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Abstract

On being told that a piece of work he thought was his discovery had duplicated an earlier
athematician’s work, Larry Shepp once replied “Yes, but when I discovered it, it stayed discovered."

n this spirit we give discussion and probabilistic proofs of two related known results (Moon 1963, Joe
988) on random tournaments which seem surprisingly unknown to modern probabilists. In particular,
ur proof of Moon’s theorem on mean score sequences seems more constructive than previous proofs.
his provides a comparatively concrete introduction to a longstanding mystery, the lack of a canonical
onstruction for a joint distribution in the representation theorem for convex order.
c 2019 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. An analogy

As an analogy for the two theorems to be discussed, we recall some very well-known facts.
irst note:
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(a) A probability measure µ = dist(X1, . . . , Xn) on Rn with each EX i = 0 and EX2
i < ∞ has

a covariance matrix Γi j = EX i X j < ∞.
(b) If Γ is a symmetric n × n matrix such that f (x) = f (x1, . . . , xn) ∝ exp(−xTΓ−1x/2) is a
well-defined probability distribution, then its covariance matrix is Γ .
What is true, but not obvious a priori, is that essentially3 every covariance matrix (as defined in
(a)) can be used to define the Gaussian distribution in (b). This is the Fact 1 for our analogy. The
reader will likely perceive this fact as a consequence of the multivariate CLT, although there is
an arguably conceptually simpler proof (see Section 3.3). Fact 2 is the familiar characterization
of covariance matrices as symmetric positive semi-definite matrices.

Our Theorems 1 and 2 may be regarded as analogs of Facts 1 and 2 in a different context.

1.2. Statements of the two theorems

In everyday language tournament usually means a single-elimination tournament. In graph
theory an n-team tournament means the set of win–lose results of league play in which each
pair of teams plays once. So there are exactly 2(

n
2) tournaments. Now consider a completely

arbitrary probability distribution µ on the set of 2(
n
2) tournaments. For 1 ≤ i ≤ n write xi for

the expectation of the number of wins by team i . Call such a sequence x = (xi , 1 ≤ i ≤ n) a
mean score sequence. In this context, an analog (as mathematically tractable, for instance) of
the Gaussian distribution is the following Bradley–Terry model. Take real parameters (λi , 1 ≤

≤ n) and let match results be independent with

pi j := P(i beats j) = L(λi − λ j ) (1)

for the logistic function

L(u) :=
eu

1 + eu
, −∞ < u < ∞.

he set X B−T
n of mean score sequences arising from the Bradley–Terry model must be a subset

f the set Xn of all mean score sequences. But it turns out that, as suggested by the Gaussian
nalogy, we get essentially all mean score sequences from a Bradley–Terry model.

heorem 1 (Joe [8]). The closure in Rn of the set X B−T
n is Xn .

We need closure to get the extreme cases of the mean score sequence where for some k,
xi = i − 1 for all i ≥ k.

In fact Theorem 1 is not explicitly stated and proved in [8], but it is a straightforward
onsequence of results there. We give both a simple heuristic argument and a careful proof in
ection 3.

As background to the second theorem, recall that the following definition and representation
see, e.g., [15], section 2.A) of convex order ⪯ are useful in several areas of probability.

Definition. For finite mean probability measures on R, µ ⪯ ν means∫
φdµ ≤

∫
φdν for all convex φ such that the integrals exist. (2)

3 We need essentially to handle the degenerate case: precisely, the set of matrices defined by (a) is the closure
of the set defined by (b).
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Representation (Strassen [16]). µ ⪯ ν if and only if there exists a joint distribution (X, Y )
ith marginal distributions µ and ν such that

X = E(Y |X ). (3)

n the special case where µ and ν are uniform on n-element multisets x and y, written by
convention in increasing4 order as x = (x1, . . . , xn) and y = (y1, . . . , yn), the convex order

⪯ ν is equivalent to the notion that x is majorized by y, also written as x ⪯ y, and usually
efined by

k∑
i=1

xi ≥

k∑
i=1

yi , 1 ≤ k ≤ n, with equality for k = n. (4)

he breadth of utility of this notion of majorization, mostly outside probability, is demonstrated
n the book [11]. The relation x ⪯ y can be thought of intuitively as “x is less spread out than
,” as discussed in [11].

The second theorem is our analog of the characterization of covariance matrices as
ymmetric positive semi-definite matrices. This connection is discussed further after (8) below.

heorem 2 (Moon [12]). An increasing sequence of real numbers x = (x1, x2, . . . , xn) is a
ean score sequence of some random tournament if and only if x ⪯ (0, 1, . . . , n − 1).

We give proofs of these theorems in Sections 2 and 3, and then discuss previous proofs and
he broader context in Section 4. From that broader context, we feel that the most interesting
art of these results is how should one prove the “if” part of Theorem 2, so we start by giving
wo proofs of that.

. Proofs of Theorem 2

.1. First proof of Theorem 2 (“if” part)

Given x ⪯ (0, 1, . . . , n−1), the representation (3) holds with X uniform on {x1, . . . , xn} and
Y uniform on (0, 1, . . . , n − 1), and then µi (·) := P(·|X = xi ) define probability distributions

i (·), 1 ≤ i ≤ n, on integers {0, 1, . . . , n − 1} such that
i) µi (·) has mean xi ,
ii)

∑
i µi ( j) = 1, all 0 ≤ j ≤ n − 1.

The proof is easily understood in terms of a model for football5 – note this is separate from
he initial “tournament” model.

When teams i and j play, their goal scores are independent with distributions µi and
µ j . Define pi j as the mean number of points earned by i against j , when a win earns 1
point and a tie earns 1/2 point.

o complete the proof we need only check
iii)

∑
j ̸=i pi j = xi , 1 ≤ i ≤ n;

n other words, check∑
j ̸=i

χ (µi , µ j ) = xi , 1 ≤ i ≤ n, (5)

4 Increasing means non-decreasing.
5 Soccer (U.S.).
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where for independent random variables X and X̂ with distributions ν and ν̂ we define

χ (ν, ν̂) = P(X > X̂ ) +
1
2P(X = X̂ ).

Note that χ is linear in each argument and that, for the uniform distribution λ on {0, 1, . . . ,
− 1} we have χ (δk, λ) = (k +

1
2 )/n. So by linearity and (i), χ (µi , λ) = (xi +

1
2 )/n. By

ii) we may write λ =
1
n (µi +

∑
j ̸=i µ j ) and then by linearity

xi +
1
2 = χ (µi , µi ) +

∑
j ̸=i

χ (µi , µ j ).

ut χ (µi , µi ) =
1
2 by symmetry, verifying (5).

.2. Second proof of Theorem 2 (“if” part)

A permutation π : {1, 2, . . . , n} → {1, 2, . . . , n} defines a special kind of “season results,”
in which team i loses to team j if and only if π (i) < π( j), and therefore team i wins exactly
π (i)−1 games. By considering this special type of “totally ordered” season result, the converse
will follow from the lemma below, because the mean score sequence for the corresponding
“random total order” is (q(i) − 1, 1 ≤ i ≤ n).

Lemma 3. Let q : {1, 2, . . . , n} → [1, n] be a function such that q(1 + Un) ⪯ 1 + Un , where
n has the uniform distribution on {0, 1, . . . , n−1}. Then there exists a probability distribution

over permutations π such that

Eπ (i) = q(i), 1 ≤ i ≤ n.

Proof. Write In and Jn for random variables with the uniform distribution on {1, 2, . . . , n}. The
relation q(In) ⪯ Jn is equivalent, using the representation (3), to saying that we can construct
a joint distribution for (In, Jn) such that

E(Jn|In = i) = q(i), 1 ≤ i ≤ n.

Now the matrix with entries

pi j := nP(In = i, Jn = j)

is doubly stochastic, so by Birkhoff’s theorem it is a mixture of permutation matrices. In other
words, there is a probability distribution over permutations π such that pi j = P(π (i) = j). But
this just says

P(π (i) = j) = P(Jn = j |In = i),

and so

Eπ (i) = E(Jn|In = i) = q(i). □

2.3. Proof of Theorem 2 (“only if” part)

First consider the deterministic case, so there is an integer-valued sequence 0 ≤ x∗

1 ≤ x∗

2 ≤

· · · ≤ x∗
n of wins. Fix a convex function φ.

Suppose x∗

1 ≥ 1. Change the results of the games won by team 1, one game at a time,
∗ ∗
to make them a loss for team 1. At each such step x1 decreases by 1 and some xi increases
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by 1, and by convexity the value of
∑

i φ(x∗

i ) can only increase. Continue until reaching a
onfiguration with x∗

1 = 0. Now suppose x∗

2 ≥ 2. Again change the results of the games won
y team 2 against teams i > 2, one game at a time, to make them a loss for team 2. Again this
an only increase

∑
i φ(x∗

i ). Continue until reaching a configuration with x∗

1 = 0 and x∗

2 = 1.
ventually we reach the configuration with x∗

i = i −1, 1 ≤ i ≤ n. So the original configuration
atisfies

∑
i φ(x∗

i ) ≤
∑

i φ(i − 1), establishing (2) in the deterministic case.
In the random case write X i for the random number of wins by team i . So xi = EX i , and

y Jensen’s inequality φ(xi ) ≤ Eφ(X i ). So∑
i

φ(xi ) ≤

∑
i

Eφ(X i ) = E

[∑
i

φ(X i )

]
nd the quantity in brackets is bounded by

∑
i φ(i − 1), by the deterministic case. This

stablishes (2) in general.

. The Bradley–Terry model

.1. The max-entropy heuristic

There is a one sentence explanation of Theorem 1:

If x is a mean score sequence, then by definition there exists a matrix with non-negative
off-diagonal entries pi j = 1 − p j i satisfying the constraints

∑
j ̸=i pi j = xi , 1 ≤ i ≤ n;

and the max-entropy such matrix is of the Bradley–Terry form (1).

o elaborate, the problem

maximize −
∑

i ̸= j pi j log pi j subject to
∑

j ̸=i pi j = xi , 1 ≤ i ≤ n,

s solved, in classical applied mathematics, by introducing Lagrange multipliers λi , 1 ≤ i ≤ n,
nd solving

maximize −
∑

i ̸= j pi j log pi j +
∑

i λi (
∑

j ̸=i pi j − xi ) over λi , 1 ≤ i ≤ n.

By setting d
dpi j

(·) = 0, the solution satisfies

− log pi j + log(1 − pi j ) + λi − λ j = 0,

implying that the matrix (pi j ) is indeed of the Bradley–Terry form (1).
We learned this max-entropy argument from Joe [8]. How much detail needs to be added to

make a completely rigorous proof is a matter of taste; we give a rather fussy argument next.

3.2. Strong stochastic transitivity

In statistical modeling contexts such as [14] one says that pi j on tournaments of size n has
the strong stochastic transitivity (SST) property if (after relabeling [n] if necessary)

pi j is increasing in i , for any fixed j . (6)

Note that this condition implies that the matrix P with entries pi j is increasing down columns
nd decreasing along rows.
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Lemma 4 (Joe [8], Theorems 2.3 and 2.7). Let x ⪯ (0, 1, . . . , n − 1). Suppose that ψ is
strictly convex. If p∗

i j minimizes
∑

i ̸= j ψ(pi j ) over pi j on tournaments of size n with mean
score sequences x, then p∗

i j has SST.

We remark that in fact the above follows by a special case of Theorem 2.7 in [8]. Here we
need only the case of functions ψ(P) =

∑
i ̸= j ψ(pi j ) for strictly convex ψ , whereas in [8] this

result is shown to hold for strictly Schur convex functions ψ .
In [8] and earlier combinatorial literature the SST property is instead defined to mean

min{pi j , p jk} ≥ 1/2 ⇒ pik ≥ max{pi j , p jk}. (7)

Unfortunately, despite this same terminology in use in the literature, the notions (6) and (7) are
not equivalent. For example, consider n = 3 with all pi j = 1/2 except p13 = 1 − p31 < 1/2.
Such a distribution has (6) but not (7). It is however true that (7) implies (6). This is likely
well-known, but we cannot find a published proof (it does not appear in the old survey [6]) so
we have included a proof in the Appendix.

Proof of Theorem 1. We show that if x ≺ (0, 1, . . . , n − 1), in the sense that
∑k

i=1 xi >
(k

2

)
for 1 ≤ k < n and

∑n
i=1 xi =

(n
2

)
, then pi j = L(λi − λ j ) for some (λi , 1 ≤ i ≤ n). The

theorem follows.
To this end, consider minimizing

∑
i ̸= j pi j log pi j , subject to all pi j ≤ 1, pi j + p j i = 1 and

xi =
∑

j ̸=i pi j . Since x ⪯ (0, 1, . . . , n −1), a solution p∗

i j exists. We claim that all p∗

i j ∈ (0, 1).
This concludes the proof, noting that the stationary point of∑

i ̸= j

pi j log pi j +

n−1∑
i=1

λi (xi −

∑
j ̸=i

pi j )

corresponds to some p∗

i j = L(λ∗

i − λ∗

j ) with all xi =
∑

j ̸=i L(λ∗

i − λ∗

j ).
To establish the claim, suppose towards a contradiction that some p∗

i j = 1. Since ψ(x) =

x log x is strictly convex, p∗

i j has SST in the sense of (6) by Lemma 4. Let u be the minimal
index such that p∗

u j = 1 for some j . Let v be the maximal index such that p∗
uv = 1. Note that

since x ≺ (0, 1, . . . , n − 1) we have v < u − 1, as else, since p∗

i j has SST, we would find that
p∗

i j = 0 for all i ≤ u − 1 and j ≥ u, and so
∑u−1

i=1 xi =
(u−1

2

)
.

Next, consider qi j obtained from p∗

i j by decreasing p∗
uv = 1 by ε and increasing p∗

u,v+1 and
p∗

v+1,v by ε. That is, let
(i) qvu = 1 − quv = ε,
(ii) qu,v+1 = 1 − qv+1,u = p∗

u,v+1 + ε,
(iii) qv+1,v = 1 − qv,v+1 = p∗

v+1,v + ε,
and qi j = p∗

i j for all other i, j . Since v < u − 1, and so v + 1 ̸= u, all∑
j ̸=i

qi j =

∑
j ̸=i

p∗

i j = xi .

Moreover, by the choice of u and v, and since v+1 < u, note that p∗

u,v+1 < 1 and p∗

v+1,v < 1.
Therefore all qi j ≤ 1, for all small ε > 0. Hence qi j is a probability distribution with mean
score sequence x.

Finally, observe that, for α, β ∈ (0, 1), differentiating
ℓ(ε) + ℓ(α + ε) + ℓ(β + ε)
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f

f

s

with respect to ε, where ℓ(x) = x log x + (1 − x) log(1 − x), we obtain

log
(

ε

1 − ε

α + ε

1 − α − ε

β + ε

1 − β − ε

)
< 0

or all small ε > 0. It follows that∑
i ̸= j

qi j log qi j <
∑
i ̸= j

p∗

i j log p∗

i j

or all small ε > 0, contradicting the minimality of p∗

i j . □

3.3. Comments on max-entropy

The Section 1.1 analogy, that (a) is the closure of the set defined by (b), can also be proved
by max-entropy instead of the multivariate CLT. And in the context of this paper, we could
call pi j Cauchy if pi j = C(αi − α j ), where C(x) = 2−1

+ π−1 arctan x is the CDF of a
tandard Cauchy. The same argument above works, replacing the entropy function u log u by

the function −(2π )−1 log sin(uπ ), to show that the set of mean score sequences from Cauchy
matrices is dense in the set of all mean score sequences. In fact, this is only one example of a
more general principle; see the discussion on p. 920 in Joe [8] following Theorem 2.7.

4. Discussion

One purpose of this paper is simply to juxtapose Theorems 1 and 2, which come from
rather different research communities. As noted below, Moon’s theorem has many proofs using
different textbook theorems — and indeed could be used as a running example in a first
undergraduate course in discrete mathematics. As probabilists we wanted to find “probabilistic”
arguments, and our two “if” proofs in Section 2 are (we believe) new and probabilistic.
In particular the “football story” in Section 2.1 seems memorable. The relevant discrete
mathematics literature starts with Landau’s theorem [10], the deterministic analog of Moon’s
theorem characterizing score sequences of non-random tournament outcomes. Moon’s original
proof [12], and a more general version (their Theorem 3.9) in Moon and Pullman [13],
used network flow feasibility properties, and later Bang and Sharp [2] used Hall’s theorem
on systems of distinct representatives, Cruse [5] used linear programming methods, and
Thornblad [17] derived it from the deterministic case [10] via a rather lengthy argument. To
us it is more natural to explicitly exploit the Strassen representation, as our two “if” proofs
do in different ways. The “only if” part could alternatively be proved as an easy consequence
of Landau’s theorem and [11] Proposition 12.D.1. Our proof (by “Robin Hood moves” [11])
avoids Landau’s theorem.

As mentioned before, convex order and the general Strassen representation are useful tools in
several areas of probability theory. Because an arbitrary distribution on R can be approximated
by uniform distributions on n-element sets, the general case is conceptually very similar to
the majorization case x ⪯ y defined at (4). This setting is treated at great length in the
book [11]. Instead of the “coupling of random variables” picture natural to modern probabilists,
the representation is stated there in the equivalent form

if x ⪯ y then x = Ay for some doubly stochastic matrix A. (8)

There are constructive proofs of this (e.g., [11], Theorem 2.B.2). Combined with our “football”
proof we obtain a completely constructive proof of Moon’s theorem. To our knowledge,

previous proofs cannot be made constructive so easily.
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Further to the Section 1.1 analogy between Theorem 2 and the characterization of covariance
atrices as symmetric positive semi-definite matrices (with those associated with Gaussian

ensities being positive definite), we note that by Chao and Wong [4] there is in fact a matrix
A as in (8) that is positive semi-definite (and they give an explicit formula). Moreover, by

rualdi, Hwang and Pyo [3], for all x arising from a Bradley–Terry model (i.e., by the proof
f Theorem 1, all “non-degenerate” x such that

∑k
i=1 xi >

(k
2

)
for k < n) there is a positive

definite A.
To us, the most interesting part of the bigger picture surrounding convex order is that there is

apparently no “canonical” choice of joint distribution in (3), (8): proofs may be constructive but
they involve rather arbitrary choices and the resulting joint distributions are not easily described.
Recent literature on peacocks [7] studies continuous-parameter processes increasing in convex
order, via many different constructions, and ideas from that literature might be relevant in our
context.

We encountered this field while exploring the Bradley–Terry model as a basic mathematical
toy model for sports results — see [1], [9] for references to the extensive literature in that field.
Abstractly there is a map G from the set of −∞ < λ1 ≤ λ2 ≤ · · · ≤ λn < ∞, centered by
requiring

∑
i λi = 0, to x ∈ Rn defined by

xi =

∑
j ̸=i

L(λi − λ j ).

This map has some range X B−T
n , but it is hard to see directly from that definition what is

the range of G. Theorem 1 answers that question. However the inverse function G−1 giving
(λ1, . . . , λn) in terms of x ∈ Xn remains obscure; we do not have an explicit formula. So
we cannot say anything about how the win-probabilities pi j = L(λi − λ j ) depend on x.
In particular, we do not know whether these win-probabilities pi j can always be obtained
within the “football model” by some choice of distributions µi (equivalently of matrix A
at (8)).
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Appendix. Proof that (7) implies (6)

Suppose we have (7). Consider the graph G with directed edges j → i for pi j ≥ 1/2. By
induction, all induced H ⊂ G have a vertex i∗ such that j → i∗ for all j ̸= i∗ ∈ H . Indeed,
suppose this holds for all such subgraphs of size m < n. Let H be an induced subgraph of
size m + 1, and consider H ′

= H − v for some v ∈ H . Let i ′
∗

be such that j → i ′
∗

for all
j ̸= i ′

∗
∈ H ′. If v → i ′

∗
in H , then let i∗ = i ′

∗
. Otherwise, if v ̸→ i ′

∗
(and so i ′

∗
→ v) in

H , then (7) implies that all other j → v are in H (as else, since j → i ′
∗
, the presence of

ome v → j in H and (7) would imply that v → i ′
∗

in H , contrary to our assumption), and
o let i∗ = v. This completes the induction. The case H = G gives i∗ such that pi∗ j ≥ 1/2
or all j . Therefore, we can recursively relabel [n] so that pi j ≥ 1/2 for all pairs i > j . Then

ssumption (7) directly implies the SST property in the sense of (6).
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