) says
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max |Q$-t0?| — 0 as m—>,

tEDm

and this is {(10.18).

Remark. To remove the integrability hypothesis (10.13), note first that for
non-integrable variabies we can define conditional expectations "locally":
E(UfF) = V means that for every A€ F for which V1A is integrable, we
have that U]A is integrable and E(U]AIF) =Vl In the non-integrable
case, (10.16) remains true with this interpretation. To establish convergence
of the "local" martingale _QT it is necessary to show that (QT: m>1) is
tight, and for this we can appeal to results on sampling without replacement

in the spirit of (10.19). However, there must be some simpler way of making

a direct proof of Theorem 10.12.

Let us describe briefly the general case of processes (Xt: 0<t<1)
with interchangeable increments, and refer the reader to Kallenberg (1973}
for the precise result. Given a finite set J = (xi), there is one process
with interchangeable increments, with jump sizes (Xi)’ and constant

between jumps
J _ . :
X§ = ; X11(t3§i) ;. where (Ei) are independent U(0,1).

This sum can also be given an interpretation for certain infinite sets J,

2

as a L°-Timit. The resulting processes XJ are the "pure jump" processes;

taking constants a, b and taking a Brownian bridge BO independent of
(gi), and putting

I 0
Xt Xt + aBt + bt

gives a process X with interchangeable increments. These are the "ergodic"
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processes in the sense of Section 12; the general process with interchangeable
increments is obtained by first choosing (J,a,b) at random from some prior

distribution.l

(10.20) The Dirichlet process. An interesting and useful instance of a process

with interchangeable increments and increasing discontinuous paths is the
family of Dirichlet processes, which we now describe.

Fix a > 0. Recall that the Gamma(b,1) distribution has density

1 b-1_-x
?TET X e on

there exists a L&vy process (Xt) such that X1 has Garma(a,1) distribu-

{x>0}. Since this distribution is infinitely divisible,

tion, and hence Xt has Gamma{at,!) distribution. Call X the Gamma(a)
process. Here is an alternative description. Let v be the measure on

(0,=) with density

1

(10.21) v(dx) = ax_'e %dx .

Then v(e,») < o for e >0, but v(0,) =« Llet vxi be the product
of v and Lebesgue measure on Q = {{x,t): x>0, t>0}. let N be a Poisson
point process on Q with intensity wvxA, Then N is distributed as the

times and sizes of the jumps of X:
N2 ((x,t): XX, =x}
O A ’

So we can construct X from N by adding up Jjumps:

K = DXk s)8m, s<t)

The Dirichlet(a) process is Yt = Xt/X], 0<t<1. Thus Y has increasing
paths, interchangeable increments, YO = 0, Y.I = 1. (The relation between

the Dirichlet process and the Gamma process is reminiscent of the relation
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between Brownian bridge and Brownian motion). The marginal distribution of
Yt is Beta(at,a(1-t)). As a-—= the distribution.of (Yt) converges
to the deterministic process t; as a—0 it converges to the single jump

process £ uniform on [0,1]. For 0‘:t1<:t2< ---<'tk='1 the

(t>g)?

increments (Y Y, -Y } have the distribution

aY -Y sency
8ty t te teoq | -
D(atl,a(tz-t1),...,a(tk~tk_])), where D(GT""’ak) js the distribution

on the simplex {(y1,...,yk): ¥;20, Zyi= 1} with density

r(Ja.) a,-1
LI
Hfiaii i
with respect to Lebesgue measure on the simplex. In particular, the
increments 7
(10.22) (2452550 02)) = (ka’Yz/k'Yuk“-'=Y1'Y(k-1)/k)

have density

T{a)

{T( /k)}k (HZ.)~1+a/k
a

i

on the simplex, and this is k-exchangeable.
Dirichlet processes have been extensively studied as prior distributions
in Bayesian statistics. For we can view Yt(m) as the distribution fﬁnction

of a random measure B{w,+) on [0,1] which is specified by the requirement

(10.23) (B(-,A]),...,B(-,Ak)) has distribution D(aA(A]),...,aA(Ak))

for each partition (Ai)°

This is the Dirichlet random measure associated with the measure ax(*) on ~
{0,1]. Given any finite measure o 0N a Rorel space S, we can construct
3 Dirichlet random measure B satisfying (10.23) with a in place of ai(-),

by simply applying a function ¥f: [0,1]— S which takes ax(-) into a.
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The advantage of using random measures of this form as priors is that
posterior distributions can be handled analytically. " For a survey of the
statistical results, see Ferguson (i973, 1974).

By construction the Dirichlet random measure takes values in the set
of purely atomic distributions. It is interesting to note that a random

measure on [0,1] with the property

(10.24)  (8(<*,Ay),....B(*,A,)) 1is exchangeable, for partitions (A;)
1 k i
with l(Ai) = 1/k

and which takes values in the set of continuous distributions, must be of
the trivial form B8(w,+) = A{+). For consider the distribution function
Ft(m) = B(w,[0,t]). By (10.24), (Ft) has interchangeable incréments, SO
if it is continuous then by Theorem 10.12 we must have Ft = uBti-Bt for
some (a,8). But F} =1 forces B =1, and for F to be increasing_we
must have a = 0.

Our uses of Dirichlet processes arise from entirely different considera-
tions, the Kingman-Watterson treatment of the infinite allele model and the
Ewens sampling formula, to be described in Sections 19 and 11. We need one
more concept. The countable set of jump sizes (Yt-Yt_) of a sample path

Y(w) of a Dirichlet(a) process can be arranged in decreasing order as

(D1’DZ"")' This describes a distribution on the infinite-dimensional

simplex {(x],xz,...): X5 2.0, [xi= 1} which is called the Poisson-Dirichlet(a)
distribution. The name is explained by an alternative description using

the measure v of (10.21). Take a Poisson point process of intensity v

on {0,=), and let (V],Vz,...) be the points of this procéss, arranged

o0

in decreasing order. Then 35 = 2v1 < » a,s., because ES = J x v{dx) = a;
O+
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and (D seen) =T QV]/S,V /S,...) has the Poisson-Dirichlet distribution.

1°%2 |
Explicit though complicated expressions for the marginals are given in
Watterson (1976); see also Kingman (1980}, Section 3.6.

As a brief indication of the kind of calculations which can be done,

consider the "intensity" of the points (Di):

¢(y)dy = P(some D; € (y,y+dy)) .

We shall show
(10.25) 6(y) = ay-](1-y)a"1, 0<y<1.
Consider first the intensity
y(v,s)dv ds = P(some ViE(v,v+dv), S=ZV1€(s,s+ds)) .

Conditional on some V being in (v,vtdv}, the remaining (Vi) still form
a Poisson process of intensity v, so their sum still has the Gamma(a,1)

density fS’ say. Thus

P(v,s)dv ds

v(dv)fs(s-v)ds

av_]e'v(s-v)a_1e'(sdx)dvds/?(a) .

(10.26)

Now Di = Vi/S, so the intensity

y(sy,s)sdy ds, putting y = v/s

P(some Die(y,y+dy), SE (s,s+ds}))
| ay”1(1-y)a'1dy-sa'1e'5/r(a) by (10.26).

[}

This product form shows that the intensity o(y) satisfies (10.25),
independent of S. o~
Observing now that at most one of the Di can be greater than 1/2

(since ZDi = 1), we see from {10.25) that the density of Dy s
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£ (y) = ay 1 (1-y)"!

D on 1/2<y<1.
'| R

However, the expreséion for the density over 0 <y < 1/2 {s more complicated.

11. Exchangeable random partitions

In this section we describe recent work of Kingman and others.

let S, be the (finite) set of all partitions A = (A.} of

N i

{1,2,...,N}. Call the sets Ai the components of A. By & random partition
R we simply mean a random element of SN. Each permutation = of
{1,2,...,N} acts on subsets B C {1,2,...,N} by =(B) = {n(i): 1€B} and
so acts on partitions by w(A],Az,.,.) = (N(A]),ﬁ(AZ),...). Thus we call

R exchangeable if w(R) 2 R for each .

It is easy to describe the general exchangeable partition of a finite
set (this is analogous to the description of the general finite exchangeable
sequence in Section 5). Llet | IN = {(ni): n1'_>_n23---30, Xni =N}. Define

LN: SN——>IN by

(11.1) LN((Ai)) is the decreasing rearrangement of (#A;) .

Let w* be the uniform random permutation. For any partition A, it is
easy to see that w*(A) 1is uniform on {B: LN(B)= LN(A)}. Thus the general
exchangeable partition R 1is obtained as follows:

(i) take a random element (ni) of IN;

(i1) conditional on (ni) = (”1)’ let R be uniform on {A: LN(A)= (ni)}:
In particular, the distribution of R is determined by the distribution
of Ly(R). - |

An alternative description of partitions is sometimes useful. Given a

partition R, define
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(11.2) Ri ' {w: i and j in the same component of R(w)} ,

and then

(11.3) Ry § =% Ry 4 =Ry Ry g 2Ry MRy s T dadk <l
Conversely any family of events (Ri it 1<i,j<N) satisfying (11.3) defines

a random partition R, in which R{w) 1s the partition into equivalence

classes of the eguivalence relation

LW .
i j iff “’ER'i,j'

Furthermore, R 1is exchangeable iff -

LoD e, .
ii 1<i,j<N) = (Rn(i),v(j)' 1<i,j<N); each permutation .

(11.4) (R
Consider now partitions of {1,2,3,..;}. The set S_ of all partitions

is uncounta51e; we define a random partition to be a map R: Q—3_ -such

that the sets Ri,j defined at (11.2) are measurable. As before, a random

partition of {1,2,...} can be described as a family of events

{Ri,j: 1<i,j <=} satisfying (11.3) for each N. Note that one way to

construct random partitions of {1,2,3,...} 1is by appealing to the Kolmogorov

extension theorem: if for each N we have an exchangeable partition 'RN

satisfying the consistency conditions

1,5 en) TRY o 1<iaeNy each N2,

(11.5) Rl 1<i< ,

then there exists an exchangeable random partition R of {1,2,3,...}

such that

(11.6) (R, .: 1<1',j5_N)2(R§ 3t 1<i,j<N); each N>1.
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Qur aim is to prove an analogue of de Finetti's theorem for exchangeable
partitions of {1,2,3,...}. The role of i.i.d. sequehces is played by the
"saintbox processes" which we now déscribe. Let u be a distribution on
[0,1]; think of u as partly discrete and partly continuous. Let (Xi)
be i.i.d. {(u). Let R{w) be the partition with components {i: Xi(w)==x},
0 < x < 1. In other words, Ri,j = {w: Xi(uﬂ =Xj(w)}. Clearly R is
exchangeable. Kingman suggests the following mental picture: think of real
numbers 0 < x < 1 as labelling the colours of the spectrum; imagine
colouring objects 1,2,3,... at random by painting object i with colour Xi;
then we obtain a partition into sets of identically-coloured objects.

Clearly the distribution of 'R in this construction depends only on
the sizes of the atoms of p. Let Py = u(xj), where (xj) are the atoms
of u arranged so that _(p.

J
less than j atoms). This defines a map

) is decreasing {and put Py = 0 if there are

(11.7) L(u) = (pj)
from P[0,1] 1into the set of possible sequences
V= {{psPyse-c)i Py 2Py 2 e 20, Iy} .

When L{u) = p, call the exchangeable partition R above the paintbox(p)
process, and denote its distribution by wp' The following facts are easy

consequences of the strong law N"]#(i;gN: Xi==xj)-—+pj a.s.

(11.8) Lemma. Let R be a paintbox(p) process.

(a) N_]LN(RN)-w+(p],pZ,...) in V a.s., where N is the restriction
of R to {1.2,...,N}.

(b) Let C, be the component of R(w) containing 1. Then

1
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-1 D
N #(Cln{-lgo-o,N}) “-_+pJ.|(J>0) >

where P{J=3) = Py P(j’=0) =1- Epj.

(¢) P(1,2,...,r in same component) = T ety ro> 2.
219

Here is the analogue of de Finetti's theorem, due to Kingman (1978b,

1982a).

(11.9) Proposition. Let R be an exchangeable partition of {1,2,...},

and let R\ be its restriction to {1,2,...,N}. Then

(a) N‘ILN(RN 2-3:, (p,,D .) = D for some random element D of ;

1°72°"°
(b) Uy is a regular conditional distribution for R given c(wn).

So (b) says that conditional on D = p, the partition R has the
paintbox{p) distribution wp. As discussed in Section 2, this is the "strong"

notion of R being a mixture of paintbox processes.

Proof. Let (Ei) be i.i.d. uniform on (0,1), independent of R.
Throwing out a null set, we can assumeé the values (Ei(w):'izj) are distinct.

Define

min{j: i and j in same component of R{w)} < i

1

Fi(w)

Z; = &g
1

So for each w the partition R{w) 1is precisely the partition with compo-
nents {i: Zi(uﬂ==z}, 0<z< 1. Weassert (Zi) is exchangeable. For
(Zi) = g((gi),R) for a certain function g, and (Zw(i)) = g((gﬁ(i)),w(R)),
and ((gw(i)),ﬂ(R)) 4 ((Ei),R) by exchangeability and by independence of
R and (Ei)'

Let o« be the directing random measure for (Zi). Then conditional

on « = u the sequence (Xi) is i.i.d. (y) and so R has the paintbox
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distribution wL(u)' In other words wL(a) is a regular conditional
distribution for R given «, and this establishes (b) for D = L{a).

And then {a) follows from Lemma 11.8(a) by conditioning on D.

Remarks. Kingman used a direct martingale argument, in the spirit of the
first proof of de Finetti's theorem in Section 3. Our trick of labelling
components by external randomization enables us to apply de Finetti's theorem.

Despite the external randomization, (a) shows that D is a function of R,

Yet another proof of Proposition 11.9 can be obtained from deeper

results on partial exchangeability--see (15.23).

The Ewens sampling formula. Proposition 11.5 is a recent result, so perhaps

some presently unexpected applications will be found in future. The known
applications involve situations where certain extra structure is present.
An exchangeable random partition R on {1,2,3,...} can be regarded as a
sequence of exchangeable random partitions RN on {1,2,...,N} satisfying
the consistency condition (11.5). Let us state informally another "consis-
tency" condition which may hold. Fix N and r < N. Pick a partition

RN - (Ai)’ and suppose 1 € Aj’ where #Aj = y, The remaining sets

(Ai: i#3) form a partition of {1,2,...,N}\Aj; the new condition is that
this partition (A1: i#3) should be distributed as gN-T,

To formalize this, we introduce more notation. For a partition

A= (Ai) of {1,2,...,N} define

(11.10) a(A) = (a],...,aN

), where a; is the number of sets Ai
for which #Ai = j.

Of course a{A) gives precisely the same information about A as does

L, (A) wused earlier. Given an exchangeable random partition RN, Tet

N
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(11.11) Qylags--eray) = P(a(RN)=(a1,...,aN)) i

By exchangeability, QN determines the distribution of RN. Let
B C{1,2,...,N} be such that 1 &€ B, #8 = r. Let % denote the partition

N

of R with the set containing 1 removed. The condition we want is

A N
(11.12)  P(a(R) = (a1,...,ar_1,ar-1,ar+],...)|aen )

= QN_r(a],...,ar_},ar-l,ar+],...) X
To rephrase this condition, observe that the left side equals

P[a(RN)==a[B€ERN], for a = (a],...,ar,...)
p(a(RY) = a)-p(eer|a(RY) = a) - 1/p(BER")
NORWLRILGENIL TR

Thus condition (11.12}) implies

arQN(a],...,ar,...)
QN_r(a] LR ,ar,"[ ,...)

depends only on (N,r) .

This is the basis for the proof of (11.16) below.

Now consider, for some exchangeable R, the chance that 1 and ¢

belong to the same set in the partition:
(11.13) PR =11,2)) = Q,(0,1) = 1/(1+8), say, for some 0 <8 <.

There are two extreme cases: if 6 =0 then R 1is a.s. the trivial parti-
tion {1,2,...}; if 8 =« then R 1is a.s. the discrete partition
({1},{2},{3},...). The interesting case is D <B <, It isa remarkqple
fact that if (11.12) holds then 6 determines the distribution of R, and
some explicit formulas can be obtained. We quote the following result

(see Kingman (1980), Sections 3.5-3.7).
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(11.14) Theorem. Let R be an exchangeable random partition on {1,2,...}

satisfying (11.12). Define 6 by-(11.13), and suppose 0 <8 < =. Let

D= (D],Dz,..;) e as in Proposition 11.9. Then

N
~ NI
(]].]6) QN(a],...,aN) e We-]-])"-(e'!'N-]) rE a

Equation (11.16) arose in genetics as in the Ewens sampling formula--see

section 19.
As an example of the calculations which are possible, let R be an
exchangeable random partition and let C1 be the component of R contain-

ing 1. By Proposition 11.9 and (11.8b),
(11.17a) NTHC, N {1,2,.. . N}) =2+ T = D]
) 1 2Eanree J(3>1)
where P(J=j|D) = Dj‘ The limit distribution T can be described by
P(TE (t,t+dt)) = ¢ § P{D. € (t,t+dt)) .
: j

. .]_>_]

So under the hypotheses of Theorem 11.14 we can apply {10.24) to obtain the

density
(11.17b) p(Te (t,t+dt)) = o(1-t)% Tat , 0 <t <1.

Equation (11.16) readily yields various special cases:

{11.18a) P(1,2,...,N in same component)

—

(11.18b) P(1,2,...,N in distinct components)

=1 3a=

iy
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Finally, we remark that there is a "sequential” description of the

partitions RN of Theorem 11.14; following Jim Pitman, we call this

(11.19) The Chinese restaurant process. Imagine people 1,2,...,N arriving

sequentially at an initially empty restaurant with a large number of large
tables. Person j either sits at the same téb]e as person i (with probability
1/(j-1+#68), for each i < j}, or else sits at an empty table (with probability
8/(j-1+8)). Then the partition "people at each table" has the distribution

of Theorem 11.14.

Although Theorem 11.14 was motivated by a problem in genetics, it has
some purely mathematical applications. The first was been noted by Kingman

and others.

Cycle length in random permutations. Let ﬂ§ be the uniform random permu-

tation on {1,2,...,N}, and let RN be the partition into cycles of w;.
We claim that the exchangeable random partitions _RN, N>1 are consistent
in the sense of (11.5). To see this, for a permutation o of {1,...,N+1}
define a permutation o = g{o) of {1,...,N} by deleting N+1 from the

cycle representation of o:
o(i) = o(i) if ofi) # N+1
= g(N+1) if o(i) = N+1.

Then

IS

+*

* -
9(Myey) = Ty 3

a pair i,j < N are in the same cycie of g(ﬂ;+1(w)) iff they are in the

same cycle of ﬂ§+](M); and this implies consistency.
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Next, consider 1€ B C {1,2,...,N}. Then conditional on B being a

*

N’
formly on the set of all permutations of {1,...,N}\B. This establishes the

cycle of the restriction of ~wﬁ to {1,...,NN\B is distributed uni-
consistency property (11.12).

So Theorem 11.14 is applicable. To evaluate 6, let XO =1,
— * - - —
X; = my(X; ;). Then P(Xi-I|X1,...,Xi_]€§{1,2}] = P(X;=2|Xp5eees X 1 &
{1,2}) = (N~1+1)‘], and so P(1 and 2 are in same cycle of wﬁ] ='%. Thus
8 =1.

From (11.16) we obtain a classical theorem of Cauchy.

(11.20) Corollary. Let a >0, Jdra. = N. The number of permutations of

{1,...,N} with exactly a,. cycles of length r (each r > 1} is
N T

a .

>1 .
AN ra ]
r

And if (M are the lengths of the cycles of a uniform

N,]’MN,Z"")
random permutation of {1,...,N}, arranged in decreasing order, then (11.15)

M converges in distribution to the Poisson-

says that N-1(M

N,17 N,2’°")

Dirichlet(1) process.

Remarks. There is a large literature on random permutations; we mention

only a few recent papers related to the discussion above, Vershik and
Schmidt (1977) give an interesting "process" description of the Poisson-
Dirichlet(1) limit of N'](MN’],MN,Z,...). Ignatov (1982) extends their
ideas to general 6. Kerov and Vershik (1982) use the fdeas of Theorem 11.14

in the analysis of some deeper structure of random permutations (e.g. Young's

tableaux).
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Components of random functions. A function f: {1,...,N} — {1,...,N}

defines a directed graph with edges i—f(i) for eéch i. Thus f induces
a partition of {1,...,N} into the components of this graph. The partition
can be described by saying that i and Jj are in the same component iff

k*, . m*, . k*,.
£F04) = £1 (j) for some k,m > 1; where f° (i) denotes the k-fold

jteration f(f{...f(i)...)).

6 2 10 L _t2¢— 7
. \13 (./ 1- -
N4 i ~_ 7
4 1te— 3&—5

If we now let FN be a random function, uniform over the set of all
NN possible functions, then we get a random partition RN of {1,...,N}
into the components of FN' Clearly RN js exchangeable. We shall outline
how Theorem 11.14 can be used to get information about the asymptotic (as

N— ) sizes of the components.

Remark. Many different questions can be asked about iterating random func-
tions. For results and references see e.g. Knuth (1981), pp. 8, 518-520;
Pavlov (1982); Pittel (1983). I do not know references to the results out-

1ined below, though I presume they are known.

Given that a specified set B € {1,...,N} 1is a component of FN’ it
is clear that FN restricted to {1,...,N}\B 1is uniform on the set of func-

tions from {1,...,N}\B into itself. Thus

~

RN, N> 1, satisfies the consistency condition (11.12).

However, the consistency condition {11.5) is not satisfied exactly, but

rather holds in an asymptotic sense. To make this precise, for K < N let
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MK be the restriction of RY to {1,....K}. Then

N,K D 5K

(11.21) Lemma. R " — R, say, as N—.

For each N the family (RN’K; K<N) 1is consistent in the sense of (11.5},

5K

and so Lemma 11.21 implies that (R"; K>1) is consistent in that sense.

It is then not hard to show

(11.22) Lemma. (ﬁK; K>1) is consistent in sense (11.12).

Then Theorem 11.14 is applicable to (ﬁK). To identify 6, we need

(11.23) temma. P(1 and 2 in same component gf_RN] — 2/3 as N-—ow=,

Then Lemma 11.21 implies P(R®={1,2}) = 2/3, and so (11.13) identifies
5=t
8= 5.

Now Theorem 11.14 gives information about (ﬁK). For instance, writing 6$

for the component of 2K containing 1, (11.17) says
(11.24) K'] #E$ N T, where T has density f(t) = %{1-t)-]/2, O<t<1.
We are really interested in the corresponding assertion

D

(11.25) N~ #c’]“_—m

where C? js the component of the random function FN containing 1. Let

us indicate how to pass from (11.24) to (11.25). Lemma 11.21 shows
() Jeireby- Ll x)lg— 0 as Noe K fixed,

where | “O is total variation distance (5.5). By exchangeability,

#(CNFW{Z,...,K}) is distributed as the sum of K-1 draws without replacement
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from an urn with #C?-—] "1"s and N-#CT "0"s. Let VN K be the corres-
. H]
ponding sum with replacement. As ‘N—-«, sampiing with or without replace-

ment become eduiva]ent, SO
() Jeclniz,.. k) -1y Mg — 0 as N—= K Fixed.

Now Vy ¢ is conditionally Binomia](K—i,(N—])—](#CT—l)) given #C?, S0

by the weak law of large numbers

(¢) Tim 1im sup EIK‘]V 1

Koo N

....’N -
k- N =0

Properties (a)-(c) Tead from (11.24) to (11.25).

The same argument establishes the result corresponding to (11.15); if

(M¥,Mg,...) are the sizes of the components of FN arranged in decreasing
order, then N'](MN,MN ) converges in distribution to the Poisson-

paeee
Dirich1et(%) process.

Let us outline the proofs of Lemmas 11.21 and 17.23. Let XO =1,

'Xn = FN(xn-’l)’ 51 = min{n: Xn(w)e{xo(w),---,Xn_](w)}}- Then (xn) is

i.i.d. uniform until time S], and we get the simple formula

n-1
P(S]zn) = 1 (1T-m/N) .
m=0

0f course this is just "the birthday problem." Calculus gives

N‘]/ZS] 2.3 where §, has density f(s) = s-exp(—sz/Z) .

1° 1

Nowv}et Y.=2, Y_ = FN(Yn-l)’ So = min{n: Ynﬁu)G{Xo(w),...,xs]*l(w),

0 n
E{XO""’XSTI}} =

Yo(m),...,Yn_](w)}}, and Tet Ay be the event {YSZ
{1 and 2 in same component of FN}. Again (Yn) is i.i.d. uniform until

time S,, there is a simple formula for P(AN,SE:=n[S1-=q), and calculus

gives (AN’S]’SZ) 2, (ﬁ,§1,§2), where the limit has density
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~ ~ A _ 2. ‘| 2
P(A, 3265(52,52+d52), 3165(51,s]+d51)) = 5] exp(f§(51+52) )ds]ds2 .

Integrating this density gives P(A) = 2/3, and this is Lemma 11.23.

Call the process (Xﬁ, n<S Yn’ n«iSz) above the N-process. Let

1;
BN be the event "some element Xn or Y_  of the N-process equals N,

and FN(N) = N". Construct a process (X

*-
'],
any terms of the N-process which equal N. Then conditional on Bﬁ the

=0 0% 3

, n<S Y:, n<s‘§) by deleting

process (X:,Y;) js distributed as the {N-1)-process. So

[P(1 and 2 in same component of FN)- P(1 and 2 in same component of FN-I)I
< P(By) -

1/2

But P(BN) f_czN'3/2, since S, and S, are of order N and

P(FN(N)= N) = N1, A similar argument considering iterates of FN starting

from 1,2,...,K shows

pRUKoa) - p@T KA < N¥E S aes, .

-3/2

Since N © this gives Lemma 11.27.

(11.26) Random graphs. Another way to construct random graphs on N ver-

tices is to have each edge present with probability A/N, independent for
different possible edges. In this case the component containing "1", C?,
satisfies

N D

N gl BT as Moo

H

where T =0 for A<1; P(T=c(})) = c{r), P(T=0) =1-c(r) for x> 1,
where c(A) > 0 for A > 1. Thus {c.f. 11.17} the partition into components
of these random graphs cannot be fitted into the framework of Theorem 11.14.

It would be interesting to know which classes of random graphs had components

following the Poisson-Dirichlet distribution predicted by Theorem 11.14.
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PART III

The class of exchangeable séqﬁences can be viewed as the class of
distributions invariant under certain transformations. So a natural
generalization of exchangeability is to consider distributions invariant
under families of transformations. Section 12 describes some abstract theory;

Sections 13-16 some particular cases.

12. Abstract results

In the general setting of distributions invariant under a group of
transformations, there is one classical result: that each invariant measure
is a mixture of ergodic invariant measures. We shall discuss this result
(Theorem 12.10) without giving detailed proof; we then specialize to the
"partial exchangeability" setting, and pose some hard general problems.

Until further notice, we work in the following general setting:

(12.1} S 1is a Polish space; 7 s a countable group (under composition)
of measurable maps T: S—S.

call a random element X of S invariant if
Dy .
(12.2) T(X) £X3; TET.

Call a distribution u on S invariant if it is the distribution of an

invariant random element, i.e. if

(12.3) T(u)=u; TET

-

where T is the induced map (7.3). Let M denote the set of invariant
distributions, and suppose M 1is non-empty. Call a subset A of S

invariant if
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(12.4) T(A) =A; TET,

The family of invariant subsets forms the invariant o-field J. Call an

invariant distribution u ergodic if
(12.5) u{A) =0 or 1; each AE€J,
We quote two straightforward results:

(12.6) If u 1is invariant and if A {is an invariant set with
u(A) > 0 then the conditional distribution wu(-|A) is

invariant.

(12.7) If u is ergodic, and if a subset B of S ds almost
invariant, in the sense that T(B) = B u-a.s., each
TeT, then u(B)=00r1l.

The two obvious examples (to a probabilist!) are the classes of stationary
and of exchangeable sequences. To obtain stationarity, take S = Rz,

T= (T, ; KEZ), where T is the "shift by k" map taking (Xi) to (Xi-k)‘

K3
Then a sequence X = (Xi: i€Z) 1is stationary iff it is invariant under T,
and the definitions of "invariant o-field", "ergodic" given above are just
the definitions of these concepts for stationary seguences.

To obtain exchangeability, take S = R, T = (TW), where for a finite
permutation m the map T_ takes (xi) to (Xn(i))' Then a sequence
X = (Xi) is exchangeable iff it is invariant under T7T. The invariant
o-field J here is the exchangeable o-field of Séction 3; the ergodic pro-

cesses are those with trivial exchangeable o-fields, which by Corollary 3.10

are precisely the i.i.d. sequences.

Returning to the abstract setting, the set M of invariant distribu-

tions is convex:
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{(12.8) Hys Yo €M implies u = cu1-+(1~c)u2 EM; 0<c<l.

So we can define an extreme point: u s extreme if the only representation

of u as cu]-+(1-c)u2, M €M, has uy =W, T U

(12.9) Lemma. An invariant distribution is extreme in M iff it is ergodic.

Proof. Let u be invariant but not ergodic. Then 0 < u(A) <1 for
some invariant A. And u = P(A)u(-|A)-FP(AC)u(-[AC) represents u as a
linear combination of invariant distributions, by (12.6), so u is not
extreme,

Conversely, suppose u 1is ergodic, and suppose U = cu]-+(1*c)u2 for
invariant Mis 0<c <1, Let f be the Radon-Nikodym derivative duI/du.
Then by invariance, f = foT p-a.s., each T&T. So sets of the form
{f>a}, a constants, are almost invariant in the sense of (12.7), which
implies f is u-a.s. constant. This implies Uy T and hence wu 1is

extreme,

Write E for the set of ergodic (= extreme) distributions. For an
invariant random element X, write Jx for the o-field of sets {XE€A},
A € 7. We can now state the abstract result: the reader is referred to
Dynkin (1978), Theorems 3.1 and 6.1 for a proof {(in somewhat different nota-

tion) and further results.

(12.10) Theorem. {a) E is a measurable subset of P(S).

(b) Let X be an invariant random element. Let o be a r.c.d. for

~ X given. JX. Then oaf{w) € E a.s.

(c} To each invariant distribution u there corresponds a distribution

A on E such that u(-} = J v(«)A (dv).
po— - E W

(d) The distribution Au in {c¢) is unigue.
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(12.11) Remarks. (i) Assertions (b) and (c) are different ways of saying
that an invariant distribution is a mixture of ergodit distributions, corres-
ponding to the "strong" and “"weak" notions of mixture discussed in Section 2.

(i) Dynkin (1978) proves the theorem directly. Maitra (1977) gives
another direct proof. Parts (a}, (c), (d) may alternatively be deduced from
general results on the representation of elements of convex sets as means
of distributions on the extreme points. See Choquet {1969), Theorem 31.3,
for a version of Theorem 12.10 under somewhat different hypotheses; see also
Phelps (1966).

(i71) In the usual case where T consists of continuous maps T, the
set M 1is closed (in the weak topology). But E need not be closed; for
instance, in the case of stationary {0,1}-valued sequences E 1is a dense GG‘

(iv) It is easy to see informally why (b} should be true. Fix X and
a. Property (12.6) implies that a- is also a r.c.d. for T(X) given JX,
and so -

T(a{w)) = a{w) a.s.; each TET,
Since T 1is countable, this implies

a(w) M a.s.

= (= =
Now for A€ J ve have af{w,A) = P(X AIJX) ](XEA) a.s. Then for a

sub-g-field A of J generated by a countable sequence

(12.11a) A = o(A;,A,,A

12722 33~") cJ

we have
P(w: alw,A)=0 or 1 for each A€A) = 1.

Unfortunately we cannot conciude
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P(w: a(w,A) =0 or 1 for each AEJ) =1

because in general the invariant g-field J itself cannot be expressed in
the form (12.11a); this technical difficulty forces proofs of Theorem 12.10

to take a less direct approach.

Proposition 3.8 generalizes to our abstract setting in the following

way (implicit in the "sufficiency" discussion in Dynkin (1978)).

(12.12) Proposition. Llet X, V be random elements of S, S' such that

(X,V) 2 (T(X),V) for each T €T (so in particular X is jnvariant).

Then X and V are conditionally independent given Jx.

Proof. Consider first the special case where X is ergodic. If
0 < P(VEB) <1 then X is a mixture of the conditional distributions
P(X€-|lveB) and p(x€-]veB®) which are invariant by hypothesis; so by
extremality L(X) = L{X]VEB), and so X and V are independent.

2 be the class of distributions of (X*,V*)

For the general case, let M
on S$SxS' such that (X*,v™) 4 (T(X*),V*) for each T, Llet ¢ be a r.c.d.
for (X,V¥) given JX.

We assert

(12.13) vlw) € 1 a.s.

Observe first that by the countability of T and (7.11), there exists a

countable subset (hi) of C{SxS') such that

2 jff (hide -0, i>1.

(12.14) 5 € M ; >

Next, for A€ J with P(XEA)} > 0 the hypothesis implies that the condi-

tional distribution of (X,V)} given {X€A} is in Mz. Thus if ¥ is a
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r.c.d. for (V,X) given a finite sub-g-field Fn of Jx, then wn(m) S M2

a.s. Because Jx is a sub-o-field of the separable o-field o(X), it is
essentially séparabTe, that is Jx = F_ a.s. for some separable F_. Taking
finite o-fields F_+F_, Lemma 7.14(b) says w —v a.s. Since ¥ e ue
a.s., (12.14) establishes (12.13).

For 8 € P(§xS'} 1let 8 € P(S) be the marginal distribution. Then
w](m) is a r.c.d. for X given Jy, and so0 by Theorem 12.10 w1(w) €E
a.s. But now for each « we can use the result in the special case to show

that @(w) is a product measure; this establishes the Proposition.

(12.15) Remarks. (i) In the case where T 1is a compact group {(in particular,
when T 1is finite), let T® be a random element of T with Haar distribu-
tion (i.e. uniform, when T 1is finite}. Then for fixed s € S the random
element T*(s) is invariant; and it is not hard to show that the set of
distributions of T*(s), as s varies, is the set of ergodic distributions.
This is an abstract version of Lémma 5.4 for finite exchangeable sequences.

(ii) In the setting {12.1), call a distribution W gquasi-invariant if

for each T € T the distributions p and T(u) are mutually absolutely
continuous. Much of the general theory extends to this setting: any quasi-
invariant distribution is a mixture of ergodic quasi-invariant distributions.

See e.g. Blum (1982); Brown and Dooley {1983).

So far we have been working under assumptions (12.1). We now specialize.

Suppose

(12.16) I s a countable set, T s a countable group (under convolution)
of maps y: I—1I, and S 1is a Polish space.

By a process X we mean a family (X1: iel) with Xi taking values in S.
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The process is invariant if

0

2. A S ET.
(] ]7) . X (XY(1) 1 I), each Y r

To see that this is a particular case of (12.1), take $* = SI, and take T

to be the family (y*: YET) of maps S*—S*, where y* maps (x;) to
(Xy(i))' Note that y* ds continuous (in the product topology on SI), and
so the class of invariant processes is closed under weak convergence.

Obviously any exchangeable process X 1is invariant. We use the phrase

partially exchangeable rather Toosely to indicate the invariant processes

when {I,T') 1is given. Our main interest is in

(12.18) The Characterization Problem. Given (1,T), can we say explicitly

what the partially exchangeable processes are?

Remarks. ({a) To the reader who answers "the ones satisfying (12.17)" we
offer the following analogy: the definition of a "simple" finite group tells
us when a particular group is simple; the problem of saying explicitly what
are the finite simple groups is harder!
(b) In view of Bore]-isomorphism (Section 7), the nature of S 1is essen-

tially unimportant for the characterization problem: one can assume S = [o0,11.

Theorem 12.10 gives some information: any partially exchangeable process
is a mixture of ergodic partially exchangeable processes. This is all that
is presently known in general. But there seem possibilities for better results,
as we now describe,

Suppose we are given a collection MO of invariant processes. How.can
we construct from these more invariant processes? In the general setting

(12.1), the only way apparent is to take mixtures. Thus it is natural to ask
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(12.19) What is the minimal class My from which we can obtain all
invariant distributions by taking mixtures?

0f course Thedrem 12.10 tells us that the minimal class is E, the ergodic
distributions. However, in the partial exchangeability setting {(12.17) there
are other ways to get new processes from old. let X be an (ergodic)
partially exchangeable process, and let f: S—S' be a function; then

Yy = f(Xi) defines an (ergodic) partially exchangeable process Y. Llet X'
be another (ergodic) partially exchangeable process, independent of X; then
Zi = (Xi,X%) defines an (ergodic) partially exchangeable process LZ. Com-

bining these ideas, we get

Let MO be a class of {ergodic) partially exchangeable processes.

Let ﬂo be the class of processes of the form Y; = f(X},X%,X?,. ),

where each process XK is in Mp» the family (Xk) are indepen-
dent, and f is any function. Then ﬁo consists of (ergodic)

partially exchangeable processes.

In view of this observation, it is natural to pose the problem analogous

to (12.19).

~

(12.20) Problem. Is there a minimal class MO such that MO = F, the

class of all ergodic processes? Can this minimal class be specified

abstractly?

Nothing is known about this problem in general. Let us discuss Problems

12.18 and 12.20 in connection with the examples already mentioned; in the
next sections we will discuss further examples.

For the class of exchangeable sequences, de Finetti's theorem answers
Problem 12.18, and the ergodic processes are the i.i.d. sequences; Now

recall (7.6) that for any distribution u on a Polish space § there
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exists a function f: [0,11—S such that f(g) has distribution for §
with U(0,1) distribution. Thus for exchangeable sequences we can take the

class M. in (12.20) to consist of a single element, the i.i.d. U(0,1)

0
sequence.

For the simple generalizations of exchangeability described in Section 9,
the results in Section 9 answer Problem 12.18. For each of those hypotheses
it is not difficult to identify the ergodic processes and to describe a class

M. in Problem 12.20 consisting of a single element. Llet us describe the

0
hardest case, and Teave the others to the interested reader.

Hypotheses (9.1) and (9.3). As in Section 9 let h{x,y) = {(y,x), so that

for a distribution u on S§xS the distribution h(u) is the measure
obtained by interchanging the coordinates. Let Zi = (Xi’Yi) satisfy (A)

and (C). Then Z is ergodic iff its directing random measure a is of

the form

(12.21) Pla=u) = Pla=h(u)) = 32-; some u € P(SxS) .

The existence of a single-element class MO follows from the next lemma,
since we can use the process satisfying (12.21) for the particular distribu-

tion Hg below.

(12.22) Lemma. There exists a distribution b on [0,11x[0,1] such that

for any distribution u on SxS there exists a function f: [0,1]—5

such that (f(U;),f(U,)) has distribution u when (U;,U,) has distribu-

tion UO'

-

Proof. Llet © = [0,1]. By considering the set of random elements

) ﬂ-—+{0,1]2 as a subset of Hi]bertrspace LZ(Q;[O,1]2), we

T,VZ,... . Set

Vo= (VY

see that there exists an Lz—dense sequence V
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Vj = (V},V?,Vj,...), j=1,2. Now given u, there exists a random element

H: Q——>[O,T]2 with distribution wu. By Lz-denseness, thére exists a subse-
n i .

quence V k__+w in L2, and by passing to a further subsequence we may

n
take V Ky a.s. Setting g(x) = 1im sup X gives L(g(V]),g(Vz)) = u.
- - k

Finally, let ¢: [0,17>A € [0,1] be a Borel-isomorphism, and set
Wy = L(¢(V]),¢(V2)). Then f = go¢'] satisfies the assertion of the lemma.

For the class of stationary seqguences, these types of problems are much
harder. Informally, the class seems too big to allow any simple expliicit
description of the general stationary ergodic process. Let us just describe
one result in this area. Let S be finite. Let (Ei)iEZ be i.i.d.

u(0,1). Let f: [0,1¥—5S and let

(12.23) Yo = flEi i) ¥ = Mg

-~

Then Y is a stationary ergodic S-valued sequence. Ornstein showed that

-

not all stationary ergodic processes can be expressed in this form: in fact,
Y can be represented in form (12.23) iff Y satisfies a condition called

~

"finitely determined." See Shields (1979) for an account of these results.

(12.24) Second-order structure. When a partially exchangeable process

X = (Xi: i€1) is real-valued square-integrable, it has a correlation

function o{i,j) = p(Xi,Xj) which plainly satisfies

_ o is non-negative definite;

(12.25)
o is invariant, that is po(i,3) = p(v(i),v(3)), Y €ET.

Conversely, any p satisfying {12.25) is the correlation function of some

(Gaussian) partially exchangeable process. Thus the study of the second-

order structure of partially exchangeable processes reduces to the study
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of functions satisfying (12.25), and this can be regarded as a problem in
abstract harmonic analysis. In the classical case of'stationary sequences,
o satisfies (12.25) iff p(i,j) = e(j-i), where p(n) = Jﬂcos(nk)u(dk)

for some distribution u on [0,m]. For exchangeable sequgnces, the pos-
sible correlations were described in Section 1. For the examples in the
following sections, we shall obtain the correlation structure as a corollary
of the {much deeper) probabilistic structure; and give references to alter-

native derivations using harmonic analysis. Letac (1981b) is a good

introduction to the analytic methods.

(12.26) Topologies on M. Finally, we mention some abstract topological

questions. Consider the general setting (12.1), and suppose the maps T
are continuous. The set M of invariant distributions inherits the weak
topology from P(S), but there is another topology which can be defined on

M. Call a pair (X,Y) of S-valued random elements jointly invariant if

(x,v) 2 (T(x),T(Y)), TET. Let d be a bounded metric on S. Then
(12.27)  d{p,v) = inf{Ed(X,Y): (X,Y) jointly invariant, L(X)=wu, L{Y)=v}

defines a metric on M which is stronger than (or equivalent to) the weak
topology. Now specialize to the partial exchangeability setting (12.16),
and suppose there exists 10 € I such that {Y(io):-y611-= I. Then

i i ' LY. ) i€1) = LY s
processes (X,Y) are jointly invariant if ((Xj,Y1) iEel) 3 ((Xy(w) Yy(]))

i€l1) for y€T; and

(12.28)  d(u,v) = inf{EA(X, LY, ): (X,¥) jointly invariant,
) 0 0 [(x)=u, L{Y)=v}

defines a metric equivalent to that of (12.27). This d-topology was

introduced by Ornstein for stationary sequences; see Ornstein (1973) for a
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survey. A discussion of its possible uses in partial exchangeability is
given in Aldous (1982a). Informally, the d-topology seems more compatible
with the characterization problem than is the weak topology (for instance,

E s always d-closed). A natural open problem is:

(12.29) Problem. Under what conditions are the d-topology and the weak

topology egquivalent?

This is true for exchangeable sequences, and in the general setting when
T s a compact group. It is not true for stationary sequences, or for the

examples in Sections 13 and 14.

13. The infinitary iree

In this section we analyse a particu1ar example of partial exchange-
ability. Though this example is somewhat artificial, we shall see soﬁe
connections with naturally-arising problems,

" A tree is a connected undirected graph without Toops. Two vertices are
neighbors if they are joined by an edge. For any two distinct vertices 1, J

there is a unique path of distinct vertices 1 = 1],12,...,in = j such that

1' Y
r and 1r+1

binary tree, in which there are a countable infinite number of vertices, and

are neighbors, 1 <r.<n. A simpie example is the infinite

each vertex has exactly 3 neighbors. Similarly there is the infinite k-ary
tree, where each vertex has exactly k+1 neighbors. We shall consider the
infinite =-ary tree (the infinitarz tree) where each vertex has infinitely
~many neighbors: for our purposes this is simpler than the finite case (see
é;mark 13.11). Let T denote the set of vertices of this tree. Let D be
the set of finite sequences d = (d1’d2""’dn) of positive integers, and

include in D the empty sequence @. Pick a vertex of T arbitrarily, and
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Tabel it jﬂ' Then put the neighbors of jg in arbitrary order and label
them j]’jZ’jS"" . Then for each n put the neighbors of jn (other
than JQ) in arbitrary order and label them AR BTN TR Continuing

in the obvious manner, we obtain a Jabelling scheme {jd: d€Dd} for all T.

An automorphism of T is a bijection y: T—T such that y(i) and

v(j) are neighbors iff i and j are neighbors. The easiest way to think

of automorphisms is via labelling schemes. Given two labelling schemes

Pl

{jd: dE€D}, {jd: d €D}, the map Y(jd) = Jy4 is an automorphism; conversely,

every automorphism is of this form.
11
\ />/1
2 - .
/ \ }/32\
\ \\j/‘ /
Ve Y4

\

R — X

A tree-process X s a family (Xi: i&€T) of random variables indexed

by T and taking values in some space 3. Given a tree-process and a

labelling scheme, we can define a process indexed by D:



*
(13.1) Xd = X,

A tree-process X is invariant if

2

(13.2) X (Xy(i): iE€T), each automorphism .

*

Equivalently, X is invariant iff the distribution of X" = (Xd: d€D)
defined at (13.1) does not depend on the particular labelling scheme (jd:

deD) used. Informally, this says the distribution of any (Xi seuosks )

1 n

depends only on the graph structure on (i},...,i ). The set T of

n
automorphisms is uncountable, but it is easy to see there exists a countable

subset T, such that a process is l-invariant iff it is Fo-invariant. Thus

0
invariant tree-processes do indeed fit into the "partial exchangeability"
set-up of Section 12.

Our purpose is to describe explicitly the general invariant tree-process
{i.e. to solve Problem 12.18 for this particular instance of partial
exchangeability).

First we describe the well-known special case of Markov tree-processes.
Informally, a tree-process Y 1is Markov if, conditional on the value Yi
at a vertex i, the values of the process along different branches from i
are independent. To make this precise, for vertex 1 Tlet Ni denote the
set of vertices neighboring i. For Jj &N, let the branch Bi,j be the

n
) be the array (Yk: kEB,

set of vertices k for which the path i = 11,12,...,1 = k of distinct

.

neighboring vertices has 12 = j. Let Y(B j

i,d
Then Y 1is Markov if, for each 1,

(13.3) (Y(Bi j): jEENi) are conditionally independent given Y,.

Warning. There are two definitions of "Markov" for processes on trees. In

the language of Spitzer (1975) we mean "Markov chain”, not "Markov random
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field"--see Rgmark 13.13.

1f Y 14s an invariant tree-process then the distribution

(13.4) 6 = L(Yi’Yj); i, j neighbors

is a symmetric distribution on S§xS which does not depend on the particuiar
pair i,j of neighbors. It is easy to verify (c.f. Spitzer (1975), Theorem 2)
that for any symmetric © there exists a unique (in distribution) invariant

Markov tree-process satisfying (13.4). Call this the invariant Markov

tree-process associated with 6. Given such a process Y and a map

f: S—S', the process (f(Yi):'i€1ﬁ is a tree-process with range space
S*'. This process inherits the invariance property from Y, but in general
wi}T not inherit the Markov property. The next result says that every

invariant process can be obtained this way.

(13.5) Theorem. Let X be an invariant tree-process with range space S.

Then there exists an invariant Markov tree-process Y with range space

(0,17 and a function f: [0,11—5 such that X 2 (F(v;): i€T).

Proof. The idea of the proof is simple. The family of sub-processes
on different branches from 1 1is exchangeable; let Yi be the directing
random measure; then it turns out that (Xi’Yi) is Markov.

For the formalities, we need some notation. For n >1 and

d = (d .,dm) €D let nd = (n,d .,dm), and let #d = d. Fix a vertex

'],o. -I,¢-
i, and set up a labelling scheme (J,: d€D) with jg = 1. For n>1,

Tet Cn = (Xnd: d€D) be the values of the process X on the branch Bi i
n

So Cn takes values in SD.
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(13.6) Lemma. (a) (C],CZ,C3,...) is exchangeable over X..

(b) The distribution of (X;3C;,C5.Cs,...) does not depend on 1 or

on the Tabelling scheme.

Proof. Assertion (b) is immediate from invariance. To prove (a}, let
7 be a finite permutation of {1,2,3,...}, and let Yﬁ(i) =i, Yﬁ(jnd) -
Jn(n)d‘ Then Y, s an automorphism, and the invariance of X under vy_

N . 1% . ;
implies (Xi,C1,C2,...) = (Xi,Cw(1),Cﬁ(2),-.-)-

Let Yi be the directing random measure for (Cn). So Y_i takes
values in P(SP). keep i fixed. It is clear from (13.6)(b) that the -

distribution of Yi does not depend on the labelling scheme used to define

(Cn); what is crucial is that the ac¢tual random variable Yi does not depend
(a.s.) on the labelling scheme. To prove this, let Y., ?i be derived from
schemes (jd), (Ed) with jﬂ = 39 = i, Now the directing random measure
forran infinite permutation (Zw(i)) of an exchangeable sequence Z s

a.s. equal to the directing measure for Z; so by re-ordering the neighbors

of 1 we may suppose jn = En, n>71. Nowlet A be a subset of

A A _ . AL

{1,2,3,...}, and let j° be the labelling scheme jg =1, dpg = Ing?
neaA, jﬂd = 3nd, n<€ A, By (13.6)(b) the distribution of (X Al d€D)

~ J
does not depend on A, and then Lemma 9.7 implies Yi = Yi a.s. d

Now set Y: = (Xi’Yi)‘ We shall prove that the process y* = (Yi: iEeT)

is invariant. Let vy be an automorphism. The invariance of X under Y
implies

| : : ) o oav(d), :
- i n- bd _Y(_i), Cn : nz], 161-)

s

where for each 1 the sequence (C;: n>1) describes the values of X on

the branches Bi 5 j & Ni’ using some labeliing scheme perhaps different
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from that used to define (C;). Now the fact that Y, does not depend on

the labelling scheme shows

. ) .
(xi,Y'I: 'IET) = (XY(i),YY(i). 1eT) .

This gives invariance of Y.
Since Xi is a function of Y?, and since the range space of Y? is
Borel-isomorphic to some subset of [0,1], the proof of Theorem 13.5 will

be complete when we show Y* is Markov. Write C; = (Xj : d€D}, for
. nd .
. X . . iy . _ gl
some labelling scheme (Jd) thh Jp = 1 So c(Cn) o(xv. VEEBi,jn) Fj’

say, where Jj = jn.

(13.7) Lemma. Let 1i,j be neighbors, and let k € B. i Then Y, € F} a.s.

Proof. Let 1 = iI’iZ""’ir+1 = k be the path of distinct vertices
linking 1 with k, so 12 = j. Clearly for any neighbor v of Kk,

v # ir, we have
(13.8) B, , CBy s -

Consider a labelling scheme (jd) with 3@ = k, 31 =‘ir. Now Yk is the
canonical random measure for the exchangeable family (CE:ryz]) defined
using (fd). So Y, is some function of (Cﬁ: n>2). But by (13.8) this

.}, which generates the

array is contained in the array (Xq: qE€B, ;

, i
To prove Y* is Markov, fix 1i. In the notation of (13.3), we must
prove (X(Bi J._),Y(ES]. j)), jE Ni are conditionally independent given

(Xi’Yi)' Using Lemma 13.7, this reduces to proving

(13.9) (F;: jEENi) are conditionally independent given (Xi’Yi) .
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But Lemma 13.6(a) and Proposition 3.8 show
{Xi,C;,Ci,..:} are cond%tionai?y independent given Yi’
and this implies (13.9).

The remainder of this section is devoted to various remarks suggested
by Theorem 13.5.

Theorem 13.5 answers the "characterization problem" (12.18). In view
of the discussion in Section 12 it is natural to ask which are the ergodic
processes. It is easy to see that an invariant Markov tree-process X is

ergodic iff there do not exist sets Ai’ AZ such that for neighbors 1, J
{XiGAI} = {XjEAz} a.s., 0« P(XieA}) < 1.

And a general invariant tree-process X s ergodic iff it has a representa-
tion X, = f(Yi) for some ergodic Markov Y.

Problem 12.20 and the subsequent discussion suggest

(13.10) Problem. Does there exist an invariant Markov tree-process Y

which is "universal," in that for any invariant X there exists f such

that X 2 (F(¥;))?

In connection with this problem, we remark that there exists (c.f. 12.22)
a symmetric distribution & on [0,1]2 which is universal, in that for
8 = L(V],VZ) the distributions L(f(V]),f(VZ)) as f varies give all
symmetric distributions. But this is not sufficient to answer Problem 13.10.

-

(13.11) The finite case. The conclusion of Theorem 13.5 is false for Tk’

the infinite k-ary tree. For it is easy to construct an invariant process

X on Tk such that {Xi’xj: jEENi} is distributed as a random permutation
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of {1,...,k+2}. Then {Xj: jfENi} cannot be extended to an infinite
exchangeable sequence, so the conclusion of fheorem 13.5 fails.
One way to construct invariant processes on Tk is to take (gi: iesz)

K+2

i.i.d. U{0,1), and take g: [0,1] — §  such that g(x,y],...,yk+])

is symmetric in (yi) for each x. Then the process

Y; J. €N

(13.12) K = 9(55a8 aeeat €N,

1 jk+]

is invariant. More generally, we can take- Xi = g(gj : d€b) for a

d
Tabelling scheme (jd) with jg = i and for g satisfying the natural
symmetry conditions. Presumably, as in the case (12.23) of ordinary

stationary sequences, this construction gives all "finitely determined"

invariant processes--but this looks hard to prove.

(13.13) Markov random fields. A tree-process X 'is a Markov random field

if, for each vertex i,

c(Xj: J# 1) and Xi are conditionally independent given o(Xj: jEENi).

This is weaker than our definition (13.3) of "Markov": see Kindermann and

Snell (1980). It is natural to ask

(13.14) Problem. Is there a simple explicit description of the invariant

Markov random fields on the infinitary tree T7?

In the notation of Theorem 13.5, the Markov random field property for X
is equivalent to some messy conditional independence properties for the
triple (Yi’Yj;f(Yj))’ i,j neighbors, but it seems hard to say when these

properties hont
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Spitzer (1975) (see also Zachary (1983)) discusses {0,1}-valued Markov
random-fie1ds on the tree Tk‘ For such a field, 1et. Vi = _é%.xj. Then
(a) there is an explicit description of the possible conditioné] distribution
of Xi given Vi in an invariant Markov random field;
(b) any such conditional distribution is attained by some Markov tree-process.
For the tree T we can set V. = ];m a7l ? Xjr, where N. = {J1,3,55...1»
and ask the same questions. It can be shown that (b) is not true on T;

the analog of (a} is unclear.

(13.15) Stationary reversible processes. A stationary process X = (Xn: nEZ)

is called reversible if X 2 (X_n: n€Z). So a stationary Markov process

Y is reversible iff the distribution L(YO,Y]) is symmetric. Reversible
Markov processes occur often in applied probability models--see e.g. Kelly
(1979)--and since we are frequently interested in functions of the underlying

process, the following theoreticél definition and problem are suggested.

(13.16) Definition. Given a space S, let H0 be the class of S-valued
processes of the form (f(Yn): n€Z), where Y 1is a stationary reversible
Markov process on some space S' (= [0,1], without loss of generality) and

f: $'—S 1is some function.

(13.17) Problem. Give intrinsic conditions Tor a stationary reversible

process X to belong to HO'

We shall see later ({13.24) that not every stationary reversible sequence is
in HO' N
To see the connection between Problem 13.17 and tree-processes, consider

(13.18) Definitions. A line in the infinitary tree T 1is a sequence

(i : n€Z) of distinct vertices with i1 ,, neighbors for each n.
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Given a space S, let H] be the class of processes (Xi : n€Z), where
' n
X 1is some S-valued invariant tree=process, and (in) is a line in T.

Now Theorem 13.5 has the immediate

{13.19) Corollary. H1 = HO'

Though this hardly solves Problem 13.17, it does yield some information.

For instance, H] is easily seen to be closed under weak convergence, SO

(13.20} Corollary. HO is closed under weak convergence.
This fact is not apparent from the definition of HO.

(13.21) Correlation structure. On the tree T there is the natural distance

d(i,j), the number of edges on the minimal path from 1 to Jj. For an
invariant tree-process X, where Xi is real-valued and square-integrable,
the correlations must be of the form b(Xi,Xj) = pd(i 3) for some correlation

function (p_: n>0).

n

(13.22) Proposition. A sequence (p,: n>0) is the correlation function

of some invariant tree-process iff p_ = xnx(dx) for some probability
n

measure A on [-1,1].

Remark. This result can be deduced from harmonic analysis results for the
trees T . Cartier (1973) shows that correlation functions on T, are
‘mixtures of functions of the form

i k(l“+1—k'n“1) -(An‘]-k'n+1l
() K20 -0

where A is either real with |A] 5_k1/2, or complex with {x| = 1. And
p is a correlation function on T iff it is a correlation function on each Tk'

See also Arnaud (1980).
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Instead, we shall see how to deduce Proposition 13.22 from Theorem 13.5.

Proof. Let C denote the set of sequences of the form Cp = ank(dx),
A(+) some probability distribution on [-1,1].

Let Y be the Markov tree-process associated with ©, where

8(0,0) = 8(1,1) = (1+A5; 8{0,1) = 8(1,0) =-%(T—k)

B

for some -1 <A < 1. Then Y has correlation function p(n) = A, By
taking mixtures over X, we see that every sequence in C is indeed the
correlation function of some invariant process.

By Theorem 13.5 the converse reduces to determining the correlation

function for sequences Yn = f(xn), where X = (X_: n>0) is stationary

n
reversible Markov. Consider first the case where X has a finite state
space S. Let P be the matrix of transition probabilities, and let 7
be the vector (m(s)) of the stationary distribution. Then Py = cn/co,

vihere
(13.23) ¢, = 11 F(s)m(s)P (s, t)f(t) .
s t

Reversibitity implies w(s)P(s,t) = w(t)P(t,s), and so the matrix Q(s,t)
= n]/z(s)P(s,t)w']/z(t) s symmetric. The spectral theorem for symmetric
matrices says we can write Q = UAUT, where U is orthogonal and A s
diagonal with real eigenvalues (ki); since these are also the eigenvalues
of P we have ]Ail < 1. Substituting into (13.23), putting vis) =

1/2
f(s)m'/=(s),
c, = vUAnUTvT = Xa%k? , say.

-~

So Pn is indeed in C.
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The general case, where X has state space [0,1], can presumably be
obtained by appealing to a more sophisticated spectral theorem. Let us
instead give a probabilistic argument. For N > 1 Tet ¢N(x) = 1'/2N on

N (N N )

i/ZN <X < (i+1)/2N. Let (XO’X]’XZ"" be the stationary reversible

. L N D . NN, D
Markov chain for which (XD,XT) = (¢N(XO)’¢N(X1))' Obviously (XO’X1) —
(XO’X1)’ and it can be shown (we leave this to the reader as a hard exercise)}

that

(13.24) (xg,x';‘,...,xﬁ)—&(xo,x],...,xk) 3s N—w, k fixed.

Observe also that by weak compactness of P[-1,1],

(13.25) ¢ 1is closed under pointwise convergence.

Now consider Y = f(Xn), where f is bounded continuous, and Tet (pn)

be the correlation function for Y. Using the result for finite state spaces,
(13.24) and (13.25), we deduce that (pn) is in (. Measure theory extends

this to general f.

(13.26) Remarks. Take X, and Y independent, X, uniform on {0,1,2,3},

0
Y uniform on {-1,1}, and define Xn = X0'+nY modulo 4. Then X is a
stationary process which is reversible, and p(XO,XZ) = -1, so by Proposi—

tion 13.22 X cannot be represented as a function of any stationary rever-
sible Markov process.

We also remark that the analog of Problem 13.17 without reversibility
{which stationary processes are functions of stationary Markov processes?)
is uninteresting as it stands. For given a statidnary Drocess (Xn)’ Tet

(Yn) be the stationary Markov process given by Y = (Xn,Xn+1,Xn+2,...),

and then X_ = f(Yn) for f(xo,x],xz,...) = Xge However, the problem of
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which finite state stationary processes are functions of finite state sta-

tionary Markov processes is non-trivial--see Heller (1965).

(13.27) A curious argument. Readers unwilling to consider the possibility

of picking uniformly at random from a countable infinite set should skip
this section. For the others, we present a curious argument for de Finetti's
theorem and for Corollary 13.19 (that a 1ine in an invariant tree-process

yields a function of a stationary reversible Markov process).

Argument for de Finetti's theorem. let Z = (Zn: n€N) be exchangeable, so

)

(a) 2 sZ. ,...)}, any distinct (i],iz,...).

1 12

Take I],Iz,... independent of each other and Z, wuniform on N. Then

(b) the values Iys15s... are distinct;
(c) for any function z defined on N, the sequence (Z(IT)’Z(IZ)"")
is 1.7.d.
Now consider the sequence ZI . By conditioning on (11,12,...) and using

n
(a) and (b), we see

(d) z 2 (2, ).
n

For any sequence z = (zn) of constants, the distribution of (ZI ) given
n

Z=12z is i.i.d., by (c). So

(e) (ZI ) dis a mixture of i.i.d. sequences.
n

And (d) and (e) give de Finetti's theorem.
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Argument for Corollary 13.19. Let X be an invariant tree-process, Tet

(in: n>0) be a line in T, s0

; (Xj ) for any line (Jn).

Take I0 uniformon T, I] uniform on the neighbors of IO’ 12 uniform

on the neighbors of IT’ and so on. Then

(b) the values IO’I]’IZ"" form a tine in T;
() (I,) is a stationary reversible Markov process on T.
Now consider the sequence (XI ). By conditioning on (I],Iz,...) and using

n
(a) and (b},

() () B xp )
’ n n
Recall definition (13.16) of HO' For any function x on T, the sequence

(xI ) dis in Hyo by {(c). So by conditioning on X,
n

(e) (XI ) is a mixture of processes in H,.
n

But it is not hard to see H0 is closed under mixtures, so {d) and (e) give

Corollary 13.19.

(13.28) Problem. Is it possible to formalize the arguments above {e.g. by

using finite additivity)?

14. Partial exchangeability for arrays: the basic structure results

Several closely related concepts of partial exchangeability for arrays
of random variables have been studied recently. In this section we describe

the analog of de Finetti's theorem for arrays.
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Consider an array X = (X : i,3>1) of S-valued random variables such

i,d°
that
(14.1) x B (Xﬁ(””z(i))
for all finite permutations Tys Ty of N. In terms of the general descrip-
tion {12.16) of partial exchangeability, 1 = NZ and T 1is the product of
the finite permutation groups. Writing Ri = (Xi,j: j>1) for the ith row

th

of the array X, and C; = (X i>1) for the j°" column, condition (14.1)

J isj: -
is equivalent to the conditions

(14.2)(a) (R},RZ,R3,...) js exchangeable;

(b) (C],CZ,C3,...) is exchangeable.

If these conditions hold, call X a row-and-column-exchangeable (RCE) array.

Here are three obvious examples of such arrays.

(14.3)(a) (X, ;) i.i.d.
. . = E. Engens i.i.d. i
(b} Xj’J Eis where (g],,z, ) are i.i.d. Here the entries
within a column are i.i.d., but different columns are jdenticals; -

or equivalently, entries within a row are identical, but different

rows are i.i.d.

(c) X nj, where (n1,n2,...) are i.i.d. Similar to (b},

i,]
interchanging rows with columns.
Here is a more interesting class of examples. let ¢: [0,1]2-—+[0,1] be

an arbitrary measurable function. Let (61,52,...;n1,n2,...) be i.1.d.

uniform on [0,1]. Then we can define a {0,1}-valued array X by

(14.4) conditional on (E],Ez,...;n1,n2,...), P(Xi,j =1) = ¢(Ei’nj)’

P(Xi,j =0) =1 - ¢(Ei’nj)’ and the Xi,j are independent.
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Such processes, called ¢-processes, can be simulated on a computer and the
realizations drawn as a pattern of-black and white sduares. Diaconis and
Freedman (1981a) present such simu1étions and use them to discuss hypotheses
about human visual perception.

What is the analog of de Finetti's theorem for RCE arrays? There are
several easy but rather superficial results which we describe below; the
harder and deeper result is Theorem 14.11, and the reader may well skip to
the statement of that theorem.

One method of analysing RCE arrays is to consider the rows (R1,R2,...)
as an exchangeable sequence such that (Ri’RZ"") 2 (hW(R]),hW(RZ),...)
for each w, where hﬂ((xi)) = (*w(i))' Then Lemma 9.6{(i) says that the
possible directing random measures o for (Ri) from a RCE array are pre-
cisely those with certain invariance properties~-see‘Lynch (1982a). But this
approach does not lead to any explicit construction of the general RCE array.

Recall thaf one version of de Finetti's theorem is: conditional on the
tail og-field of an exchangeable (Zi)’ the variables (Z],Zz,...) are 1.7.d.
So it is natural to study what happens to RCE arrays when we condition on
some suitable “remote" o-field. Define the tail o-field T and the shell

o-field S as follows.

T=0T_, where. J 1
non .
T, = G(Xi,J: min{i,j) >nj,. !
i i |
S = g Sn’ where :
E
Sy = ol¥y g max(i.j)>n}. 4/3/
? | >
- TS
v £ A
iy
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We need another definition. Call an array X dissociated if
(14.5) (Xi j} max(i,j) <n) independent of (Xi it min(i,j)>n) for each n.

The next results describe what happens when we condition on these o-fields.

(14.6) Proposition. Let X be a RCE array. (Conditional on T, the array

X is RCE and dissociated.

(14.7) Proposition. Let X be a RCE array. Conditional on S, the variables

Xi j are independent (but in general not identically distributed).

Proof of Proposition 14.6. Let m, Mo be permutations, and take n

so large that L8 and Ty do not alter n+1,n+2,... . Since

x 2 (X )), we have

NORNG
conditional on Tn, the distributions of (X,

(X : i,j<n) are identical.

m(1),7y(3)°
Letting n—«, we see that conditional on T, X is RCE.

Now fix M, and consider the diagonal squares Sk = (Xi 5t (k=1)M+1

< i,j<kM)., Given k and a permutation = of {1,....kl, there exists

”~

we have (51""’Sk) = (Sn(])""’sw(k))' It fo11ow§ that (S],...,Sk)' is

exchangeable over T, (n>kM). Letting n-—o,

($,,5

1° 2,...) is exchangeable over T.

Moreover the tail of (Si) is contained in T. Using Proposition 3.8 we

see that (S is conditionally i.i.d. given T, so in particular

)
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X5

.given T.

: 1,j<M) and (X, ;: M<i,j<2M} are conditionally independeht

1,37

This holds for all M; it is easy to deduce X 1is conditionally dissociated.

Proof of Proposition 14.7. Let Y1,Y2,... be an arbitrary enumeration

it i, >1). It is not hard to verify (see Aldous {1982b)) that (Yi)
satisfies the hypotheses of Proposition 6.4, Hence Y]’YZ"" are condi-
tionally independent given their tail o-field Tye But Ty = S.

Finally, in example (14.3b) we have S = c(g],gz,...) = g{X), so that
conditional on S the array X 1is deterministic, and so the entries Xi,j
are not conditionally identically distributed (except when & is degenerate).

Although Propositions 14.6 and 14.7 give useful information, they do
not provide a complete description of RCE arrays. Another approach is to
use the general theory outlined in Section 12. The general theory says that
each RCE array is a mixture of ergodic RCE arrays; the next result identifies

the ergodic arrays as the dissociated arrays.

(14.8) Proposition. For a RCE array X the following are equivalent:

(a) X is extreme (= ergodic) in the class of RCE arrays.

(b) T is trivial.

(c) X 1is dissociated.

Proof. (a)=(b).. If X 1is ergodic then the ergodic o-field E is
trivial. But E DT, just as in the l-parameter case.
"~ (b)={(c). Proposition 14.6.
(c)=(a). Suppose L(X) = %i(Y)-P%i(Z) for RCE arrays Y, Z. We must

show L(X) = {Y). Fix M, and consider the diagonal squares
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X . . . X X 1t oY

S (Xi,j' (k=1)M+1<i,5<kM). Then L(S7,Sp,...) = 5L(54555,...)
+-%L(S%,S%,...). Fach of these sequences is exchangeable, and (Si) is
i.i.d. by hypothesis; but de Finetti's theorem implies that an i.1.d. sequence

is extreme in the class of exchangeable sequences, and hence we must have

¥ = S¥. But this says (X 1,3 <M) ) (Yi J.: i,j<M), and since M is

arbitrary X 2 Y.

S R

1,3
However, the net effect of Proposition 14.8 and the general theory is

to show that each RCE array is a mixture of dissociated RCE arrays--and this

was already given by Proposition 14.6.

The results so far have been fairly direct consequences of the circle
of ideas around de Finetti's theorem. We now come to the fundamental

"characterization theorem," which seems somewhat deeper.

(14.9) Convention. tLet {o; Si, i>1; Ny i>1s A1 T i,j>1} denote

independent U(0,1) random variables.
Now given any f: (0,1)4-—+S we can define

* —
(.[4-10) X'E,J - f(asgisnj:)\i’j)

and this yields an RCE array X*. say f represents X*. This class of

arrays is the class obtained from the exampies in (14.3), together with the

trivial array Xi j 5@ by the general methods of Section 12. HNote that

a ¢-process is represented by f{a,b,c,d) = 1(d'<¢(b c))”

(14.11) Theorem. Let X be a RCE array. Then there exists f: [0,1]4——>S

such that X 4 X*, where X* is represented by f.

This result was obtained independently by Aldous (1979, 1981a) and Hoover

(1979, 1982); the more general results of Hoover will be described later.
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The proof which appears in Aldous (1981a) is a formalized version of an afgu-
ment .due to Kingmén (personal communication), which wé present essentially
verbatim below.

By a coding £ of a random variable Y we mean a presentation

v 2 g(g) for £ witn U(0,1) distribution.

Kingman's proof of Theorem 14.11. There is no loss of generality in supposing

that X is a quadrant of an array (Xi i i,JEL}. MWrite
A=(th:1ﬂ<0)
B. = (Xi,j: j<0) 8 = (Bi: i>1)
CJ-(MJ:iim C = (C5: 321) .

de Finetti's theorem implies that for an exchangeable sequence (Yiz 1E€Z)

the variables (Yi: i>1) are conditionally i.i.d. given (Yi: i<0).

Applying this to the three Sequences

Y1. = (Xi,j: jeZ) = (Bi: Xi,j’ ji>1)
Y, = (Bi’xi,j) (j fixed)
and Yi = Bi ’

we see that
(i) the variables (Bi,xi 1’Xi 2,...) for i > 1 are conditionally
i.i.d. given (A,C);

. .} for i>1 are con-
1,J —

(ii) for fixed j > 1, the variables (Bi,x
ditionally 1.i.d. given (A,Cj);
(iii) the variables B, for i > 1 are conditionally i.i.d. given A.
Moreover, the conditional distribution of Bi given (A,C) s expressible
as a function of A, so

(iv) Bi is conditionally independent of C given A, for each i.
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Corresponding results hold when the roles of i and j are reversed, and
standard conditional probability manipulations then show that
(v) B]?BZ""’ Ci5Cps... are conditionally independeﬁt given A,
the conditional distributions of Bi and Cj not varying with
i and j respectively;

(vi) the variables (X i,j>1) are conditionally independent

i,j°
given (A,B,C), the conditional distribution of X, j depending

only on (A,Bi,Cj).

Now take a coding a of A, and condition everything on a. Choose
a coding £ for B], and let &, be the corresponding coding for Bi;

similarly choose codings N3 for Cj (all this conditional on a). Then

Oy E],Ez,..., MysNps--- are independent U(0,1), and there is a function

g:(O,T)S——+P(S) such that g(a,&i,gj) js the conditional distribution of
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Xi j given (A,B,C). The usual construction then yields a function
f: (0,1)4-—+S such that the array- X has the same distribution as the array

f(a,si,nj,ki 3), where (li j) are more independent U(0,1) variables.
* L]

Remarks. Representation (14.10) has a natural statistical interpretation:

X¥ is determined by a "row effect" 51’ a "coiumn effect" n;, an

1,3 3’
"individual random effect" hij and an "overall effect" o. Theorem 14.11
may be regarded as a natural extension of de Finetti's theorem if we formu-
late the latter using (2.5) as: (Zi) is exchangeable iff (Zi) g (f(a,Ei),
i>1) for some f: (0,1)%—5.

Theorem 14.11 builds the general RCE array from four basic components.

The arrays which can be built from only some of these components are the

arrays with certain extra properties, as the next few results show.
For f: [0,113—S define
*
(14.12) X7 5 ° f(f’;i,nj,li,j) .

Then X* 4s a dissociated RCE array. Conversely, we have

(14.13) Corollary. Let X be a dissociated RCE array. Then there exists

a function f: [0,113—S such that X = X*, for X* defined at (14.12).

Proof. Theorem 14.11 says X can be represented by some f: [0,1]4-ﬂ+8.

For each a € [0,1], let fa(b,c,d) = f(a,b,c,d). By conditioning on o

in the representation (14.10), we see that- X is a mixture (over a) of

arrays X2, where x2 . = fa(gi,nj,k ). But X is dissociated, so by

15J N

Proposition 14.8 it is extreme in the class of RCE arrays, so X 4 X2

for

almost all a.
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(14.14) Corollary. Let X be a dissociated {0,1}-valued RCE array. Then

X 1is distributed as a ¢-process, for some ¢: [0,1]2-a+[0,1].

Proof. Let f be as in Corollary 14.13, and set d{x,y) = P(f(x,y,li’j)
= 1).

It is natural to ask which arrays are of the form f(Ei,nj) --note the
general ¢-process is not of this form. This result is somewhat deeper.
Different proofs appear in Aldous (1981a) and Hoover (1979), and will not

be repeated here. See also Lynch (1982b).

(14.15) Corollary. For a dissociated RCE array X, the following are

equivalent:
(a) X],] € S a.s.,
- * * = . 2
(b) X 5 X*, where Xi,j f(gi’”j) a.s. for some f: (0,1)"—S.

An alternative characterization of such arrays, based upon eniropy ideas,
will be given in (15.28), We remark that although it is intuitively obvious
that a non-trivial array of the form f(Ei,nj) cannot have i.j.d. entries,
there seems no simple proof of this fact. But it is a consequence of
Corollary 14.15, since for an i.i.d. array S is trivial.

The next result completes the list of characterizatﬁons of arrays repre-

sentable by functions of fewer than four components.

(14.16) Corollary. For a disseciated RCE array X, the following are

equivalent:
(a) X = (Xi,ni(j): i,j>1) for all finite permutat1bns TysTpseen o
(b) X 4 X*, where X? ;7 f(gi,ki j) for some f: (0,1)2-—+S.

: 3> ).

Proof. Let o be the directing random measure for (Xi i’

Corollary 3.9 implies that for each (i,3),
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o (11,37) # (1,3)) .

(14.17a) o is a r.c.d. for X, . given U{Xi' ;

15J

Let Ni be disjoint infinite subsets of {1,2,...3. Dissociation implies

o X; i jEENi), i > 1, are independent, and since a; € U(Xi

3

. 3 e .
5 J N1)

we get
(14.17b) (ai: i>1) are independent.

Set Xi . = F'](a.,k ), where F-](e,-) js the inverse distribution

1,J i,
function of 6. Then (14.17a) and (14.17b) imply x* 2 X. Finally, code

ai as Q(Ei)-

Another question suggested by Theorem 14.11 concerns uniqueness of the
representing function. Suppose Ti (1<1i<4) are measure-preserving func-
tions [0,11—[0,1]. Then f and f*(a,b,c,d) = f(T;(a),T,(b},T5(c),T,(d))
represent arrays X and X* which have the same distribution. It 1is
natural to conjecture that if X and X* have the same distribution then
any representing functions f, f* must be "equivalent" in the sense above.
Hoover (1979) gives a precise statement and proof of this fact.

Finally, let us mention a different type of exchangeability property

for arrays. This is motivated by the concept of U-statistics, that is to

say sequences (U,) of the form

1
(14.18) U = bog(v..v.)
| n Ig].1<i<j<n v

where (Vi) is i.i.d. and g(-,*) is symmetric. (Many natural statistical
estimators are of this form--see Serfling {1980), Chapter 5.) Now we can

regard (Un) as the partial averages

1
U = = Xes
SN RO A
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of an array X = (x{i,j}) indexed by unordered pa1rs; x{i,j} = g(Vi,Vj).

Since (Vi) is -exchangeable, X has the property

(14.19) x 2 (Xea(iy.n(q)y)e cach Finite pernutation .

This property has been called weak exchangeability. In the spirit of (14.10)

we can construct a more general weakly exchangeable array by
* -—
(]4'20) X{'i,j} - g(a,g'l’g‘]’l{'i,j}) s

where g(a,*,+,d) is symmetric for each (a,d). It is possible to modify

the proof of Theorem 14,11 to prove

(14.21) Theorem. Let X be a weakly exchangeable array. Then X 2y for

some array X* of the form (14.20).

And all the other results for RCE arrays have natural analogs for weakly
exchangeable arrays.

" So far we have considered 2-dimensional arrays. The definitions of RCE
and weak exchangeability have natural extensions for k-dimensional arrays,
and it is not hard to guess what the analogs of Theorems 14.11 and 14.2]
should be. Proving these along the lines of the proof of Theorem 14.11 seems
hard. Hoaover (1979).uses quite different techniques to establish a general
result encompassing Theorems 14.11, 14.21 and their k-dimensional versions.
The statement and proof of these results involve ideas from logic which we
shall not attempt to present here--we refer the reader to the expository

account in Hoover (1982).
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15. Partial exchangeability for arrays: compiements

Most of the results in Parts 1 and 2 about exchahgeab]e'sequences
suggest conjectures for similar results for arrays. Rather than attempt
any systematic program of extension, we shall present merely a selection of
results and open problems which Took interesting. Studying the open problems

would perhaps make a good Ph.D. thesis.

(15.1) Correlation structure. For a RCE array X with real square-integrable

entries, the correlation structure is determined by the three numbers

o = p(x1,1’X2,2); pe = D(X],T’X},z); Pe = p(xi,1’x2,]) )

(15.2) Proposition. The possible correlations (p’pc’pr) for a RCE array

are precisely those satisfying

0 <ps<min(pp)s potp, <140 .
Proof. Let &, (§;) (ﬂj), (%, ;) be independent N(0,1) and define
3’

5. . =ag + bl v AL+ dh, e
(15.3) | XT,J ad + bE; el dk1,3 e

2

a _FbZ 2

+c ~+d2, we have

i

Then, setting 02
o = 2%/ Pe 7 (62+C2)/02; Pp = (az+b2)/02 .

And we can choose (a,b,c,d) to attain any correlations in the range specified.
Conversely, let X be a RCE array. Suppose first that X is disso-

ciated. Then p = 0. Of course min(pr,pc) >0 by (1.8). We shall prove

(15.4) o . +p <1.

We may suppose EX.| 1" 0, EX1 17 TV and, by Corollary 14.13, that

Xi,j = f(gi’nj’Ai,j)‘ Cefine
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g(x,y) = EF(x,¥:2y 1)
9,(x) = Eglxom)s gply) = Ealgqay) -

Then p. = EX1 ]X] 5
- Eg5(g;)

and similarly p, = Egg(ﬂ1)' So

2
1= 6X] 5 > Eg°(£p.my)
- 2 2
= E(g(£y5nq) - 97 (§))° + Egy(E;)
by conditioning on gl

Egg(n]) + Eg$(51) by conditioning on n

| v

= 0t Pps establishing (15.4).

For general X with EX1 1T 0 and EX? 1 = 1, condition on a 1in the
representation (14.10) and let p:, p:, o* be the conditional correlations.

Then

2
D* =t (X]’]Ia)

*
- {E(X1’]XT,2]a)-

= {E(X1’]X]’2|a)-p*}/VaF(XT’}[d)

(%) qle)lvar(xy jla)

©
|

and similarly for p:, replacing X, , with X, ;. And

p = EXy 1¥p,2 = E E(y 3%y pla)
= E{E(X1,]IG)E(X2’ZIG)}

= Ep* .

So Pe = EX],]X],Z =t E(X]’IX1’2‘Q)'

by (1.8) for the first row of the
conditioned array
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and similarly for o . Finally, op+pr <1 by (15.4), so

| A

*
E(X],]X],2|a) + E(X1’1X2,1[a) E var(XT’][a) + 20

= var(X - var E(X] 1la) + 2p0*

1,1)
::]-]-p*,

+p i'l+p,

and taking expectations gives bt P

Remarks. (a) Proposition 15.1 could alternatively be derived by analytic
methods, without using Theorem 14.11.
(b) Proposition 15.5 implies that the general Gaussian RCE array is of
the form (15.3).
- {c) One could consider "secbnd order" RCE arrays, in which only the
correlation structure is assumed invariant. Such arrays are discussed in
Bailey et al. (1984) as part of an abstract treatment of analysis of variance.

Invariance of higher moments is discussed by Speed (1982).

(15.5) Estimating the representing function. Corollary 14.14 says that a

dissociated {0,1}-valued RCE array is a ¢-process. In other words, the
family of dissociated {0,1}-valued RCE arrays can be regarded as a parametric
family, parametrized by the set ¢ of measurable functions ¢: [0,1]2__+[o,1],

Can one consistently estimate the parameter? More precisely,

(15.6) Problem. Do there exist functionals AN:{0,1}{1""’N}x{1""’N}-+®

such that for any ¢-process X,

-

. 1’jiN)—->-¢* a.s. in L]([Os1]2)!

A5 50

N

for some ¢* such that X s a ¢*-process?
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In view of the non-uniqueness of ¢ representing X, one should really

expect a somewhat weaker conclusion: but no results are known.

(15.7) Spherical matrices. Schoenberg's theorem (3.6) asserts that every

spherically symmetric infinite sequence is a mixture of i.i.d., N{OQ,v)
sequences. Dawid (1977) introduced the analogous concept for matrices. Call

: 1,j>1) spherical if for each n > 1,

an infinite array Y = (Yi it

YnU 4 Yn for all orthogonal nxn matrices U], U2 s

U¥ps

1

where Yn denotes the nxn matrix (Yi J.: T<i,j<n). Here are two examples

3

of spherical arrays:

(i) a normal array Y, where (Y. .z i,J>1) are i.i.d. N(0O,1)3

1,d°
(i) a product-normal array Y, where Yi ; = Viwj for
(V],Vz,..., w],wz,...) i.i.d. N(0,1).

Now a spherical array is RCE, by considering permutation matrices. Then
Theorem 14.11 can be applied to obtain {with some effort) the following

result, conjectured in Dawid (1978) and proved in Aldous (1987a).

(15.8) Corollary. For an array Y = (Yi i i,5>1) the following are

equivalent:

(a) Y is spherical and dissociated, and EY% ] <>

(b} Y = aOYO + XamYm; where Xai < o, v° is Normal, Y (m>1)

are product-Normal, and (Wn:nyzo) are independent.

It is clear that (b) implies (a): let us say a few words about the implica-
tion {a)=(b). Writing Y = E(YIS)-F?, where S s the shell g-field of
Y, it can be shown that E(Y|S) and ¥ are independent; that E(Y]S) fis

of the form aoYo; and that Y s spherical, disscciated and S-measurab?e.

Corollary 14.15 gives a representation ?i j = f(Ei,nj), and the constants
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(ai) appear as the eigenvalues of the integral operator h{s) — Jf(-,y)h(y)dy

associated with f.

(15.9) Finite arrays. Proposition 5.6 gave bounds on how far the initial

portion of a finite exchangeable sequence could differ from the initial part

of an infinite exchangeable sequence. Analogously, for m < n Tet Con
H]

be the smallest number such that for any nxn RCE array X taking values

{0,1} only there exists an infinite RCE array Y such that

FL(X, o2 1<i,5<m) - L{Y,

i i 1_<_1,J_<_m)llgcm, .

n

Weak convergence arguments show that T1im Con = 0 for each m, but still
nse

open is

(15.10) Problem. Give explicit upper bounds for Cone

7(15.11) Continuous-parameter processes. For 2-parameter processes Xs,t’

0 <s,t <=, XO,O = 0, we can define analogs of the 1-parameter "processes
with interchangeable increments” discussed in Section 10. For a rectangle

B = (s],szjx (t],tzj and a function f(s,t) 1let f{B) be the increment

of f over B:

f(B) = f(sz,tz) + f(s],t]) - f(s],tz) - f(sz,t]) .

For fixed & >0 Tlet B, ji- ((i-1)8,i8] % ((j-1),36]. Say X has separately

jnterchangeable increments if

(15.12) the array X(Bi j)’ i,j > 1 is RCE (for each 3).

Say X has simultaneously interchangeable increments if

(15.13a) X =X
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(15.13b) (X(Bi,j)’ i,j>1) = (X(Bw(i),n(j))’ i,j>1) for each

permutation m (for each &).

(Condition (15.13b) is slightly more than weak exchangeability.)

Using Theorems 14.11 and 14.21 to describe all processes with these
invariance properties is perhaps a feasible project, but looks much harder
than the 1-parameter result, Proposition 10.5. Rather than tackle the general
case, let us look at two special cases, corresponding to the special case

in Corollary 10.6.

(15.14) 2-parameter counting processes with separately interchangeable increments

Here are four methods of constructing such processes:

(i) Let X > 0. Take a Poisson process on R'_"xR+ of rate A.
(1) Let Aprps... > 05 let (£5:

f: Nx[0,1]—[0,=) be such that JA (k&) <= a.s. For each k take a
K

k>1) be i.i.d. U(0,1); and let

Poisson process of horizontal lines of rate lk and attach labels (E?: i>1)
to these lines; independently for different k. On the Tine labelled E?
place a Poisson process of points of rate f(k,g?), independently for
different lines.

(iii) The analog of (i1) with vertical lines, using constants (im),
say, and labels (n?), say.

(iv) Construct both a process of horizontal lines as in (ii), and a

process of vertical lines as in (iii). Llet g: Nx [0,1]xNx[0,1] — [0,1]
be such that 7} Akimg(k,iq,m,n}) < = a.s. At the intersecticn of the lines
Tabelled g? gﬁg n? put a point with probability g(k,g?,m,n?).

Since the superposition (i.e. sum) of independent invariant processes

is invariant, it is natural to make
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(15.15) Conjecture. The general ergodic process of type (15.14) is a sum

of independent processes of types {i)-(iv) above.

Presumably this can be proved by applying Theorem 14.11 to the arrays
of point counts in small squares, and letting the sizes of the squares decrease

to zero; but the details Took messy.

(15.16) 2-parameter continuous-path processes with simultaneously interchangeable

increments. Here are two examples of such processes:

{15.17)y ¥ = B B,; where (B,:

s,t B3 & t>0) is Brownian motion;

(15.18) On V = {0<s<t<=} let X be 2-parameter Brownian motion;
that is, for rectangles B with Lebesgue measure |[B|, the
variable X(B) has Normal N(0,]B|} distribution, and variables
X(Bi) are independent for disjoint B,. For t <s Tet

Koe T KAe

Also, the deterministic processes XS - st and XS £ = min(s,t)
have the required properties. From these examples we can construct more

processes of the form

(15.19) ZS £ = aXS . Z]BngJ% + yst + & min(s,t)
b 3 j= b ]

where X has distribution (15.18)
Y(j) has distribution (15.17), for each Jj > 1
(X,Y(1),Y(2),...) are independent
(a,BT,BZ,...,Y,d) are random variables, and ZB? < = 3.S.

It is natural to make the

(15.20) Conjecture. Any 2-parameter continuous-path process ZS t with

simultaneously interchangeable increments has a representation of the form

(15.19).



140

These types of processeé arise naturally in the study of the asymptotic

distributions of U-statistics. bLet us describe the simplest cases. Let

(V1,V2,...) be i.i.d. and let g(x,y) be a symmetric function such that
A 2
Eg(V1,V2) = 0; Eg (V1,V2) < o,

As at (14.18), define the U-statistics

Also define

o = E(E(g(v],vz)lv])]2 >0..

Then we get the following fundamental theorem for the asymptotic behavior
of U-statistics. See Serfling (1980), Chapter 5, for proof and a detailed

discussion of U-statistics.

(15.21) Theorem. (i) Suppose o > 0. Then n”zun 2. no,a%).

(i1) Suppose 02 = 0. Then nU R le(wg -1), where (wl,uz,...)

are independent N(0,1) and (A1,A2,...) are the eigenvalues of the operator

A defined by (Af)(x) = Eg(x,Vz)f(Vz).

These results are analogous to the ordinary central limit theorem; what is

the corresponding "process” result? Define processes

(n) . 1
Z o E Q(V,V) ’ S_<_t
5.t @]]ﬁi&S] i
1<j<{nt]
i<

_ Ln) . )

= zt,s : s > t.
Then Z(n) has simultaneously interchangeable increments, and Un = Z%n%.

Thus we would anticipate that any process arising as a limit of the normalized
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Z(n) should be of the form (]5.19). This is indeed true; the arguments of

Mandelbaum and Tagqu (1983) yield -

(15.22) Theorem. (i) Suppogse 02 > 0. Then n]/zz(”) 2, 402X, where X

has distribution (15.18).

(i1) Suppose 02 = 0. Then nZ(n) 2, ZAj(ng%-min(s,t)), where
(Y(]),Y(Z),...) are independent with distribution (15.17), and (lj) are

as in Theorem 15.21.

(15.23) Exchangeable random partitions. Consider a weakly exchangeable family

(Ri J.) of events. By the analog of Proposition 14.6 for weak exchangeability,

the family is a mixture of dissociated families. As in (14.14), a dissociated

family of events can be described as a ¢-process:
PRy 51812855-0) = 9(E4,E,)

where ¢: [0,1]2-—+[0,1] is now symmetric. This leads to an alternative
argument for Proposition 11.9. An exchangeable partition (11.4) is a weakly

exchangeable array (Ri j) with the special property
]

P(R, .NR

[ . . . .
N = 0;
i.57R k Ri,k) 0; 1,3,k distinct.

This translates into the following property for ¢:
£ 4(8;55,)0(E5585)(1-(E7,85)) = 0 .
It is not hard to deduce from this that
o(x,y) = 1 15 g (X:y) a.e. for some disjoint (B,) -
n n-n

This in turn implies that (Ri J-) has the "paintbox" distribution wp of

Section 11, where (p1,p2,...) is the decreasing rearrangement of (]Bn|).
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Thus any dissociated exchangeable partition has a "paintbox" distribution,

and the general case is a mixture..

(15.24) Ergodic_theory technigues. One characterization of RCE arrays of

the form f(gi,nj) was given in Corollary 14.15. Here we show how ergodic

theory concepts lead to another characterization.

The d metric (12.28) on the set of distributions of RCE arrays is
d(u,v) = inf{E min(1,[X) =Yy {[)}

1,57 X,5%,5)

such that L(X) = u, L{Y)} = v. It turns out (Aldous (1982a)) that the d

where the infimum is taken over bivariate RCE arrays Z

topology is strictly stronger than the weak topology; and the d topology
fits in nicely with the characterization theorem. Consider for simplicity
only dissociated arrays. Corollary 14.13 says that any RCE distribution

has a representation

'.u = L(X); X-i,j = f(ii,nj’ki’j) L)

0

for some f 1in the space LO of functions f: (0,])3-—+R. Give L~ the

topology of convergence in measure.

(15.25) Lemma. Hy - u, iff there exist functions fk representing e

with fk-—*fm.

Proof. The "“if" is straightforward, considering (Xi j’Yi j) =
. 2 a
(fk(ii,nj,ki’j),fm(gi,nj,ki,j)). Conversely, suppose w, — u_. For each
k there exists a bivariate RCE array (X? j,X? j) such that L(Xk) = Hp»

~

LX) = u_ and

. k oo
(15.26) E m1n(1,|X1,1—X1’1|) — 0.
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By taking (Xk:1_5k'<m) conditionally independent given X~, we can form
a process (Xm;xk,‘1;gk<:w) with the bivariate distributions (Xk,Xm)
1 k . @
i i’j,xi’j, k>1) s a RCER -valued array.
By Corollary 14.13 we can take x; j© g(gi,nj,ki j) for some g: (0,1)3-—+

above and such that x. 5 = (X
R°. Now set g, = gom, where ﬁk((xr)) = xg. Then g, represents 1,
and (15.26) implies

E m?n(],|gk(€],ﬂ1 ’k],‘l) —gm(gl ,r]-l s)\-l,'l)‘) — 0,

S0 g, —9, in LO.

Next, recall the definition and elementary properties of entrdpy. A
random variable Y with finite range (yi) has entropy E(Y) =

= —ZP(Y==yi)Iog P(Y==yi). And

(15.27)(a) E{h(Y)) < E(Y);  any function h.
(b) E(x,Y) = E(X) + E(Y) for independent X, Y.
(c) E(Y) » E E(Y|F) for any o-field F, where E{Y|F){(w) is the

entropy of the conditional distribution a(w,+) of Y given F.

For a dissociated RCE array Y such that Yi i takes values in a finite

set, let Ei = E(Yi it 1<i,j<n). Say Y has linear entropy if
1im sup n—]Ez < w,

(15.28) Proposition. A dissociated RCE- array has a representation as

(f(gi’nj): i,j>1) for some f iff it is in the d-closure of the set of

linear entropy arrays.

-

Proof. Suppose 1 1is the distribution of an array (f(Ei,nj)). let

Fk be the set of functions g: (0,1)2-—+R which are constant on each square

of the form (rz'k,(rﬂ)z'k)x (sZ—k,(s+1)2'k). Martingale convergence says
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there exist fk S Fk such that fk-—+f in measure. Let Yk be the array

(F(ggn)). Then (V") <Ly by Lemma 15.25. tow fix k, and set
Ei - 2% on {r2'k(:§i <(r+])2"k}, and similarly for ﬁj' Then

(Yi E i,j<n) is a function of (gi’ﬁj: i,j<n). So

Y s o~

= 7n Tog(2¥) by (15.27)(b).

i,j<n) by (15.27)(a)

So Yk has linear entropy.

For the converse we need

(15.29) Lemma. For a finite-valued dissociated RCE array Y, either

(a) there exists b > 0 such that E: z_bnz, n>1; or

ettt

(b) each representation f for Y has f(&,n,0 ) = ?(g],n1) a.s.

for some f.

Proof. If (b) fails for some representation f, then there exists a

subset B C (0,1)2 with measure |B] > 0 and there exists & >0 such that

E(f(x:.y’)\]’])) > 6: (X,y) € B.

1}

Define Fn j:

Cn = #{(15:1): i,jin, (51,71‘])53} .

G(Eisn T:Jf_n)

Then E(Yi it i,j;in[Fn) 3_6Cn by (15.27)(b), and then using (15.27)(c)
Y ’ 2
E, > 6EC. = 8|B|n". _

For the converse part of Proposition 15.28, let X = (f(gi,nj,ki j))
be in the d-closure of the set of linear entropy arrays. By lLemma 15.26
there exist fk: (0,1)3-+R. such that fk-+f in measure and fk repre-
sents a linear entropy array. But by Lemma 15.29 fk(g],n],k1 ]) =
fk(a],n1) a.s. for some f, and this implies f(gl,nl,li,]) = f(gi’nl)

-

a.s. for some f.
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Remarks. With somewhat more work, one can show that for any dissociated
finite-valued RCE array Y vrepresented by f
oy 1,1
n E. — E(f(x,y¥,Aq ))dxdy .
n 1,1
0/0
This leads to an alternative characterization in Proposition 15.28. In
particular, consider Y of the form 9(51’”3) for some finite~valued g.

The assertion above implies Ez is o(nz):

(15.30) Problem. What is the exact growth rate of E: in terms of g?

16. The infinite-dimensional cube

Here we present a final example of partial exchangeability where the
characterization problem has not been solved--perhaps the examples given here
will encourage the reader to tackle the problem.

tet 1 be the set of infinite sequences 1 = (i],iz,...) of 0's and
1's such that #{n: in=‘1} < @ TJet Id be the subset of sequences i such
that 1n = 0 for all n > d. Think of Id as the set of vertices of the
d-dimensional unit cube; think of I as the set of vertices of the infinite-
dimensional cube. . For a permutation = of N leaving {d+1,d+2,...} fixed,

define #: I—1 by
(16.1} (wi)n = iw(n) .

Geometrically, 7 acts on the cube I; as a rotation about the origin 0.

For 1 <s <d define ro: I—1 by

-

(16.2) (rsi)n

[}
—
-
=
.
i

1]
—_—

]
—
™
=3

I
w

Geometrically, 1 acts on the cube Id as a reflection in the hyperplane
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{5: X ==§&. The group Ty of isometries of the cube I is generated by
<s<d; 7, 7 acting on {1,2,:..,d}}. And we caﬁ regard T =UT, as
the group of isometries of the infinite-dimensional cube 1. Note that I
and T are both countable.
The pair (I,I') fits into the general partial exchangeability setting
of Section 12. We are concerned with processes X = (Xi: i€l), where Xi

takes values in some space S, which are invariant in the usual sense

D .
X = (X ,.,: i€l); each ET
(Y(.i) )3 Y
For such a process, the processes Xd = (X?: iGEId) are invariant processes

on the finite-dimensional cubes Id with the natural consistency property;
conversely, any consistent family of invariant processes on the finite-dimen-
sional cubes yields a process on the infinite-dimensional cube.

Here is some more notation. For 1 €1 tlet Ci = {n: in= 1}. For
i, j€1 let d(i,j) = #(Ci.ACj), so d(i,j) 1is the number of edges on the
minimal path of edges from i to j. A path in I 1is a sequence 11,12,13,...
of vertices such that the sets Ciktﬁcik+1 are distinct singletons.

As well as the obvious exampie of i.i.d. processes, there is a related
class of invariant processes which involve the "period 2" character of the
cube. Given two distributions u, v on S Tlet BS,v be the distribution
of the process (Xi) consisting of independent random variables such that

L(Xi) = when #C; is even, L(Xi) = v when #C; is odd. Then the

mixture 8 = 180 + 160 is invariant.
u,v 2 u,v 27v,p

Before proceding further, the reader may like to attempt to construct
other examples ¢f invariant processes.

It is interesting to note that an invariant process on the infinite-

dimensional cube contains, as subprocesses, examples of other partia}]y
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exchangeable structures we have described. Let X be invariant.

(16.3) The variables at distance 1 from 0, that is {X # C,= 13,
are exchangeable (in fact, exchangeab]e over XO)

~

(16.4)  The variables at distance 2, that is {X1: #Ci::Z}’ form a
weakly exchangeable array. '

The next resuit is less obvious. Regard I as a graph. Let TOT
be the set of graph-automorphisms of I, that is the set of bijections
vt I—1 such that (i,j) is an edge iff (v(1),v(3)) 1is an edge. It is

not hard to see that any I-invariant process is T-invariant,

(16.5) Lemma. There exists a subset T C I which is an infinitary tree,

in the sense of Section 13, and such that every tree-automorphism v of T

extends to a graph-automorphism & of I. Hence if (Xi:'iEI) is an

invariant process on the cube I then the restriction (X;: 1€T) is an

invariant process on the infinitary tree T.

Proof. As in Section 13 Tet D be the set of finite sequences
d = (d]""’dm) of strictly positive integers. Let f: D—N be the
' d, d
prime factorization map f(d], . d } =2 1 «3 2..... Now define y: D—1I

by C {f(d ), f(d d2) ...,f(d],...,d Y}. Then T = (D) is an infi-

p(d) m

nitary tree and {y{(d): d€D} 1is a labelling scheme for T.

Now fix a tree-automorphism y: T—T. The map y induces a map
J: f(D)—f(D) 1in the following way: if vy maps the edge (w(d),v{dq)}
to the edge (v(d),v(d5)) then let ¥ map f(dq) to £(34q). MNow define
o: I-—1 as follows. Let €(0) = Y(Q) = y(y(¢)). For 1 #0€I write
C, = AikJBi, where A, = Cifﬁf(D) and B. = Ci\f(D). Define 8(i) by

Co(i) ACe(g) = Y(A;) UB;
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By construction 6 is an extension of y. And & 1is a graph-automorphism

because (i,j) 1is an edge iff #(Cizﬁcj) =1 iff #(Ce(i) ACe(j)) = 1,

Lemma 16.5 has one noteworthy consequence. For an invariant process
on the infinfte—dimensiona1 cube with square-integrable real entries, the
correlations p(Xi,Xj) equal p(d(i,j)) for some correlation function
o(n). By {16.5), p(n) must be of the form described in Proposition 13.22.

Example 16.9 later shows that for each A € [-1,1] there exists an invariant

process with p(n) A", so by taking mixtures we get

(16.6) Corollary. A sequence (p(n): n>0) is the correlation function of

some invariant process on the infinite-dimensional cube iff o{n) = ank(dx)

for some probability measure A on [-1,1].

This result can be proved by harmonic analysis--see Mansour {1981), who also
describes the correlation functions of invariant processes on finite-dimen-
sional cubes. Kingman (personal communication) also has a direct proof of
Corollary 16.6.

We now describe a sequence of examples of invariant processes, which
we shall loosely refer to as "symmetric random walk models." Here is the

basic example, suggested by Kingman.

(16.7) Example. The basic random walk. Let (S,+) be a compact Abelian

group. Let & be a random element of S whose distribution is symmetric,
in the sense £ 4 -£. Let U be a random element of S whose distribution

is Haar measure (i.e. uniform), independent of &. Then

(16.8) (g+U,U) L (U,g+U} .
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(-g + (g+U) ,£+U)

(—E+U,U) because -&+U is uniform and independent of &

For (U,z+U)}

s 1

(E+U,U) by symmetry.

Now let g],52,£3,... be independent copies of £, independent of U. For

i€l define

X, = & +§& +'.. +£n +U, where {n1,...,nm} =C; = {n: 1 =13 .
m

Then X is invariant: for invariance under the maps T of (16.1) is immediate,
and invariance under the maps rg of (16.2) follows from (16.8).

As a particular case of Example 16.7, suppose

(16.9) 5= {1,055 P(E=1) = H1-2), P(£=0) = H{1+2);
PU=1) = P(U=0) = 5 .

This process has correlation function p(n) = A"; indeed, the tree-process
which is embedded in X by (16.5) is precisely the tree-process exhibited

in the proof of Proposition 13.22.

(16.10) Example. A generalized random walk., Let (G,o) be an Abelian group

acting on a space S; that is, G consists of functions g: S—S which
form a group under convolution., Let £ and U be independent random

elements of G and S respectively, and suppose
| 0

Now let 61,52,... be independent copies of £, independent of U, and let

-

X; = &

1 n]ognzo---ogn (U), where {n],...,nm} = Ci .

m

Then X is invariant, by the same argument as in the previous example.
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This construction can yield processes rather more general than is sug-

gested by the phrase "random walk," as the next example shows.

Remark. We call this a "random walk" model because the values X ],X D3ees
i i

along a path 11,12,... in I are a random walk on S, 1in the usual sense.

(16.12) Example. Randomly-oriented stationary process. Let

U= (...,U_],UO,U],...) be an arbitrary stationary sequence. On the
d-dimensional cube Id choose a diagonal A at random {uniformly); each
vertex lies in one of d+1 hyperplanes HO’H]""’Hd orthogonal to A:

set Xi = Um for i€ Hm'- This describes an invariant process indexed by
Id' As d wvaries, these are consistent, and so determine an invariant
process on I. The process on I has the following alternative description.

]

Regard U as a random element of S = RZ. let 8" be the shift on S;
e”((xm)) = (xm+n {6": n€z} and let & be the random element
: _

of G such that P(g=8') = P(g=8"1) = . Then (16.11) holds because

). Let G

L(U,E(V)) = 2L(U,6" (1)) + L(U,87T ()

=-%L(8_](U),U) +-%L(6](U),U) by stationarity

= L{g{u),u} .

1]

So as in Example 16.10 we can construct an invariant process X from U

and £. Llet g((xm)) = Xg. Then the process X, = g(fi) is the randomly-

oriented stationary process described originally.
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Here is a different generalization of the basic random walk model.

(16.13) Transient random walk. Let (G,+) be a countable Abelian group.

Let & be a random element of G and let w be a o-finite measure on G.

Suppose
(16.14)  w(gy)P(gy+E=3,) = m(g,)P(g,*6=91)5 all g9, 9, €6

This is analogous to (16.8) and (16.11); = 1is a o-finite invariant measure
for the random walk generated by &. This random walk may be transient;

consider the particular case
_ 7. _ = _ _ . _ T-ct\n
(16.15) G =1Z; P(g=-1) = a, P(e=1)=T-a; ={n) = cbjg—) .

Though the random walk has no stationary distribution in the usual sense,
there is a different interpretation. Suppose that at time 0 we place a
random number Yg of pa(FicIes at each g, where (Yg) are independent
and Yg has distribution Poisson{m(g)}. Then let each particle move inde-
pendently as a random walk with step distribution £. let YS be the

number of particles at position g at time n, and et Y" = (YS), a
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G

random element of S ='(Z+) . Then it is easy to see, using (16.14),

(i6.16) YQ,Y1,Y2,... is a stationary reversible Markov chain.

By adding more detail to the description above, we shall produce a process
indexed by the infinite-dimensional cube. Suppose that particle u is ini-
tially placed at point gO(u) and has written on it an i.i.d. sequence

(€$,E;,...) of copies of &, representing the successive steps to be made

by the particle. So Y; = #{u: go(u)-kg$-+---'+£g:=g}. Now for 1 €1
define

.i- - u PR u = ] 3 =
(16.17) Xg = #{u: go(u)-i-EJ.1 + '*Ejm g}, where {J],...,Jm} C; -

So X! = (X;) describes the configuration_of particles when only the jumps
at times in Ci are allowed. It is easy to check that (x': i€1) is

invariant.

Here is a more concrete example which turns out to be a special case

of the construction above.

(16.18) Example. On the d-dimensional cube I, pick k = k{(d) vertices

V],...,Vk. uniformly at random and define

n _ . . _ L
Xi = #{m: d(1,vm) n+cl; i€ Id’ n €7,

for some given ¢ = c(d). Let Xi = (X?: n€zZ), taking values in § = (Z+)Z.

Plainly X(d) = (Xi: 1‘51d) is invariant. It can be shown that it is
possible to pick k{(d) and c(d) such that the processes X(d) converge

weakly to some process ¥ on the infinite-dimensional cube, and such that

d‘11og(k) — Tog(2) + (1-a)log(1-a) + a log{c)
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for any prescribed 0 < o < %u And the 1imit process X 1is just the parti-

cular case {16.15) of the general construction (16.13).

(16.19) Remarks. These "random walk" constructions for invariant processes
on the infinite-dimensional cube seem analogous to the constfuctions Xi,j
= f(Ei’nj) for RCE arrays. Perhaps there is an analog of Corollary 14.15
(resp. Proposition 15.28) which says that an ergodic invariant process on

the cube can be represented as a function of some random walk model iff a
certain "remote" o-field contains all the information about the process (resp.
iff some "Tinear entropy" condition holds). On the other hand, it Tooks
plausible that the characterization problem on the cube is rather harder

than for RCE arrays, in that the next examples suggest that the general

process cannot be obtained from random walk models and independent models.

(16.20) Example. For 1 <k <d a k-face of I, is a set of vertices

isometric (in Id) to Ik' Let X = (Xi: iEEId) be i.i.d. with P(Xi =1)

1 Yk,d

5 let Y (= ) be the process X conditioned on the

= P(X;=0) =

avent

) X 0 mod 2 for each k-face F.

ieF !
For fixed k, the processes Y are consistent as d increases, and hence

determine a process Yk on the infinite cube. For k =2 this process Yk

k

is just Example 16.9 with x = -1; for k > 3 the processes Y do not seem

to have "random walk" descriptions.

Finally, we can construct invariant processes by borrowing an idea

from statistical mechanics (see e.g. Kindermann and Snell (1980}).

(16.21) Example. Ising models. Fix ¢ & R, d > 1. For a configuration

X = (Xi: iEEId) of 0's and 1's on the d-dimensional cube, define
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V(x) = 1, _ .
edges”(i,5) (Xi7%y)
The function V s invariant under the isometries of the cube, SO we can

define an invariant distribution by
P(X==§) = ¢y exp(aV{x))

where <, is a normalization constant. By symmetry, P(Xi==0) = P(Xi= 1)

_1
5
fixed d,

Let Pd o be the correlation p(Xj,Xj) for neighbors i, j. For
Pd.o increases continuously from -1 to +1 as a increases
from -= to +w=. There are heuristic arguments which suggest

(16.22) Og o — (e%-1)/(e*+1) as d——w; o fixed.

It this is true, then by fixing o, Jetting d—« and taking (subsequen-
tial, if necéssary) weak 1imits we can construct invariant processes on the
infinite-dimensional cube with correlation (e®-1)/(e®+1) between neighbors
(and even without (16.22), this holds for some a(d)). It would be interest-
ing to get more information about these 1imit processes; heuristic arguments

suggest they are not of the "random walk" types described earlier.
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PART IV

17. Exchangeable random sets

In this section we discuss exchangeability concepts for certain types

of random subsets M of [0,1) or [0,»). Let us start by giving some

examples of random subsets M.

(17.1)

(17.2)

(17.3)

(17.4)

The zeros of Brownian motion: M = {t: Nt==0}.

The range of a subordinator: M = {Xt(w): O<t<=}, where X,
is a subordinator, that is a Lévy process with X0 = 0 and

increasing sample paths.
The zeros of Brownian bridge: M = {t: N2= 0} € [0,1].
An exchangeable interval partition. Take an infinite sequence

of constants c]g_czi'--->0 with ZCi = 1; take (Ei) i.i.d.
U{0,1); set

Ly = 3 c.] , R, =1L.+c¢c; .
LR I (£5<€;) i i i
So the intervals (Li’Ri) have lengths ¢, and occur in random

order. Let M be the complement of ? (Li’Ri)‘

These examples all have an exchangeability property we shall specify below.

The first three examples are probabilistically natural; the fourth arose 1in

game theory, and attracted interest because certain "intuitively obvious™

properties are hard to prove, e.g. the fact (Berbee (1981))

(17.5)

P(x€M) = 0 for each 0 < x < 1.

The characterization results for exchangeable sets are roughly similar

to those in Section 10 for interchangeable increments processes, but are
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interesting in that stopping time methods seem the natural tool. Our account
closely follows Kallenberg (1982a,b), which the reader should consult for

proofs and further results.

Formally, we consider random subsets M of [0,1] or [0,») satisfying
(17.6) M 1is closed; M has Lebesgue measure zero.

So the complement M® is a union of disjoint open intervals (LG,RQ). For
each e >0 1let NE be the number of intervals (LG,RG) of length at

least e; call these intervals (L?,R?),(LS,RS),... . Call M exchangeable

if for each e and each 1 <n <= the Tengths (R,-L.} are, conditional
on {N€= n}, an n-exchangeable sequence.
Consider now the case where M is the closed range of a subordinator

b= (x-t: x€M, x>t}. The

(i.e. the closure of M in (17.2)). Set M
strong Markov property of the subordinator Xt- implies that for any stopping

time T taking values in M' = M\({La}\{Ra}) we have

L

(17.7) M| is independent of MN[0,T]; M £ M .

call random subsets satisfying (17.7) regenerative sets. Horowitz (1972)

shows a converse: all regenerative sets arise as the closed range of some

subordinator. By analogy with (6.18) and (10.7) consider the condition

(17.8) MT 2 M; each stopping time T €M .

Kallenberg calls this strong homogeneity. Kallenberg (1982a), Theorem 4.1,

proves

-

(17.9) Theorem. For unbounded random subsets ™M C [0,») satisfying (17.6),

the following are equivalent:

(a) M 1is exchangeable.
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{b) M is strongly homogeneous.

{c) M is a mixture of regenerative sets.

For finite intervals we get a weaker result: Kallenberg (1982a), Theorem 4.2

implies

(17.10) Proposition. For random subsets M C[0,1] satisfying (17.6) and

with a.s. infinitely many points, the following are equivalent:

(a) M 1is exchangeable.

(b) M is a mixture of exchangeable interval partitions.

Finally, we remark that the classical theory of local time at the zeros
of Brownian motion extends to a theory of local time for regenerative sets,
and hence for exchangeable subsets of [0,=). For exchangeable interval

partitions there is an elementary definition of "local time": . in (17.4) set
Qg = &5 on (Li’Ri) .

This concept appears useful for tackling problems Tike (17.5)--see Kallenberg

(1983).

18. Sufficient statistics and mixtures

Recal]l the classical notion of sufficiency. Let (P,: 6€8) be a

%
family of distributions on a space S. For notational convenience, let
X: $S—S denote the identity map. Then a map T: s—S is.a sufficient
statistic for the family (Pg) if the Pe—conditional distribution of X
given T(X) does not depend on 8. More precisely, T is sufficient if

there exists a kernel Q{(t,A), te€3S, ACS, such that for each 8

(18.1) Q(T(X),«)} s a Pe~r.c.d. for X given T(X).
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For instance, if (P is the family of distributions of i.i.d. Normal

8)

sequences X = (X KA. ) on S = Rn, then

]g-.- n

(18.2)(a) T,(x) = (T, ()T, 5(x)) = (x;. (1) /%) s sufficient, with
(b) Qn((t1,t2),') the uniform distribution on the surface of the

sphere {x: Tn(x)= (t1,t2)}.

The classical interest in sufficiency has been in the context of inference:
if X],...,Xn are assumed to be observations from a known parametric family,
then for inference about the unknown parameter one need consider only sta-
tistics which are functions of sufficient statistics.

Our interests are rather different. Consider the following general
program, Let Tn’ Qn, n>1, be a given sequence of maps and kernels.

Then study the set M of distributions of sequences (X1,X2,...) such that

for each n

(18.3) Qn(Tn(X1,...,Xn),-) is a r.c.d. for (Xl""’xn)

given Tn(xl""’xn)'

For instance, if Tn’ Qn’ are the natural sufficient statistics and
kernels associated with an exponential family of distributions (Pe), then
by definition M contains the distributions of i.i.d. Pe sequences.. But
M is closed under taking mixtures, so M contains the class MO of
mixtures of i.i.d. Py sequences. It generally turns out that M = MD’
and so this program leads to a systematic method for characterizing those
exchangeable sequences which are mixtures of i.1.d. sequences with distribu-

-~

tions from a specified family.

The general program has a much wider scope than the preceding discussion

might suggest. First, observe that the class of exchangeable seguences can
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be defined in this way. For as at (5.2) let A R" —P(R) be the empirical

. . | -
distribution map, and N (u,*) = L(xﬂ*(1),...,xﬂ*(n)), where u = An(x)

and w* is the uniform random permutation. Then Lemma 5.4 says (Xl""’xn)
. . -1 .
is exchangeable iff ° (An(X],...,Xn), ) is a r.c.d. for (X1,...,Xn)

given An(x ,Xn). Thus the class M associated with the sufficient

EREE
statistics A, and kernels ®;] is precisely the class of infinite
exchangeable sequences. Similarly, the other partially exchangeable models

in Part III can be fitted into this setting.

Further afield, the study of Markov random fields (as a probabilistic
formulation of statistical mechanics problems--Kindermann and Snell (1980))
involves the same jdeas: one studies the class of processes (Xi: i€T) on
a graph T such that the conditional distribution of Xi given the distribu-
tion at neighboring vertices (Xj: jéENi) has é specified'form. Yet another
subject which can be fitted into the general program is the study of
entrance and exit laws for Markov processes.

This general program has been developed recently by several authors,
from somewhat different viewpoints: Dynkin (1978}, Lauritzen (1982),

Dﬁaconis and Freedman (1982), Accardi and Pistone (1982), Dawid (1982). A
main theoretical result is a generalization of Theorem 12.10, describing the
general distribution in M as a mixture of "extreme" distributions. Our
account closely follows that of Diaconis and Freedman (1982): we now state
their hypotheses and their version of this main theoretical result.

Let S;, Wy, 121, be Polish spaces. Llet X,: I S, —> §; be the

n J
coordinate map. Let T : I S, — W , and let Q_ be a kernel Q (w,A),
n T =17 n n n
weEW, AC IIS.,. Suppose
n . i
i=1
(18.4)(1) Q (w,{T =w}) = 15 wEW.

(1) 3F T () = To(x') then Toq(y) = Toq (Tayds ¥ € Spupe
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(111) for each WEW ., Qn(Tn(X1,...,Xn),-) is a Qn+1(w,-) r.c.d.

- for (X],...,Xn) given 'c(Tn(X],...,Xn),Xn+1).

Then let M be the set of distributions P on I Si such that for each n
i>1

(18.5) Qn(Tn(X],...,Xn),-) is a P-r.c.d. for (X],...,Xn)

given Tn(Xi,...,X ).

n

Conditions (i) and (ii) are natural: here is an interpretation for (iii ).
Take the Bayesian viewpoint that (Xi) is an i.i.d. (8) sequence, where ©
has been picked at random from some family. Saying Tn is sufficient is
saying that (X1,...,Xn) and Xn+1 are conditionally independent given

T = TalXyseaasX ). Consider now the conditional distribution of (Xy,....X )

n n

given (T Tn+1)' By (i), Tn+1 is a function of (Tn’xn+1)' This

n’xn+]’
and the conditional independence shows that the conditional distribution
of (X],.;.,Xn) given (Tn’xn+1’Tn+I) is the same as the conditional
distribution given Tn, which is the kernel distribution Qn(Tn,-); this
is the assertion of (iii). Lauritzen (1982), 1I1.2,3 gives a more detailed
discussion.

Next set S = Q G(Tn(xi""’Xn)’xn+]’xn+2"")’ so § is a o-field
on I S.. In the context of exchangeable sequences described earlier, S

. i
i>1
is the exchangeable o-field. Diaconis and Freedman (1982) prove.

(18.6) Theorem. There is a set Sy CH S,, Sy €S, with the following

properties:
(i) P(SO) = 1, each P € M,

(i1) Q(s,+) = weak-1imit Qn(Tn(s),-) exists as a distribution on
n"')‘m

1l Si; each s € SO.
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(i11) The set of distributions {Q(s,-): s&€Sy} is precisely the set

of extreme points of the-convex set M.

(iv) For each P €M we have P(:) = J Q(s,+)P(ds), where P denotes

S
the restriction of P to S. ThusO Q((X],Xz,...),-) is a P-r.c.d.

——

for (X1,X2,...) given S.

(v) PEM is extreme iff S is P-trivial.

In the context of exchangeable sequences, S0 is the set of sequences
s for which the limiting empirical distribution
A(s) = weak-limit An(s],...,sn) exists, and -Q(s,+) is the i.i.d. (A{s))
distribution. Thus (iv) recovers a standard form of de Finetti's theorem.
The idea in the proof of Theorem 18.6 is that, if Q(s,+) = weak-limit
Qn(Tn(s),-) exists, then Q(s,-) defines a distribution in M. Reversed
martingale convergence arguments in the spirit of the first proof of de
Finetti's theorem show that Q{s,-) exists P—a.s., each P € M. The family
of all limiting distributions ‘Q(s,'). is sometimes called the family of

Boltzmann laws; this family may contain non-extreme etements of M.

One nice example, outside the context of exchangeability, is the study
of mixtures of Markov chains by Diaconis and Freedman (1980b). Let S be
a countable set of states. For a sequence o = (01""’°n) of states and
a pair s,t of states let Ts,t(g) = #{i: (01’01+1)= (s,t)} be the number
of transitions from s to t 1in the sequence o. Let Tn(c) =
(073 Tg (o), s,tE€S). So T.(0) =T (¢') iff o and o' have the same
initial state and the same transition counts. Now consider a homogenous

Markov chain (Xi) on S. Plainly
(18.7) P((X],...,Xn)==o) = P((X],...,Xn)=(j') whenever Tn(o) = Tn(o‘).

Diaconis and Freedman (198Cb) prove
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(18.8) Proposition. Suppose X = (XO’XI’XZ"") is a process taking values

in S which is recurrent, i.e. P(X =Xy for infinitely many n) = 1. Then

X is a mixture of homogenous Markov chains iff X satisfies (18.7).

This fits into the general set-up by making Qn(t,°) the distribution uniform
on the set of sequences o such that Tn(o) = t. Then the set of processes
satisfying (18.7) is the set M defined by (18.5); and Proposition 18.8 says
that the extreme points of MN{recurrent processes} are precisely the
recurrent homogenous Markov chains. (A different characterization of such
mixtures is in Kallenberg (1982a).)

Another interesting example is the conditional Rasch model discussed
by Lauritzen (1982), II.9.7.

We now turn to characterizations of mixtures of i.i.d. sequences. l\le
have already seen one such result, Schoenberg's Theorem 3.6. To fit this

into the present context, take Tn(x},...,xn) = (ng)1/2, and let Qn(t,-)

i

be uniform on the surface of the sphere with center 0 and radius t in

R".  Then the set M defined by {18.5) is the set of spherically symmetric
sequences. Schoenberg's theorem asserts that each element of M s a mixture
of i.7.d. N(O,cz) sequences; thus the extreme points of M are the i.i.d.
N(O,ce) sequences. There is a related result for general mixtures of i.i.d.
Normal sequences. Take Tn, Qn as at (18.2); then M can be described as
the set of sequences _(Xi) such that for each n the random vector

(X ,...,Xn) is invariant under the action of all orthogonal nxn matrices

1
U which preserve the vector (1,...,1). It can be shown (Dawid (1977a);
smith (1981)) that each process in M is a mixture (over u, o) of 1.i.d.
N(u,cz) sequences. These results can in fact be deduced fairly directly
from Theorem 18.6; see Diaconis and Freedman (1982); Dawid (1982) for out-

lines of the argument.



163

Consider now discrete distributions. For the family of i.i.d. Poisson
(x) sequences, the sufficient statistics are Tn(x];...,xn) = in and the
kernels are Qn(t,(i1,...,in)) = n'tt!/(ill---in!), Eij = t. It is natural
to hope that M, defined by (18.5), is the class of mixtures of i.i.d. Poisson
sequences. This result, and the corresponding results for Binomial and
Negative Binomial sequences, are proved in Freedman (1962b). Lauritzen (1982),
Section III, gives an abstract treatment of general exponential families.

There are several variations on this theme. One is to consider mixtures
of independent non-identically distributed sequences with distributions in
a specified family. For example, fix constants c, > 0. For each A >0
let P, be the distribution of the independent sequence (X;), where X,
has Poisson (Aci) distribution. Then Tn(x1,...,xn) = Zcixi is sufficient
for (PA)’ with kernel Qn(t,-) being the muTltinomial distribution of t
balls into n equiprobable boxes. Alternatively, for wu > 0 1let Pu be
the distribution of the-independént sequence (Xi), where Xi has Poisson
(uci) distribution. Then Tn(x1,...,xn) = in js sufficient, and the
kernel Qn(t,-) is the multinomial distribution of t balls into n boxes
where box 1 has chance Ci/ZCj of being chosen. The structure of M ‘and
its extreme points in these examples is discussed in Lauritzen (1982), I1.9.20
and in Diaconis and Freedman {1982), Examples 2.5 and 2.6.

So far, we have assumed that both Tn and Qn are prescribed. Another
variant is to prescribe only Tn, and ask what processes are in M for some
sequence of kernels On. For instance, it is natural to ask for what classes

of exchangeable sequences (Xi) do the partial sums Tn(x],...,xn) = in
form sufficient statistics; this problem, in the integer-valued case, is

discussed in detail in Diaconis and Freedman {1982).
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A very recent preprint of Ressel (1983) uses techniques from harmonic
analysis on semigroups to obtain characterizations of mixtures of i.i.d.

sequences from specific families of distributions. For an infinite sequence

1)

n
Eexp( } thj). Schoenberg's theorem 3.6 can be

X = (X.) let ¢ (t)
J n - j=1

stated as

(18.9) If ¢n(£) f(Et?) for some function f,

then X is a mixture of i.i.d. N(O,oz) sequences.
Similarly, one can prove the following.

(18.10) If ¢ (t) = f({]tj|“) A

then X 1is a scale mixture of i.i.d. symmetric stable (a) sequences.

(18.11) I o () = F(A(1+¢,))

then X 1is a mixture of i.i.d. Gamma(x,1) sequences.

Ressel (1983) gives an abstract result which yields these and other

characterizations.
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19. Exchangeability in population genetics

Perhaps the most remarkable applications of exchangeabi1ity are those
to mathematical population genetics'deveToped recently by Kingman and others.
Our brief account is abstracted from the monograph of Kingman (1980}, which
the reader should consult for more complete discussion and references.

Consider the distribution of relative frequencies of alleles (i.e. types
of gene) at a single locus in a population which is diploid (i.e. with
chromosome-pairs, as for humans). Here is the basic Wright-Fisher model for
mutation which is neutral (i.e. the genetic differences do not affect fit-

nesses of individuals).

(19.1) Model. (a) The population contains a fixed number N of individuals
(and hence 2N genes at the locus under consideration) in each generation.
(b) Each gene is one of a finite number s of allelic types
(AI”"’AS)'
(c) Each gene in the (n+'i)St generation can be considered as a copy of

th generation, different choices

a uniformly randomly chosen gene from the n
being independent; except
(d) there is a (small) chance us ;5 that a gene of type Ai is

mistakenly copied as type Aj (mutation).

th generation.

Let X?(n) be the proportion of type Ai alleles in the n
Then the vector (XT(n),...,Xz(n)) evolves as a Markov chain on a finite
state space, and converges in distribution as n—= to some stationary

distribution
N
(19.2) (X],...,X

We shall consider only the special case where all mutations are equally likely:
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(19.3) Us -5 = vis (i#]3), for some 0 <v.

-1

N) Consider how

Then by symmetry (XI.}I,...,XS is éXChangeab1e, SO EX? =g
this distribution varies with the mutation rate v. In the absence of
mutation the frequencies Xi(n) evolve as martingales and so eventually get
absorbed at 0 or 1; thus (X?,...,XS) = (](U=})”"’1(U=s))’ U uniform
on {1,...,s}, as v—0. On the other hand for large v the mutation
effect dominates the random sampling effect, so the allele distribution
becomes like the multinomial distributicn of 2N objects into s classes,
so for large v we have (X?,...,XE) = (1/s8,...,1/5) + order N'1/2. To
obtain more quantitative information, observe that the proportion X?(n)

of type 1 alleles evolves as a Markov chain. It is not difficult to get an

expression for the variance of the stationary distribution which simplifies to

a2
(19.4) var(X)) = T2mer ey N large, v small.

Of course the biologically interesting case is N large, v small, and we

can approximate this by taking the 1imit as
{(19.5) N—w, v—0, 4Nv—06, say.
Then (19.4) suggests we should get some non-trivial limit

(19.6a) (KN, N (e nesX)

1? s

where Xi represents the relative frequency of allele Ai in a large

population with small mutation rate, when the population is in (time-)

’

equilibrium. This is indeed true, and (Watterson (1976))

,XS) has the exchangeable Dirichlet distribution (10.22},
for (a,k) = (8,s}.

(19.6b) (X],...
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The infinite-allele model. The s-allele model above describes recurrent

mutation, where the effects of one mutation can be uhdone by subsequent
mutation. An opposite assumption, perhaps biologically more accurate, is

to suppose that each mutation produces a new allele, different from all other
alleles. So consider model {19.1) with this modification, and let v be

the probability of mutation. Fix the population size N. It is clear that
any given allele will eventually become extinct. So instead of looking at
proportions of alleles in prespecified order, loock at them in order of fre-
quency; let Y?(n) be the proportion of genes in generation n which are

of the most numerous allelic type: Yg(n) the proportion of the second most
numerous type, and so on. Again (Y?(n),Yg(n),...) evolves as a finite
Markov chain and so converges to a stationary di;tribution (Y?,Yg,...)- with
ZY? = 1. Again it is easy to see how this distribution depends on the muta-~
%ion probability v: as v—0 we have Y? —E+ 1; as v—1 we have each

N -1).

Yy of order (N

What happens as N—»? At first sight one might argue that the number
of different allelic types in existence simultaneously would increase to
infinity, and so the proportions of each type would decrease to zeroc. But
this reasoning is false. In fact, under the assumptions N—ew, v—0,

ANv — 8 used before, we have {see Kingman (1980}, p. 40)

9.7y (MY, (0,.0,,...) where (D;) has the Poisson-Dirichiet(s)

AAPITEE
distribution.

Thus for a large population subject to slow, non-recurrent neutral mutation,

the proportions of the diffeféht alleles present at a particular time,

arranged in decreasing order, should follow a Poisson-Dirichlet distribution.
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Now consider sampling K genes f}om such a population. Let a,. be
the number of allelic types for which there are exactly r genes of that
type in the sémp?e. Then Theorem 11.14 shows that the chance of obtaining
a specified (a1,a2,...) is given by formula (11.16), the Ewens sampling
formula. Indeed, if we consider the partition RK into allelic types of a
sample of size K from a hypothetical limiting infinite population, these
random partitions satisfy the consistency conditions of Theorem 11.14.

Let us outline a method for deriving the infinite-allele result (19.7)
from the s-allele result (19.6). Fix the population size N. Imagine that
each new allele created by mutation is named by a random variable &
distributed uniformly on (0,1). So each gene g has a label gg which
indicates its allelic type. Thus the genetic composition of generation n
can be described by a process (wﬁ(u): 0<u<1), where wﬁ(u) is the pro-
portion of genes g for which gg <u. As n—= this converges to a
process (NN(u): 0<u<71), where the jump sizes (wN(u)-NN(u—)), rearranged
in decreasing order,.are the variables (Y?,Yg,...) above, and the jump
positions are independent uniform. Now fix s, and call an allele "type ",
1<j<s, if its name & 1is in the intervail ((j—i)/s,j/s).' If we only
take notice of the "type" of alleles, then the infinite-allele model evolves

in precisely the same way as the s-allele model. The convergence result

{19.6) translates to

(19.8) (V0w (I/s). W) B (2(0),201/8),. ., 200))
where Z 1is the Dirichlet(8) process. But then

(19.9) WNw):Oiui1)JL(Zw);Oiu§U in 9{0,1),

since (19.8) gives convergence of finite-dimensional distributions, and
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establishing tightness is an exercise in technicalities. But convergence in

D(0,1)} implies convergence of jump sizes, and this jives (19.7).

Other applications. There are other, quite different, applications of

exchangeability to genetics. Supposé the "fitness" of an individual does
depend on his genetic type, an individual with gene-pair (Ai’Aj) having

j Imagine alleles labelled A],Az,... in order of their crea-

tion by mutation. Mutation is a random process, so the W j should be

fitness w. ;.
1,

regarded as random variables. It is not a priori apparent how to model the
distribution (wi,j)’ but it is natural to argue that (wi,j) should be
weakly exchangeable in the sense of (14.19), and then Theorem 14.21 can be
brought to bear. See Kingman (1980), Section 2.5.

Another application is to the gene genealogy of haploid (i.e. single
sex) populations. Suppose we sample K individuals from the current genera-
tion. For each n > 0 we can define an exchangeable random partition RK(n)
of {1,...,K}, where the components are the families of individuals with a

th previous generation. Letting the population size

common ancestor in the n
increase, K increase, and rescaling time, the process (RK(n): n> Q)
approximates a certain continuous-time partition-valued process (R(t): t>0),
the coalescent. See Kingman (1982a,b}.

Finally, Dawson and Hochberg (1982} involve exchanqeability ideas in a

diffusion analysis of infinite-allele models more complicated than that

described here.

' 20. Sampling processes and weak convergence

Given a finite seguence S ERERRLY! of real constants, recall that the

urn process is the sequence of random draws without replacement:

X; = Xpx (1) where =w* 1is the uniform random permutation on {1,...,M}.
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By the sampling process we mean the process of partial sums:

There is of course a vast literature on sampling: we shall merely mention

a few results which relate to other ideas in exchangeability. We can distin-
guish two types of results: "universal" results true for all (normalized)
urns, and "asymptotic® results as the individual elements of the urn become
negligible. The main asymptotic result, Theorem 20.7, leads naturally to
questions about weak convergence of generai finite exchangeable sequences.

The most basic universal results are the elementary formulas for moments.

1

ES ny/M

(20.1) n 2 2
var(s_) n(M'"%Eg_l)“ M) yhere = Ixss o = Zx§ .

i

Restricting to normalized urns, we have also

A more abstract universal result involves rescaling the sampling process to

make it a continuous-parameter process

S[Mt] , O0<t<1.

Then we can think of S as a random element of the function space D(0,1)

with its usual topology (Billingsley (1968)). In this setting, we have
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(20.3) Proposition. The family of processes S, obtained from all normalized

urns is a tight family in D(0,1).

This is implicit in Billingsley (1968), (24.11) and Theorem 15.6. An
alternative proof can be obtained from the tightness criteria in Aldous (1978).
In particular, Proposition 20.3 implies that there are bounds on the
maxima of sampling processes which are uniform over the family of normalized
urns. In other words, there exists a function ¢ with ¢(A) —0 as x—r

and

(20.4) P (max [Sn| >A) < ¢(x) 5 all normalized urns.
n .

I do not know what the best possible function ¢ is; here is a crude bound.

(20.5) Lemma. o(A) = 8/A% satisfies (20.4).

. Proof. Let F = U(X1,...,Xk), let T = min{i: Si:>k}. For

k <m = [M/2],
_ (M-m)
E(SulF) = tm=k) Sk
and so
E(S |F+ } = M-m_s >lﬂ on {T<m}
m'" T~m M~-Tam “Tom — 2 ?
and s0 E(SZIF ) > 12 on {T<m}. So
m' T~m’ — 4 -

202 -2

P(max S.>}) = P(T<m) < 4%~ ES. < 2A using (20.2).

i<m
Using the same inequality on (-Si)’ and using the symmetry (Si) 2 (SM—i)’

we obtain the desired result.

Another type of universal result relates the sampling process Sn

n
arising from sampling without replacement to the process S: = Z X: arising
i=1

from random draws (X?) from the same urn made with replacement, that is
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with (X?) an 1.i.d.'sequehce. Proposition 5.6 shows that when n is small
compared to M]/z then the total variation distance-between Sn and 3;

is small, and this total variation result cannot be improved. However, there
are results which compare the distributions of Sn and S:. Given random
variabies U, V on R, say U is a dilation of V if there exist random

variables ﬁ, V such that

HS

0=zu, V
This implies {and in fact is equivalent to--see e.g. Strassen (1965))

Eo(U) > E¢(V), all continuous convex ¢: R—R .

Informally, the distribution of U 1is "more spread out" than that of V.
The next result extends the familiar result that var(Sn) 5_var(S:). See

Kemperman {1973) for further related results.

(20.6) Proposition. S

" is a dilation of S, for each urn and each n > 1.
Proof. Without essential loss of generality, suppose the urn {x],...,xM}

contains distinct elements. Fix n and let (X1,...,Xﬁ) be draws without

replacement. For distinct (y],...,y ) C {xi} and not necessarily distinct

n
{ZI""’Zn} C {y;} define the conditional distribution

M
P(X]“Z],---,Xn—znlx-'__Y-I,.c-,xn_yn) = r4 [M"LJ

where L = #{zi} .
nnflo |

Then it can be verified that the unconditional distribution of (X:) is the

-~

distribution of sampling with replacement. And by symmetry, for

N(y) = #{i<n: X?==y} we have
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E[N(y)|)_(.]=y1,...,x

n

T,ye-{yi}
::'yn =

0 otherwise
So E[S;|X1==y],...,xn==yn] = Zyi, which gives E(SE]Sn) =5, as required.

We turn now to asymptotic results. For each g >1 Jet (x?,...,xg )

q
be a normalized urn. Let S% be the scaled sampling process

[th]

q_ . .
N S[th] 'Z]Xi s 0<t <]

and think of S9 as a random element of D(0,1).

(20.7) Theorem. If

(20.8) max |x?| — 0 as g—o,
i

then $9-2» 0 in 0(0,1) as q—w, where W' is Brownian bridge.

This is Theorem 24.1 of Billingsley (1968). Let .us sketch a sTightly
different proof. By Proposition 20.3 we need only show that any subsequential

weak Timit process Zt is Brownian bridge. By (20.8) Z has continuous

paths, and clearly Z must have interchangeable increments, so by Theorem 10.11

we can take Z_ = awo for some o > 0 independent of NO. But using the

t t
moment formulas (20.1, 20.2) we can verify

qy2 0.2, g,4 0,4 o
E(St) — E(wt) : E(St) —r E(Nt) as gq—o .
So Ea2 = 1 and Ea4 = 1, which implies a =1, so Z is indeed Brownian

bridge.

Theorem 20.7 leads to results for general finite exchangeable sequences.

Consider a triangular array (Z -I_gi_qu, 1<q) such that

q,1°
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(20.9)(a) for each g the sequence (Zq 1,...,Zq M ) is exchangeable
] H q -

b Z.—?- -——)-oo.
()m?xlqﬂlpOasq .

tM

q
As before let SJ = V7
o5

N7 let HD be Brownian bridge and let W be

Brownian motion.

(20.10) Corollary. Suppose (Z

q i) satisfies (20.9)}. Define random variables

2 0
-1 /M Y4, Let X, = oW
; uq/ q) 2t

t t-kut, where (o,u) 1is

2
=) 7 ., = ML
Mg = 1 Zq,i0 % - U
independent of Wl. Then

() $9Zox in 0(0,1) iff (ug.0,) > (s0).

In particular

qg D .0 . . 2
(b) s s’ iff ;zq’i 5> 0 and }I:Zq,i—-rl,

(¢) s Lw iff 22“—2-»;\1(0,1) and 222.——»1.
1' i

1 P

3

Sketch of proof. Suppose (Eq 1.) satisfies (20.9) and

~ _ . Az S
(20.17) ; Zq,i 0; ; Zq j 1.

3

~

Then for each q the process (Z._ .) is a mixture of normalized urn rpo~

q,1
cesses, and Theorem 20.7 impiies §9 5 NO. Now given (Zq i) define
7 .
q,1

1]

(Z ,i-uq/Mq)/oq. Then, in the case

q

(20.12) o>0 a.s.

0

the array (2q ;) satisfies (20.9) and (20.11), and so 53 -2 w0, Further-

more, for events of the form Aq = {(uq,c )EEBq} with 1im P(Aq) > 0, the

q
conditional distributions (L(Zq 1.IAq)) also satisfy (20.9) and (20.11),

so these conditional distributions also converge weakly to wo. When

(uq,cq)-m2+ {p,c} this implies (Sq,u ,Uq) 2, (wo,u,o). Since

q



. Q. 29
(20.13) S¢ UqS +ut

we finally obtain 54 et X.

In the case o = 0 a.s., the maximal inequality (20.5) implies
mgx ]cqgg[ - 0 as q—, and then (20.13) implies s 2, x. The
general case can be reduced to these two cases, and this gives the "if"
assertion of (a). The "only if" assertion follows from the "if" assertion
and the facts .

(1) tightness of (s9)  implies tightness of (uq,dq)

(i) the distribution of X, = oWo

t t-*pt determines the distribution

of {o,u).

Assertions (b) and (c) are special cases of (a).

There is of course another result on weak convergence which is more
celebrated than Theorem 20.7; it is interesting to note that this is essen-

tially just a special case of Theorem 20.7.

(20.14) Corollary. Llet (£;) be i.i.d. uniformon [0,1]. Let FHw,t),

0 <t<.1, be the empirical distribution function of (51(m),...,iq(w)).
Let v3w) = g /2(F3w) - t). Then Y3 B as q—e.

Proof. Let Mq = q3,

, = i+ (i~ . <i1/M - s
Hguq = HIH (1=1)/Mg<E5<iMg) - o/t
so that
(20.15) max fq,i Y 1 as q—= .
Then the array Zq . q-]/ZXq ; satisfies the conditions of Corollary
20.10{b), so s9 2, 0, And (20.15) also gives sup |S§-Yg| o 0, so
t

that Y% -2 0.
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Remark. The weak convergence form of Corollary 20.14 is nowadays rather

obsolete, in that much more precise "strong approximétion" results are known
--see Cs6rgo and Revesz (1981). Sfmi]ar]y, there must be more precise strong
approximation forms of Theorem 20.7, but I do not know any references in the

literature.

The previous results do not really tackle the problem of when the sum
of a finite exchangeable sequence can be approximated by a Normal distribu-
tion. To see that there can be no easy answer to this problem, recall that
from an arbitrary sequence X],...,Xn we can produce an exchangeable

sequence Z1,...,Z by random permutation, and ZZi = in- Thus exchangea-

n
bility imposes no restriction on the possible distribution of XZi.

One way to obtain weak convergence results for exchangeable sequences
with 1ittle effort is to appeal to the general weak convergence results for
martingales. A typical martingale result (Hall and Heyde (1980} Theorem 4.4;

Helland {1982) Theorem 3,2) is the following.

(20.16) Theorem. For each q > 1 let (Xq i’Fq i lfj_iMq) be a martin-

gale difference sequence. If

[th, ]
2 .
Z]E(Xq,iqu,i—l) -t each 0 <t <1

j
M

9 -
1Z1E(Xq,i ](qu’1|<g)|Fq,i_]) o 0; each >0
[ty

then §9 2, W, where SE = VX ..
| ' i=1 97

-~

It is not difficult to specialize this to the exchangeable case and obtain

the following sufficient conditions for convergence.
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(20.17) Corollary. Let (Zq i) satisfy (20.9). Let Fq 3= G(Zq it i<i),

Suppose that wheneQer Lq/Mq-—+t <1 we

and let Y_ =17
—— 9

1 .
Qan (IZQ,M Ii])
have q

F
MGE(Yq] q,Lq) e

2
ME F —_— .
ot glFa, L) 5!

Then 9 -2, y.

Of course, by using different forms of the martingale theorem we can obtain
different sufficient conditions in Corollary 20.17. We remark also that,
under moment conditions, conditions like those of Theorem 20.16 are necessary
for convergence of martingales; but there can be no such necessity in
Corollary 20.17 for exchangeable arrays, because for each q we could take
Zq,l""’zq,Mq as a'finite mixture of urn processes where the urns contained
distinct values, and then E(Z, \ IFq,'I) = (s?]‘-zq,])/(mq—n.

The situation simpiifies somewhat if we assume that the finite exchange-

able sequences can be embedded into longer exchangeable sequences. The next

result is due to Weber {1980).

(20.18) Proposition. Let (Zq 1.) satisfy (20.9). Suppose for each 9 that

(Z

.0 ] .t <qg< .
q.i 1‘51;5Mq) extends to an exchangeable sequence (Zq,1 1__q_ﬂNq)

where Mq/Nq-—+O as g—e, Suppose also

EZg 10,20 28 97

-~

Then 9 -2+ .

However, this extendibility condition is very restrictive. The overall

picture of central Timit theorems for finite exchangeable seguences remains
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unsatisfactory. It turns out that Poisson limit theorems are somewhat more
tractable: Eagleson (1982) gives a survey of such theorems for exchangeable
sequences and partially exchangeable arrays. Of course there are many results
which deal with special cases of finite exchangeable sequences, e.g. in the
theory of random allocations--see Chow and Teicher (1978) Sections 3.2 and

9.2; Kolchin and Sevast'yanov (1978); Quine (1979); Johnson and Kotz (1977).

21. Other results and open problems

In this final section we give references to topics not previously men-

tioned and speculate on future lines of research.

(21.1) Non-standard versions of probability. Most mathematical probabilists

(including the author) work within the "standard" model: (Q,F,P), Radon
measures and all that. There are however numerous alternative formalizations
of probability theory, and exchangeability is such a basic concept that it
makes sense within any version. Even if the reader is not interested in
these alternative versions for their own sake, analysis within an alternative
version can sometimes lead to results within the standard version.

Cylinder measures. On infinite-dimensional Hilbert space there are no

non-trivial rotationally invariant c-additive probability measures. Instead,
one can consider cylinder measures, and obtain the analog of Schoenberg's
Theorem 3.6: every rotationally invariant cylinder measure is a mixture of
Gaussian cylinder measures (see e.g. Choguet (1969) Vol. 3). These measures
play a fundamental role in certain analytical treatments of Brownian motion
(Hida (1980)}.

Non-standard analysis. The treatment of partially exchangeable arrays

by Hoover (1979, 1982) uses non-standard analysis; perhaps this approach would

be useful for other exchangeability problems such as those of Section 16.
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Finitely additive measures. At (13.27) we argued informally that the

ability to pick an integer uniformly at random, in tﬁe finitely additive
setting, led to plausibility arguments for several of our characterization
results. Can finitely additive measures be employed to give rigorous results
in the standard version more simply than the known proofs? See Dubins (1982)
for one approach.

Quantum probability. Quantum theorists regard random variables as

operators on Hilbert space. There is & version of de Finetti's theorem in
this setting: see Accardi and Pistone (1982), Section 7, for an outline.

Function measures. Physicists define Brownian motion as the process on

continuous functions f € C[0,1] ‘with "density" y(f) satisfying
1 e2
log ¢(f) = —E-Jo(f (x))"dx .

In a similar spirit, the Dirichlet(a) process (Section 10) on increasing

functions f with f(0) =0 and f(1) =1 has "density”
1
log y(f) = a J Tog(f'{x)})dx .
0

The form of these densities makes the interchangeable increments property

plain. Does this approach yield other interesting processes with inter-

changeable increments?

(21.2) Other forms of invariance. There are several naturally-occurring

classes of processes defined by invariance properties which we have not

yet mentioned.

Self-similar processes. Fix 0 < H < . A process (X,: t>0)

satisfying

: t>0) 2

: £>0) = -X, : £>0); each t; >0,
t t0+t tO 0

[[Lww]
—
O
I
x
<

{(Xy:

¢ t>0) : t>0); each ¢ >0,
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js self-similar with stationary increments. Taqqu (1982) surveys this area.
See alsc 0'Brien and Vewvaat (1983). As with statioﬁary processes, this
class seems too large for any explfcit characterization of the ergodic pro-
cesses to be possible; but perhaps some subclasses are more tractable?

Invariant point processes. Kallenberg (1976, 1976-81) and others have

investigated point processes with invariance properties. Here is one natural
problem, discussed in Kallenberg (1982c). Consider a group T of transfor-
mations of a space S, and suppose there is a unique {up to constant multi-
ples) o-finite T-invariant measure X on S. Then a Poisson point process
of intensity cA(-)} dis T-invariant, and hence mixtures (over <c) of such

processes are also o-invariant,

Problem. Under what circumstances are all T-invariant point processes

mixtures of Poisson processes?

The most famous example, essentially due to Davidson (1974), concerns
processes of random lines in R2 invariant under Euclidean motions of R?:
if such a process has a.s. no parallel lines, then it is a mixture of Poisson

line processes.

Further results on invariance of point processes are in Kallenberg (1982a),

Section 13.

Sign-invariant processes. Berman (1965) studies processes with the

property
D :
(X1""’Xn) = (€1X1,...,Ean), all €; € {-1,+1},

and their continucus-time analogs.

(21.3) Special exchangeable sequences. One way to characterize exchangeable

sequences which are mixtures of i.i.d. sequences with specific distributions
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is via sufficient statistics, as in Section 18. But several other types of
characterizations exist. One type, natural from therBayesian viewpoint,
involves assumptions o% regularity of posterior distributions: see e.g.
Diaconis and Ylvisaker (1979); Zabell (1982). Another idea is to consider
exchangeable renewal processes and impose regularity conditions on mean

residual lifetimes; see Sigalotti (1982).

List of open problems posed in previous sections

1.11 1.12 2.2 3.14 5.13 7.21 9.12 11.26 12.20 12.29

13.10 13.14 13.17 13.28 15.6 15.10 15,15 15.20 15.30 Section 16
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APPENDIX

Properties of Conditional Independence

Listed below are the properties of conditional independence we have

used. Verification of these properties is a straightforward exercise in the

use of properties of conditional expectations (with which we suppose the

reader is familiar). Understanding these properties requires good intuition.

An excellent elementary account is given by Pfeiffer (1979); a measure-
theoretic account is given in Chow and Teicher (1978); more complete discus-
sions and lists of properties are in Dawid (1979), Lauritzen (1982},
Dohler (1980).

In what follows, sets are measurable, and functions ¢ are bounded
measurable real-valued.

"Say X, Y are conditionally independent given F if
(A1) P(XEA, YEB|F) = P(XEA|F)P(YEB|F); all A, B.
Each of the following is equivalent to {(Al):

(R2) E(6, ()6, (Y)IF) = E(o; () [FIE(6,(Y)[F)s all ¢y, ¢

il

(A3) P(XEA|F, Y) = P(XEA|F); all A.

(A4) E(o(X)IF, Y) = E(a(X)|F); all ¢.

In these definitions we can replace a random variable X by a o-field G,
by replacing events {XE€A} with events G (G € G), and replacing functions
¢(X) with bounded random variables V &G.

A family {Xi: j€1} is conditionaliy independent given F 1if the

product formula in (A1) holds for each finite subset of (Xi)‘
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Here are some other properties.

(A5)

(A6)

(A7)

Suppose that for each J > 1; Xj and U(Xii i>Jj) are conditionally

independent given F. Then ({X,:

; i>1) are conditionally independent

given F.
If X and X are conditionally independent given F then X € F a.s.

Suppose X and F are conditionally independent given G, and
suppose X and G are conditionally independent given H C G. Then

X and F are conditionally independent given H.



183

NOTATION

"positive", "jncreasing” are used in the weak sense.

R set of real numbers

Z; N set of all integers; set of natural numbers

#A cardinality of set A

1A indicator function/random variable: 1A(x) =1 for xXEA
=0 else.

Ga(-) probability measure degenerate at a: éa(A) = 14(a)

F CGa.s. means: for each G € G there exists F € F such that P(FAG) = 0.
F=Ga.s. means FCG a.s. and G CF a.s.

F is trivial means F = {¢,0} a.s.

L(X) distribution of random variable X
o(X) o-field generafed by X

-7;+ convergence in probability

- convergence in distribution
N(u,cz) Normal distribution

u{0o,1) Uniform distribution on (0,1)
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