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Abstract

Consider a network linking the points of a rate-1 Poisson point process on the plane.
Write ! ave(s) for the minimum possible mean length per unit area of such a network, subject
to the constraint that the route-length between every pair of points is at most s times the
Euclidean distance. We give upper and lower bounds on the function ! ave(s), and on the
analogous “worst-case” function !worst(s) where the point configuration is arbitrary subject
to average density one per unit area. Our bounds are numerically crude, but raise the question
of whether there is an exponent α such that each function has !(s) ≍ (s − 1)−α as s ↓ 1.

1. Introduction

The topic geometric spanner networks [13] concerns design of networks on arbitrary sets
of vertices in the plane (or higher dimensions). The interpretation of “size” of the network
is sometimes as number of edges and sometimes as network length (sum of Euclidean edge
lengths). Similarly, the interpretation of within-network distance between two vertices v, w

is sometimes taken as minimum number of edges of a route between them (hop length) and
sometimes as shortest total length (sum of Euclidean edge lengths) of a route between them
(route length r(v, w)). In the latter setting, how well the network provides short routes is
often measured by a statistic such as

S := max
v!w

r(v, w)

d(v, w)
! 1, (1·1)

where d(v, w) denotes straight line (Euclidean) distance. The statistic S is called the stretch
or spanning ratio of the network, and a network with stretch S is called an S-spanner.

Most work on this topic has emphasised algorithms – either algorithms for constructing
spanners, or the use of spanners in algorithms for computational geometry problems. We
address a more fundamental geometric question: what is the tradeoff between stretch and
network length? In formulating a mathematical question we have in mind the example of
an inter-city road network (rather than, say, a wireless communication network) and indeed
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Fig. 1. Illustration of possible networks. The left-hand diagram shows a network on 4 cities which is con-
nected (a driver can switch roads at the junction where they cross), the center diagram shows that other
junctions may be created, and the right-hand diagram (envisaged as part of a larger network) shows that
roads need not be closely related to cities at all.

we find it helpful to use the vivid natural language of cities, roads, junctions in place of the
mathematical language of vertices, edges, Steiner points.

Our notion of “network” is the general notion suggested by real-world road networks, il-
lustrated in Figure 1. The only implicit convention is that networks be connected and consist
of line segments (rather than curves). Note that this convention differs from the more famil-
iar and more restrictive assumption that an edge can only be the line segment (v, w) between
two of the given vertices. There does not seem to be standard terminology to emphasise the
distinction: we will write Steiner network for our setting and graph network for the more
restrictive assumption.

Our underlying setting is a configuration of n cities at arbitrary positions zn = (z1, . . . , zn)

in a square of area n. For a network N connecting these cities, write S(N ) for the statistic
(1·1) and write

L(N ) = 1
n

× (network length of N )

for normalised network length. We then define

ψn(zn, s) := inf {L(N ) : S(N ) " s}
the infimum over all networks N connecting the cities zn . So this quantifies the optimal
trade-off between length and stretch for the given configuration. We can now consider in
parallel the worst-case, that is sup zn

ψn(zn, s), and the average case Eψn(Zn, s), where Zn

consists of n independent uniform random positions in the area-n square. The purpose of
this set-up is that it is intuitively obvious that there must exist limit functions

!worst(s) = lim
n→∞

sup
zn

ψn(zn, s)

! ave(s) = lim
n→∞

Eψn(Zn, s),

where 0 < ! ave(s) " !worst(s) " ∞ for 1 < s < ∞.
The aim of this paper is to study the functions ! ave and !worst. As probabilists the authors

are primarily interested in the average-case setting, but it seems natural to treat the worst-
case setting in parallel. We shall do the following:

(i) prove existence of these limit functions (Section 2);
(ii) prove that their s → ∞ limits are equal to (rather than greater than) the associated

Steiner tree constants (Section 3);
(iii) see what upper bounds can be derived from known results for graph networks (Sec-

tions 1·1 and 4);
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(iv) derive upper bounds on !worst(s) from elementary constructions where one first lays

down a regular network of roads without paying attention to city positions, and then
adds local links from cities to the network (Section 5);

(v) derive upper bounds on ! ave(s) from Steiner network analogs of the θ-graphs dis-
cussed in Section 4 (Section 6);

(vi) derive lower bounds on ! ave(s) for small s, based on the stochastic geometry re-
lationship between network length and rate of intersections with a typical line
(Section 7);

(vii) derive lower bounds on !worst(s) based on a notion of “local optimality” for specific
networks on specific configurations (Section 8).

The sections are, to a large extent, independent of each other. Our description of ! ave(s) as
an n → ∞ limit was intended to facilitate comparison with the worst-case setting. A more
abstract interpretation of ! ave(s) in terms of networks on a Poisson point process on R2 is
given in Section 2·1.

Getting explicit values for these functions analytically seems impossible. Even getting
convicing numerical values would provide a challenge for designers of heuristic algorithms,
and we have not attempted to do so. Our bounds are numerically crude; this paper is intended
to initiate study of these functions, not to give definitive results.

An interesting theoretical question that seems more amenable to analytic study is the
scaling behavior in the s ↓ 1 limit. That is, in the spirit of “universality” in statistical physics,
one can speculate that there exists an exponent α such that

!(s) ≍ (s − 1)−α as s ↓ 1,

where the value of α does not depend on any detailed assumptions in the model (worst-case
or average-case; the Steiner network case or the graph network case) but instead depends
only on the the fact the we are studying the length-stretch trade-off in two-dimensional
space. Our results imply crude bounds on α: an upper bound of 3/4 for ! ave (Corollary
6·5) and 5/4 for !worst (5·5), and a lower bound of 3/8 for ! ave and hence for !worst also
(Proposition 7·1). But considering these s → 0 limits is considering increasingly dense
networks (“covering the countryside in tarmac”, we say in talks), which is hard to motivate.

1·1. What is already known?

The literature on geometric spanner networks focusses on worst-case bounds on stretch
(and many other statistics of networks) produced by algorithmic procedures from arbitrary
configurations, works in the “graph network” setting rather than our Steiner network setting,
and emphasises hop length more than route length. So while the techniques of that field are
clearly relevant, it is not so easy to directly apply their results to the study of ! ave and !worst.

One relevant result is [13, theorem 15·2·16], which says that for small σ > 0 one can con-
struct (1 + σ )-spanners such that (amongst other properties) the network length is bounded
by O(σ−4 × (length of MST)), where MST denotes the minimum spanning tree on the given
configuration. It is wellknown and elementary (see e.g. [15, section 2·2]) that in the worst
case the length of MST is O(n), so the theorem mentioned above implies

!worst(s) = O((s − 1)−4) as s ↓ 1 (1·2)

and in particular that !worst(s) < ∞ for all s > 1.
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A remarkable result [9] is that the Delaunay triangulation is always a t-spanner for
t = (2π/3) cos (π/6) ≈ 2.42. Because the length of a Delaunay triangulation is not O(n) in
the worst case, this does not directly help us bound !worst. But in the random model, a clas-
sical result ([11, page 113]) shows the limit normalised length of the Delaunay triangulation
equals 32/3π = 3.40.... So we get a numerical bound

! ave(2.42) " 3.40. (1·3)

More generally, there are known bounds [6] on stretch for the well-studied one-parameter
θ-graph family of graph networks. As above, their lengths are not O(n) in the worst case,
so this does not directly help us bound !worst. But again we can calculate mean lengths in
the random model, and so deduce explicit upper bounds on ! ave(sm) for a certain sequence
sm ↓ 1 (Section 4). However for small s we get better bounds, in our Steiner network setting,
from the construction in Section 6.

1·2. Other statistics for route-length efficiency

In defining a statistic to summarise the effectiveness of a network in providing short
routes, one may be more interested in the typical value of

R(v, w) = r(v, w)

d(v, w)
− 1

than in the maximum value used in the definition of stretch. One might first consider the
summary statistic avev,w R(v, w), which somewhat counter-intuitively can easily be made
very small for large n [2, 8]. It is argued in [4] that the most appropriate summary statistic
R is defined as follows. For each distance d, set ρ(d) = average of R(v, w) over city-pairs
at distance approximately d; then let R be the maximum of ρ(d) as d varies. The trade-
off between R and normalized length, in the average-case setting, is discussed in [4], and
the motivation for the present paper was to make a connection with the topic of spanner
networks.

2. Existence of the limit functions !

In this section we use a subadditivity argument in the spirit of [15, 18] to prove existence
of the limit functions !. Note that in the most familiar kind of spatial subadditivity argument
a big square is divided into small subsquares, and optimal solutions on subsquares are used to
construct some near-optimal solution on the big square. We argue in the opposite direction:
use an optimal solution on the big square to construct near-optimal solutions on subsquares.
This leads to the “superadditive” inequalities (2·2, 2·4).

Fix 1 < s < ∞ and let an be the worst-case value (over configurations z = (z1, . . . , zn)

of cities in the square of area n) of the length of the shortest network on z with stretch at
most s. We shall prove existence of the limit

!worst(s) := lim
n

n−1an " ∞. (2·1)

We will first argue
an

n
" ank2

nk2
+ 4√

n
, n ! 1, k ! 2. (2·2)

Fix n and k. Let z be a configuration in the area-n square attaining an . Take k2 copies of this
configuration, and translate each to construct a configuration z∗ of nk2 cities in the square of
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area nk2. By definition of ank2 there is a network on z∗ with stretch at most s and with length
at most ank2 . Add to this network the four boundary edges of each of the k2 subsquares (so
we get two copies of each edge interior to the big square). We now have a network N ∗ whose
length cn,k satisfies cn,k " ank2 + 4n1/2k2. Consider the restriction of this network to one of
the subsquares. The length of the restricted network may depend on the subsquare, but there
must be at least one subsquare Q for which this length of the restricted network N Q is at
most the average cn,k/k2. Routes in the network N ∗ between cities of Q might go outside
Q, but replacing these external segments by the boundary edges of Q can only shorten the
route length, so N Q has stretch at most s. But N Q defines (by translation) a network on the
original configuration z, and so an " cn,k/k2, which gives (2·2).

Deducing existence of a limit from (2·2) is one of many variants of routine “subadditivity”
arguments, as follows. First note that (an) is increasing; indeed

an+1 ! an

√
n + 1

n

by adding an arbitrary city to the configuration attaining an and rescaling. (Note that this
is one of many minor ways in which Steiner networks are technically more tractable than
graph networks.) Next define

γ = lim inf
n

an/n " ∞

and use monotonicity to show

γ = lim inf
k

ank2

nk2
, for each fixed n.

Then (2·2) shows

an/n " γ + 4n−1/2

and so lim sup n an/n " γ , meaning that indeed lim n an/n = γ .
This argument shows !worst(s) " ∞ exists. As mentioned at (1·2), existing results then im-

ply !worst(s) < ∞ for all s > 1; this alternatively could be derived from the more elementary
constructions in our Section 5.

For the random model we use the same construction with a Poissonised number of random
points. Fix s again. Let bn be the expectation of the length of the shortest network with stretch
at most s over n uniform random cities in the unit square. So n1/2bn is the corresponding
expectation in the area-n square. We shall prove existence of the limit

! ave(s) := lim
n

n1/2bn

n
. (2·3)

Write N (t) for a random variable with Poisson(t) distribution and write

βt = EbN (t).

Take a Poisson point process (rate 1 per unit area) of cities on the whole plane. Now t1/2βt is
the expectatation of the length of the shortest network with stretch at most s on the Poisson
cities in an area-t square. Consider partitioning a square of area tk2 into k2 subsquares of
area t . Repeating the argument for (2·2), now using a random subsquare, gives an inequality
analogous to (2·2):

βt

t1/2
" βtk2

t1/2k
+ 4

t1/2
, 0 < t < ∞, k ! 2. (2·4)
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Using the fact that βt is increasing in t , we can repeat the “subadditivity” argument to show
existence of the limit

lim
t

t−1/2βt = γ ∗ " ∞. (2·5)

The “average case better than worst case” inequality n1/2bn " an and the fact !worst(s) < ∞
now easily imply γ ∗ < ∞.

To finish we need a routine “dePoissonisation” argument to show that (2·4) and monoton-
icity of bn imply

lim
n

n−1/2bn = γ ∗. (2·6)

First fix ε > 0 and consider tn/n → 1 + ε. Then

βtn ! bnP(N (tn) ! n) = bn(1 − o(1))

so

lim sup
n

n−1/2bn " lim sup
n

n−1/2βtn = (1 + ε)1/2γ ∗

and the upper bound for (2·6) follows. Next, the following property of the Poisson distribu-
tion

max
i!n

P(N ((1 − ε)n) = i)
P(N (n) = i)

−→ 0

implies

EbN ((1−ε)n)11(N ((1 − ε)n) ! n) = o(EbN (n)) = o(n1/2)

and so

β(1−ε)n " bn + o(n1/2)

implying

lim inf
n

n−1/2bn ! lim inf
n

n−1/2β(1−ε)n = (1 − ε)1/2γ ∗

and the lower bound for (2·6) follows.

2·1. Poisson process interpretation of !ave

The argument above interprets ! ave(s) as an n → ∞ limit of the random n-city model.
By standard weak convergence arguments which we will not give here (see e.g. [3, section
3·5] for more details in a somewhat similar setting) we can give an “exact” interpretation of
! ave(s) in terms of a Poisson (rate 1) point process of cities on the infinite two-dimensional
plane. Consider a network N∞ on such cities whose distribution µ is translation invariant
and ergodic. Associated with µ are two numbers: the stretch, say S(µ), and the normalised
length (mean length-per-unit area), say L(µ), which is well-defined by translation invariance
(of course these numbers might be +∞). Then

! ave(s) = inf {L(µ); µ is translation invariant, S(µ) " s}. (2·7)

3. Short networks and the Steiner constants

Write zn = (z1, . . . , zn) for a configuration of city positions in the square of area n. Write
ST(zn) for the Steiner tree (i.e. minimum length connected network) on zn , and for any
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network N write len(N ) for its total length. By an easy “superadditive” argument similar to
that in Section 2, there exists a limit constant for worst-case normalised Steiner tree length:

cworst := lim
n

sup
zn

n−1 len(ST(zn)). (3·1)

It is known [7] that cworst " 0.995 and that (by considering the hexagonal lattice) cworst !
(3/4)1/4 = 0.9306. Clearly we must have !worst(s) ! cworst for all s, and this inequality must
persist in the limit (which exists by monotonicity): lim s→∞ !worst(s) ! cworst.

Turning to the average-case setting, it follows from the general theory of subadditive
Euclidean functionals [15, 18] that there exists a limit constant cave such that

n−1 len(ST(Z1, Z2, . . . , Zn)) −→ cave in L1 (3·2)

where the (Zi) are independent uniform random in the area-n square. As above, we clearly
have lim s→∞ ! ave(s) ! cave. It is natural to guess (but not obvious) that these limit inequal-
ities are really equalities. This guess is correct, as an immediate corollary of the following
estimate for arbitrary city configurations.

PROPOSITION 3·1. There exists a function δ(s) " ∞ with lim s→∞ δ(s) = 0, and a
function K (s) < ∞, such that for all 1 < s < ∞, all n ! K (s) and all city configurations
zn in the area-n square, there exists a network N connecting cities zn such that

stretch(N ) " s; n−1( len(N ) − len(ST(zn))) " δ(s).

COROLLARY 3·2.

lim s→∞ !worst(s) = cworst and lim s→∞ !ave(s) = cave.

The idea of the proof is to partition the area-n square into rectangles containing at most K
cities, and then use a crude construction (Lemma 3·3) of networks on K cities. We will set
up some notation, state the lemma, give the reduction of the Proposition to the lemma, and
then prove the lemma.

Fix K ! 0. Let A be a rectangle; write ∂ A for its boundary, so that len(∂ A) is its boundary
length. Let y1, . . . , yK be an arbitrary configuration of K cities in A. Consider a network
N = N (A) in A which includes the boundary ∂ A and links the cities to the boundary. For
such a network define

stretch∗(N ) = max
y!y′

route-length from y to y′

d(y, y′)
(3·3)

where y and y′ run over the cities and over points of ∂ A.

LEMMA 3·3. Let t̂ be the Steiner tree on the cities y1, . . . , yK in a rectangle A and (pos-
sibly) other cities outside A. Let t be the intersection of t̂ with A. Then there exists a network
N in A containing t and ∂ A and linking the cities to ∂ A, such that

stretch∗(N ) " ρ(K ); len(N ) − len(t) " 2 len(∂ A)

where ρ(K ) < ∞ depends only on K ! 0.

Proof of Proposition 3·1. Fix K and n > K . We use a simple decomposition, the mul-
tidimensional search tree or k − d tree [14]. Split the square [0, n1/2]2 into two rectangles
using a vertical line through the city with median x-coordinate (if n is odd) or a vertical line
separating the two median x-coordinate cities (if n is even). In either case, each rectangle
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has at most n/2 cities in its interior. Separately for each rectangle, split it into two rectangles
using horizontal lines through the median y-coordinate(s). Now (end of stage 1) we have
4 rectangles, each with at most n/4 cities in its interior. Continue recursively for L stages,
where L is the smallest integer such that n4−L " K , to get a partition into 4L rectangles,
each with at most K cities in its interior. Write A for a generic rectangle in this partition.

Given a configuration zn in [0, n1/2]2, apply Lemma 3·3 (where t̂ is the Steiner tree on zn)
to each A and the cities inside A to obtain a network N (A) satisfying

stretch∗(N (A)) " ρ(K ); len(N (A)) − len(ST(zn) ! A) " 2 len(∂ A). (3·4)

Then consider the network N on the cities zn obtained as the union of networks N (A). Note
that the bound ρ(K ) on stretch∗(N (A)) does not depend on A. For any pair of cities zi , z j ,
we can define a route in N between them by considering the points v1, v2, v3, . . . at which
a straight line between them intersects boundaries of successive rectangles A1, A2, A3, . . .,
and within each such rectangle A use the shortest route in N (A) between these bound-
ary points (or the cities zi , z j themselves, at the ends). It follows that stretch(N ) "
max A stretch∗(N (A)) " ρ(K ). Note that the intermediate rectangles may contain no cit-
ies of zn , explaining why we must allow K = 0 in Lemma 3·3.

As a preliminary to bounding len(N ), we need to consider the total length of lines used
in the original decomposition. Include a stage 0 in which the edges of the external boundary
∂0 of [0, n1/2]2 are added. At stage 1, the length of lines added equals 2n1/2, and inductively
at stage j the length of lines added equals 2 j n1/2. Because each segment of these added lines
(except the external boundary) is part of the boundary of exactly 2 of the final rectangles A,

∑

A

len(∂ A) = len(∂0) + 2
L∑

j=1

2 j n1/2 = 2n1/2

⎛

⎝2 +
L∑

j=1

2 j

⎞

⎠ = 2L+2n1/2.

By definition of L we have n4−(L−1) > K , giving 2L " 2n1/2 K −1/2, and so
∑

A

len(∂ A) " 8nK −1/2. (3·5)

So

len(N ) "
∑

A

len(N (A))

"
∑

A

(
len(ST(zn) ! A) + 2 len(∂ A)

)
by (3·4)

= len(ST(zn)) + 2
∑

A

len(∂ A).

Combining with (3·5),

n−1( len(N ) − len(ST(zn))) " 16K −1/2.

We may assume ρ(K ) ↑ ∞ as K ↑ ∞, and now Proposition 3·1 holds for K (s) := max {K :
ρ(K ) " s} and δ(s) := 16K −1/2(s).

Proof of Lemma 3·3. We may suppose A is an a1 × a2 rectangle, where a1 " a2. The
network N will consist of:

(i) t (the intersection of t̂ with A);
(i) (ii)] the boundary ∂ A of A;
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(iii) extra edges, of total length at most len(∂ A).

Set m = ⌊a2/a1⌋ and partition A into m + 1 similar a1 × a2/(m + 1) rectangles by using
m equally spaced roads of length a1. So the total length of these added roads is ma1 "
a2 " 1/2 len(∂ A). So the network N 0 consisting of t and ∂ A and these extra roads has
len(N 0)− len(t) " 3/2 len(∂ A). It is easy to check that this network N 0 (without using the
edges of t) satisfies

max
y!y′∈∂ A

route-length from y to y′

d(y, y′)
" 2.

In particular, the K = 0 case of Lemma 3·3 holds with ρ(0) = 2.
Now consider the case K ! 1. To cover the possibility that t̂ and hence t is entirely in

the interior of one of the subrectangles of A, add to N 0 a road to the boundary from the
city closest to the boundary. This road has length at most a1/2 " (1/8) len(∂ A), and the
resulting network N 1 has length len(N 1) − len(t) " (13/8) len(∂ A).

Now set

η :=
3
8 len(∂ A)

K +
(K

2

) .

Let N be the network N 1 augmented as follows: for each city within distance η from the
boundary, add a road from the city to the closest boundary point; for each pair of cities
within distance η of each other, add a road directly linking them. From the definition of η,
the extra length added in this stage is at most (3/8) len(∂ A), and so N satisfies the length
requirement

len(N ) − len(t) " 2 len(∂ A)

in Lemma 3·3.
It remains to bound stretch∗(N ). We quote a simple bound on Steiner tree length (given

for squares in [2, lemma 10]; the extension to rectangles is straightforward).

LEMMA 3·4. Under the assumptions of Lemma 3·3,

len(t) " C1(K ) len(∂ A)

where C1(K ) depends only on K .

So len(N ) " (2 + C1(K )) len(∂ A) and then

len(N )

η
" 8

3
(2 + C1(K ))

(
K +

(
K
2

))
. (3·6)

To bound stretch∗(N ) we need to treat several cases for the pairs (y, y′) in (3·3). We have
already obtained an upper bound of 2 for the case where both points are on the boundary.
If the two points are at distance ! η apart then, because route length r(y, y′) is at most
network length, r(y, y′)/d(y, y′) " len(N )/η. If the two points are cities within distance η

then r(y, y′)/d(y, y′) = 1. The only remaining case is a city y within distance η from the
boundary, and a boundary point y′ within distance η from y. In this case, by using the edge
from y to the closest boundary point and then following the boundary we find (the worst
case is near a corner) r(y, y′)/d(y, y′) " 3. So

stretch∗(N ) " max
(

3,
len (N )

η

)
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and by (3·6) we have proved Lemma 3·3.

4. Upper bounds on !ave from worst-case stretch for theta-graphs

In this section we show how to derive upper bounds on ! ave from known bounds on worst-
case stretch for graph networks.

The θm-graph on a configuration is defined as follows. At each point zi , consider the
natural partition of the plane into m equal-angle cones of base angle θm = 2π/m based at
zi ; the boundary lines make angles (2π i/m, 0 " i < m) with the x-axis. Given zi and such
a cone, each point z j in the cone has an orthogonal projection onto the bisector line of the
cone, at position z′

j say; create an edge (zi , z j ) for the point z j in the cone such that z′
j is

closest to zi . This is a now well-known construction of graphs with low stretch, and the best
known explicit bounds on stretch are given as follows in [6]. These hold for m ! 6.

1 + 2 sin (θm/2)

cos (θm/2) − sin (θm/2)
m = 0 mod 4

cos (θm/4)

cos (θm/2) − sin (3θm/4)
m = 1 or 3 mod 4

1 + 2 sin (θm/2) m = 2 mod 4.

Writing sm for these bounds, we immediately have from (2·7)

! ave(sm) " Lm (4·1)

where Lm is the mean length-per-unit-area of the θm graph over the rate-1 Poisson point
process on R2. Calculating Lm is in principle straightforward; indeed more detailed calcula-
tions of various statistics in the finite-n random model can be found in [12], though they do
not explicitly consider the statistic Lm . We use some of the notation from [12]. As observed
there, the calculation is in practice easier in the case of even m, so we treat that case.

Take the origin 0 as a typical point of the Poisson configuration. An edge (0, z) created
by the defining rule applied at 0 may or may not be mutual, meaning it is also created by the
rule applied at z. We readily see the formula

Lm = m
∫

C
||z||

(
1
2

pmut(z) + pnot(z)
)

dz. (4·2)

Here:
C is a cone of base angle θm = 2π/m;
||z|| is Euclidean distance from z to the origin;
pmut(z) is the probability that (if there is a Poisson point at z) there is a mutual edge (0, z);

pnot(z) is the corresponding probability of a non-mutual edge created by the rule at 0. The
1/2 term avoids double-counting mutual edges.

Following [12] we first parameterise a point z ∈ C by a pair (r, ℓ) = (r(z), ℓ(z)) where,
drawing the bisector horizontally in figure 2, r and ℓ − r are the vertical distances from z
to the cone boundaries. If there is a Poisson point at z then the rule at 0 creates an edge iff
triangle T = T (z) is empty of other Poisson points. Moreover this edge will be mutual iff a
certain other triangle T ′ = T ′(z) is also empty. Now [12]

area(T ) = αℓ2; area(T ′ \ T ) = α(r 2 + (ℓ − r)2),
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0

z

ℓ − r

r

Tθm

Fig. 2. Parametrisation of z as (r, ℓ).

where

α := cos (θm/2)

4 sin (θm/2)
.

So

pmut(z) = exp (−area(T " T ′)) = exp (−α(ℓ2 + r 2 + (ℓ − r)2))

pnot(z) = exp (−area(T ))−exp (−area(T " T ′)) = exp (−αℓ2)−exp (−α(ℓ2+r 2+(ℓ−r)2))

and so
1
2

pmut(z) + pnot(z) = exp (−αℓ2) − 1
2

exp (−α(ℓ2 + r 2 + (ℓ − r)2)).

Substituting into (4·2) we now have an expression for Lm , for even m ! 6. It is straightfor-
ward to show the asymptotics

Lm = /(m3/2), sm − 1 = /(m−1)

and then from (4·1) we have

! ave(s) = O((s − 1)−3/2) as s ↓ 1. (4·3)

We will see in Section 6 that we can improve this bound when using Steiner networks instead
of graph networks.

5. Upper bounds via a “freeways and access roads” construction

In our “Steiner network” setting we can get explicit bounds on !worst via elementary con-
structions using parallel “freeways” in different directions, with “access roads” linking cities
to nearby freeways. We give details in the simplest setting in Section 5·1, and state a more
general result in Section 5·2.

5·1. Constructions based on a square grid of roads

PROPOSITION 5·1.

!worst(2) " 4 (5·1)

!worst

(
3
2

)
" 4

√
2 (5·2)

!worst(
√

2) " 4
√

3. (5·3)
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Proof. Fix 0 < t∞ < ∞ and choose t = t (n) → t∞ such that n1/2/t (n) is an integer
m = m(n). First construct a network of grid roads which partition the region [0, n1/2]2 into
m2 squares of side-length t . These grid roads (including the boundary of [0, n1/2]2) have
total length

n1/2 × 2(m + 1) ∼ 2n/t∞.

Next, for each city construct a north-south (N-S) and an east-west (E-W) road through the
city and across the square containing the city. These access roads have total length 2tn.

We now study the network N 1
n thus constructed. We have already seen that

n−1 len
(
N 1

n

)
−→ 2

(
t∞ + 1

t∞

)
(5·4)

so we need to bound the stretch. Note that in a right angle triangle with side-lengths a, b and
c =

√
a2 + b2 we have

a + b
c

"
√

2.

Thus to show that a city-pair (i, j) has r(i, j)/d(i, j) "
√

2 it is enough to show that
(supposing w.l.o.g. that city j is to the south-east of city i) there is a route from i to j using
only southward and eastward roads. But, consulting Figure 2, this is clearly true in the three
cases.

(i) the two cities are in the same square (as a and b);
(ii) the two cities are in different rows and different columns (as a and c);

(iii) the two cities are in adjacent squares (as a and d);
So it remains to consider the final case;

(iv) the two cities are in squares in the same column (say) separated by some number
k ! 1 of squares.

The remainder of the argument rests upon being able to recognise, within case (iv), which
city positions (v, w) maximise the ratio r(v, w)/d(v, w). In the context of the square grid,
these “worst situations” are intuitively clear, and we will state them without proof. It turns
out (see Figure 4, left-hand diagram) that the worst situation in case (iv) is where k = 1,
this intervening square contains no cities, and the two cities are (arbitrarily close to) the
centers of the north and the south edges of the intervening square (as e and f ). In this
situation r(v, w)/d(v, w) = 2, so this is an upper bound for case (iv). Thus the networks
N 1

n have stretch(N 1
n) " 2. Consulting (5·4), we can choose t∞ = 1 so that len(N 1

n) ∼ 4n,
establishing (5·1).

Now consider the networks N 2
n (Figure 3, center diagram) obtained from N 1

n (left dia-
gram) by adding, for each square, the N-S and the E-W interior roads across the square
through the center of the square. Now the case (iv) worst situation is where (as g and h in
center diagram) the two cities are arbitrarily close to a quarter of the way along the north and
the south edges of the intervening square. In this situation r(g, h)/d(g, h) = 3/2, so this is
an upper bound for case (iv). That is, stretch(N 2

n) " 3/2. The total extra network length is
2n/t , so n−1 len(N 2

n) → 2(t∞ + 2/t∞). Choosing t∞ =
√

2 gives n−1 len(N 2
n) → 4

√
2 and

establishes (5·2).
Finally consider the networks N 3

n obtained from N 1
n by adding, for each square, two N-S

and two E-W interior roads partitioning the square into nine equal subsquares. Here the case
(iv) worst situation is where (as e and f in Figure 3, right-hand diagram) the two cities are
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b

a

c

d

Fig. 3. All the grid roads and some of the access roads in N 1
n .

e

f

g

h

e

f

N 1 N 2 N 3

Fig. 4. Networks with grid roads and interior roads, and the positions maximising r(v,w)/d(v,w). The
access roads in Fig. 2 are present but not shown; they are not helpful for these extremal positions.

arbitrarily close to half of the way along the north and the south edges of the intervening
square. In this situation r(e, f )/d(e, f ) = 4/3, so this is an upper bound for case (iv). But
here 4/3 is less than the bound

√
2 from the other cases. So stretch(N 3

n) "
√

2. The total
extra network length (relative to N 1

n) is 4n/t , so n−1 len(N 3
n) → 2(t∞ + 3/t∞). Choosing

t∞ =
√

3 gives n−1 len(N 3
n) → 4

√
3 and establishes (5·3).

5·2. A generalisation

The constructions above were based on horizontal and vertical lines, distance t apart. One
can regard that as the m = 2 case of the line pattern with m lines through the origin at
angles π/m apart, each duplicated by parallel lines distance t apart. Analogous network
constructions based on this line pattern were studied in the Master’s thesis [10], where it
was shown that, for fixed 1 < s < 2, the construction gives an s-spanner with total length
bounded by the quantity !∗(s) below, which is therefore an upper bound on !worst(s).
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v

w

u

v′

Fig. 5. A bad configuration for a θ -graph.

THEOREM 5·2. For 1 < s < 2 set

φs = π

2
− sin −1

(
1
s

)

!∗(s) =
2⌈ π

φs
⌉
√

(1 + ⌈ 1
s−1⌉) tan φs

sin φs
.

Then !worst(s) " !∗(s).

In particular, as s ↓ 1 we have φs ∼ √
2(s − 1) and then !∗(s) ∼ 21/4π(s − 1)−5/4, so

!worst(s) = O((s − 1)−5/4) as s ↓ 1. (5·5)

We will not repeat the proof of Theorem 5·2 here.

6. Upper bounds by putting a road in every cone

We first show (Proposition 6·1) that one can achieve a given stretch s > 1 by insisting
that the network has the property of containing roads from each city within each cone of
appropriate base angle θs . In Section 6·2 we show how, in the random model, it is easy to
construct networks with the desired property whose expected length can be calculated; this
leads to bounds on ! ave(s), stated in Proposition 6·4. This idea is quite similar to the notions
of θ-graph from Section 4 and of Yao graph [17]. But by using Steiner networks instead of
graph networks we obtain in Proposition 6·4 a bound which (for small s − 1, at any rate)
improves the bound (4·3) derived from θ-graphs.

To spotlight the essential difference between graph networks and Steiner networks here,
Figure 5 (copied from [5, fig. 5]) illustrates a worst-case configuration for stretch of θ-
graphs: a route from w to u must go via v or v′. In our construction, there would be a line
from w which meets the line (v, u) somewhere near u. It seems plausible that one can get
bounds on !worst(s) in a similar way, adapting other methods from [13], and perhaps improve
on Theorem 5·2, but we have not investigated this question carefully.

6·1. The construction

Given a point z in the plane and angles (relative to x-axis, as usual) φ and θ , write
cone(z, φ, φ+θ) for the cone bounded by the two rays from z at angles φ and φ+θ mod 2π .
Fix 0 < θ < π/2. Consider a graph network on a given configuration of cities. Call such a
network θ-dense if for each city z and each φ, if there exists another city in cone(z, φ, φ+θ),
then there exists a road from z to some city in that cone. One can find analogs of Proposition
6·1 below for finite configurations, but it is simpler (and sufficient for our purposes) to work
under the assumption:

for each city z and each φ, the cone(z, φ, φ + θ) contains another city, (6·1)

which of course cannot hold for any finite configuration but does hold for the Poisson process
on the infinite plane.
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PROPOSITION 6·1. Consider a locally finite configuration on the plane satisfying (6·1),

and consider a θ-dense graph network on the configuration. Then its stretch (considered as
a Steiner network) is at most 1/ cos (θ/2).

Proof. Fix two cities, w.l.o.g. at (0, 0) and (x0, 0), where x0 > 0. We first show that the
Proposition can be reduced to the following lemma.

LEMMA 6·2. Under the hypotheses of Proposition 6·1, there exist −θ < φ < 0 and a
route from (0, 0) to (x0, 0) such that the angle of each segment lies in the range [φ, θ + φ].
Each segment of the Lemma 6·2 route can be visualised as one edge of a triangle whose two
other “virtual edges” are at angles φ and θ + φ. So the length of the route is upper bounded
by the length of the path of virtual edges for each such triangle (this is a path in the plane, not
a route in the network). The length of this path is the length of the path in the plane which
goes from (0, 0) to (x0, 0) by using a line of angle φ followed by a line of angle θ + φ. The
length of this path is maximized (as φ varies) when φ = −θ/2 in which case the length
equals x0/ cos (θ/2), establishing the Proposition 6·1 bound on stretch.

Proof of Lemma 6·2. Fix φ ∈ (−θ, 0). Define a lower route from the city (0, 0) to some
point on the line {(x0, y) : −∞ < y < ∞} via the simple procedure: v0 = (0, 0), and
inductively:

from vi , follow the road to vi+1, where vi+1 is chosen so that the angle of the segment
(vi , vi+1) is the lowest possible value in [φ, φ + θ] amongst all roads from vi .

At each step there is some possible choice, by assumption (6·1) and the assumption of
θ-dense. Stop the route where it crosses the line {(x0, y) : −∞ < y < ∞}.

Define the analogous upper route using the maximum possible angle at each step. It is
easy to check that the upper route lies (weakly) above the lower route. In particular, the
routes are stopped at two points (x0, y R

lower) and (x0, y R
upper) where y R

lower " y R
upper. These are

eastward routes, but we can also define the analogous westward routes, which start at city
(x0, 0) and are stopped at points (0, yL

lower) and (0, yL
upper) where yL

lower " yL
upper. The roads in

these routes are constrained to have angles (interpreted in the left-right direction) in the
same interval [φ, φ + θ] as in the eastward routes. Figure 6 (left-hand diagram) illustrates a
typical configuration of upper and lower routes.

To establish the lemma it is enough to show:

one of the eastward routes meets or crosses one of the westward routes at some point,
(6·2)

because then the route from (0, 0) to (x0, 0) (switching between eastward and westward
routes at the meeting point) satisfies the conclusion of the lemma. In Figure 6 (left-hand
diagram) the two upper routes meet, as do the two lower routes. It is east to check that (6·2)
holds for some combination of upper/lower routes except in the case shown in Figure 6
(right-hand diagram) where y R

upper < 0 < yL
lower or the symmetric case.

The argument so far applies to an arbitrary fixed φ ∈ (−θ, 0); now we exploit our freedom
to choose φ. Rewrite yL

lower as yL
lower(φ) and rewrite y R

upper as y R
upper(φ). By the argument above we

are working in the case:

there exists φ0 ∈ (−θ, 0) such that y R
upper(φ(0)) < 0 < yL

lower(φ(0)).
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yR
upper

yR
lower

(x0,0( )0, 0)

yL
upper

yL
lower

(x0,0( )0, 0)

yR
upper

yR
lower

yL
upper

yL
lower

Fig. 6. Eastward and westward routes.

a

b

(x0,0( )0, 0)

yR
lower(φ

∗ + ε)

yR
lower(φ

∗)

Fig. 7. The eastward lower route changes as φ increases past the value φ∗ which is the smallest angle
made by an edge (here ab) in the route.

Consider the eastward lower route for a given φ. The route has some lowest angle, say
φ̂ ! φ. As φ increases, the route does not change (and so y R

upper(·) does not change) until φ

reaches φ̂, after which stage y R
upper(·) may change but can only increase (see Figure 7).

By considering φ arbitrarily close to 0, either there is a road from (0, 0) to (x0, 0) (in
which case the result is trivial) or else y R

upper(φ) > 0. It follows that there exists some φ∗ ∈
[φ0, 0) such that y R

upper(φ
∗) " 0 but y R

upper(φ
∗ + ε) ! 0 for all sufficiently small ε > 0 (see

Figure 7). Now consider the two eastward lower routes for φ∗ and for φ∗ + ε. The westward
upper route for φ∗ must meet one of those eastward routes, so the conclusion of the lemma
holds for φ∗.

6·2. An upper bound on !ave(s)

As in Section 2·1 we work with the Poisson process of cities on the infinite plane. There
are several ways one might try to use Proposition 6·1; we will just treat one of the simplest.
Fix k ! 2. For 0 " i " k − 1 define a network N i by:

for each city z, create a road as a line segment from z to its closest neighbour city
in cone(z, iπ/k, (i + 1)π/k), and another road from z to its closest neighbour city in
cone(z, π + iπ/k, π + (i + 1)π/k).

Network N i has a certain normalized length (mean length per unit area) Lk , which by
rotational symmetry of the Poisson point process does not depend on i . A calculation below
will show

LEMMA 6·3.

Lk =
√

2k − 1
4
π1/2

∫ π/k

0

[
π

k
− cos ω sin ω + sin 2 ω

tan π/k

]−3/2

dω. (6·3)

Construct a network N as the union of N i over 0 " i " k − 1. Its normalized length
equals kLk . And it is clearly θ-dense for θ = 2π/k, so Proposition 6·1 bounds its stretch by
1/ cos (π/k). In other words, using (2·7):

PROPOSITION 6·4. For each k ! 2, !ave(1/cos (π/k)) " kLk.
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In particular, (6·3) shows that kLk " 21/2k3/2, whereas 1/cos (π/k) − 1 ∼ π2/2k2 as k →
∞, implying

COROLLARY 6·5. !ave(s) " (2−1/4π3/2 + o(1))(s − 1)−3/4 as s ↓ 1.

Proof of Lemma 6·3. Write 0 for the origin. Consider a position measured in polar
coordinates as (r, ω) with 0 < ω < π/k. So (r, ω) ∈ cone(0, 0, π/k) and 0 ∈
cone((r, ω), π, π + π/k). Suppose there are cities at 0 and at (r, ω), with other cities at
the points of a Poisson process. Define:

p(r, ω) = P((r, ω) is nearest city to 0 in cone(0, 0, π/k))

p1(r, ω) = P((r, ω) is nearest city to 0 in cone(0, 0, π/k)

and 0 is nearest city to (r, ω) in cone((r, ω), π, π + π/k)).

We assert

Lk =
∫ ∞

0

∫ π/k

0
r [2p(r, ω) − p1(r, ω)] dω r dr. (6·4)

To argue this, first consider only roads (vL, vR), written so that the x-coordinate of vL is less
than the x-coordinate of xR , and for which each city is the closest neighbour of the other city
in the relevant cone. Given such cities at vL = 0, vR = (r, ω) the probability of such a road
is p1(r, ω) and the contribution to mean network length is r p1(r, ω). Because the density of
possible positions of (vL, vR) has intensity 1 on the region where vR ∈ cone(vL, 0, π/k),
the contribution to normalised network length will be

∫ ∞

0

∫ π/k

0
r [p1(r, ω)] dω r dr.

If instead we consider only roads (vL, vR) where vR is the nearest neighbour to vL in its cone
but not conversely, then similarly the normalised length of such roads is

∫ ∞

0

∫ π/k

0
r [p(r, ω) − p1(r, ω)] dω r dr.

By symmetry, the opposite possibility – that vL is the nearest neighbour to vR in its cone
but not conversely – makes the same contribution. Summing these three contributions gives
(6·4).

To write formulas for p(·) and p1(·), recall that the probability that the Poisson process
assigns no cities to a region A equals exp (−area(A)). For p(·), the relevant region is the
finite cone 0C E in Figure 8, which has area πr 2/2k, and so

p(r, ω) = exp
(

−πr 2

2k

)
. (6·5)

For p1(·), the relevant region is the entire region 0ABC DE FG in Figure 8. The area of this
region can be represented as

area of cone 0C E , plus area of cone DG A, minus area of parallelogram 0B DF .

The parallelogram has height r sin ω and base r cos ω − r(sin ω/tan π/k) and hence has
area

r 2

(
cos ω − sin ω

tan π/k

)
sin ω.
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A B

C

D = (r, ω)

EF

G

0
π/k

Fig. 8. Regions of integration in the proof of Lemma 6·3.

So the area of 0ABC DE FG equals

πr 2

2k
+ πr 2

2k
− r 2

(
cos ω − sin ω

tan π/k

)
sin ω

and finally

p1(r, ω) = exp
(

−r 2

[
π

k
− cos ω sin ω + sin 2 ω

tan π/k

])
. (6·6)

Returning to formula (6·4), because
∫ ∞

0 r 2 exp (−ar 2) dr = (1/4)π1/2a−3/2, we can integ-
rate out r to get

Lk = 1
4
π1/2

∫ π/k

0

(

2
( π

2k

)−3/2
−

[
π

k
− cos ω sin ω + sin 2 ω

tan π/k

]−3/2)

dω

=
√

2k − 1
4
π1/2

∫ π/k

0

[
π

k
− cos ω sin ω + sin 2 ω

tan π/k

]−3/2

dω (6·7)

which is formula (6·3).

7. Lower bounds in long networks; average-case analysis

Turning to lower bounds, for ! ave we start by giving a reformulation (7·2) of the interpret-
ation (2·7) in terms of a Poisson point process on the infinite plane. In (2·7) we required the
distribution µ of the network to be translation invariant; by applying a random rotation /

(uniform on (0, 2π)) we may suppose also that µ is isotropic. Recall L(µ) and S(µ) denote
normalised length and stretch. Consider the number

intersect(µ) = mean number of intersections of network edges with

the x-axis per unit length.

There is a general formula (see [16, chapter 8] for the relevant theory) that for any isotropic
translation invariant network,

L(µ) = π

2
× intersect(µ). (7·1)
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So we can rewrite (2·7) as

! ave(s) = π

2
× inf {intersect(µ); µ is isotropic translation invariant, S(µ) " s}. (7·2)

We will use this formulation to obtain an order of magnitude lower bound for small s. This
general method was used in somewhat different contexts in [1, 2].

PROPOSITION 7·1. !ave(s) = 2((s − 1)−3/8) as s ↓ 1.

Proof. Given h > 0 consider the rate-1 Poisson point process restricted to the infinite
strip (−∞, ∞) × [−h, h]. Consider pairs of such Poisson points, where one point is above
the x-axis and the other is below the x-axis, and where the line segment between the two
points crosses the x-axis at an angle greater that 45◦. That is, consider pairs at positions
(x1, y1) and (x2, y2) related by

−h < min (y1, y2) < 0 < max (y1, y2) < h; |x2 − x1| < |y2 − y1|. (7·3)

Call such a pair friends. For each friends pair, a hypothetical straight line segment between
them crosses the x-axis at some position χ , and the set of all such “virtual crossing positions”
is a stationary point process on the line (−∞, ∞). For L > 0 write

N (h, L) = number of virtual crossing positions in [0, L].
Now consider a network with stretch " 1 + σ over the rate-1 Poisson point process

on the plane. (So here σ > 0; this notational shift simplifies formula). The route between
two friends must cross the x-axis at some “route-crossing position” χ ′; write δ(h, σ ) for
the maximum possible value of the distance between the route-crossing position χ ′ and the
virtual crossing position χ . It is geometrically clear that this maximum is attained when the
friends are at positions (−h, −h) and (h, h), and therefore

δ(h, σ ) = hg−1(σ ), (7·4)

where g−1(·) is the inverse function of

g(δ) =
√

1 + (1 + δ)2 +
√

1 + (1 − δ)2

2
√

2
− 1

for which we calculate

g(δ) ∼ δ2/8 as δ ↓ 0. (7·5)

Now choose L > 0 and partition the x-axis into blocks of length L +2δ(h, σ ), each block
consisting of a middle interval of length L surrounded by two intervals of length δ(h, σ ). If
the middle interval contains the virtual crossing position for a pair of friends in the Poisson
process, then the block contains the route-crossing position, and it follows that the rate of
such route-crossing positions is at least P(N (h, L) ! 1)/(L + 2δ(h, σ )). We may choose h
and L arbitrarily, so appealing to (7·2) we have

! ave(1 + σ ) ! π

2
sup
h,L

P(N (h, L) ! 1)

L + 2δ(h, σ )
. (7·6)

We can lower bound the numerator via the second moment inequality

P(N (h, L) ! 1) ! (EN (h, L))2

EN 2(h, L)
. (7·7)
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It is easy to calculate EN (h, L), as follows. For a point (0, −y0) consider the set of possible
positions of a friend (x, y) with x > 0. The constraints are

0 < y < h, 0 < x < y0 + y,

and the area of this region equals hy0 + h2/2. It follows easily that the rate of the stationary
process of virtual crossing positions equals

2
∫ h

0
(hy0 + h2/2) dy0 = 2h3.

The initial factor 2 arises due to the symmetric possibility (0, +y0) for the left point. So we
have shown

EN (h, L) = 2h3L .

We will be concerned with the limit regime

h −→ ∞, L −→ 0, 2h3 L −→ λ (7·8)

for arbitrary 0 < λ < ∞. Intuitively we expect that the distribution of N (h, L) converges
to Poisson(λ) in this regime, but for our purposes it will suffice to prove the second moment
result (consistent with the Poisson limit)

EN 2(h, L) −→ λ2 + λ in the limit regime (7·8). (7·9)

Deferring the proof of (7·9), Proposition 7·1 can be deduced from the ingredients above. Set

h = h(σ ) = σ−1/8, L = L(σ ) = σ 3/8

and consider orders of magnitude as s ↓ 0. The numerator in (7·6) is 2(1) by (7·7) and
(7·9). And by (7·4) and (7·5) we see that δ(h, σ ) is order hσ 1/2 = σ 3/8, so the denominator
in (7·6) is order σ 3/8, establishing the Proposition.

Proof of (7·9). The formula for the second moment is given as (7·10) below. The term
EN (h, L) arises from individual crossings, and the term (EN (h, L))2 is the contribution
from pairs of virtual crossing positions in [0, L] for which the 4 end-points are all distinct.
The integral term is the contribution from the case of two virtual crossing positions in [0, L]
with an end-point in common, say at (x0, −y0) where y0 > 0. This term involves the region
A(x0, −y0) containing the possible positions of a friend of (x0, −y0) for which the virtual
crossing position is in [0, L]. Figure 9 shows this region, for a particular value of (x0, −y0).
The integrand (area A(x0, −y0))

2/2 is the mean (conditioned on a point at (x0, −y0)) number
of pairs of friends for which both virtual crossing positions (from friend to (x0, −y0)) are in
[0, L]. This leads to the formula

EN 2(h, L) = EN (h, L) + (EN (h, L))2 + 2
∫ ∫

B

1
2
(area A(x0, −y0))

2 dx0dy0. (7·10)

We integrate over the region B of values for (x0, −y0) which are consistent with a virtual
crossing position in [0, L]. This region B can be decomposed as the union of four regions
B0, Bℓ

1, Br
1, B2 as shown in Figure 10, wherein we are assuming h > L/2, which is true in

the limit regime.

For (x0, −y0) ∈ Br
1 , the case shown in Figure 9, the region A(x0, −y0) is the trapezoid

bounded by the line y = 0, the line y = h, the line of slope −1 through (x0, −y0) and the
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0 L = 10

(x0,−y0) = (8,−5)

A(x0,−y0)

y = 0

y = h

Fig. 9. The region A(x0, −y0) for the point •.

0 L

B0

Br
1Bℓ

1

B2

y = 0

y = −h

Fig. 10. The decomposition of the region of points consistent with a virtual crossing position in [0, L].
The point • is the same as in Fig. 9.

line through (x0, −y0) and (L , 0). A brief calculation shows

area A(x0, −y0) = 1
2

(
1 + L − x0

y0

) (
(h + y0)

2 − y2
0

)
for (x0, −y0) ∈ Br

1 .

Easier calculations show:

area A(x0, −y0) = (h + y0)
2 − y2

0 for (x0, −y0) ∈ B0;

area A(x0, −y0) = L
2y0

(
(h + y0)

2 − y2
0

)
for (x0, −y0) ∈ B2.

The case Bℓ
1 is symmetric with Br

1 . We could calculate EN 2(h, L) exactly using (7·10), but
we only need an upper bound. The formulas above show that, as x0 varies for fixed y0, the
quantity “area A(x0, −y0)” takes its maximum value on B0 or B2, and so

area A(x0, −y0) "
(
(h + y0)

2 − y2
0

)
min

(
1,

L
2y0

)
.

So the integral term in (7·10) is bounded by
∫ h

0
(L + 2y0)

((
(h + y0)

2 − y2
0

)
min

(
1,

L
2y0

))2

dy0.

The integral over 0 < y0 < L/2 works out as 3h4 L2/4 + 5h3L3/6 + 7h2 L4/24.
The integral over L/2 < y0 < h works out as 7h4 L2/2 − h3L3/4 − 3h2L4/4 +
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Fig. 11. The “alternate diagonals” network.

(L2h4/2 + L3h3) log (2h/L). So in the limit regime (7·8), the leading term is the term
L2h4/2 log (2h/L). But this term → 0, establishing (7·9).

8. Lower bounds on !worst based on local optimality

One can get lower bounds on !worst by choosing any configuration of cities and lower
bounding the network length required for a network on that particular configuration to have
a given stretch. There are heuristic reasons (and the Steiner constant results mentioned at the
start of Section 3) to suspect that some kinds of regular configurations (rather than typical
random configurations) are close to worst-case, so it is not unreasonable to use regular con-
figurations to obtain lower bounds on worst-case behavior. This allows us to work directly
on the infinite plane, because the regular configurations we use have known average number
of points per unit area.

8·1. A bound from the square grid

Consider, for instance, the “square grid” configuration of cities at the points
{(i, j); −∞ < i, j < ∞}. The usual “square lattice” network (roads between city pairs
(v, w) at distance 1) has normalised length = 2 and stretch =

√
2. It is natural to conjecture

this network is optimal amongst Steiner networks, in the following sense.

CONJECTURE 8·1. If a Steiner network on the square grid configuration has stretch at
most

√
2 then its normalised length is at least 2.

If true, this would imply !worst(
√

2) ! 2. Similarly, any result of the type

A particular network N 0 on a particular configuration z is optimal, in the sense that
any other network N with stretch(N ) " stretch(N 0) = s0 has normalised length
L(N ) ! L(N 0) = ℓ0

would imply !worst(s0) ! ℓ0. However, we are unable to prove any result of this type. Instead,
we can only prove weaker results of the following type. Consider the “alternate diagonals”
network on the square grid, shown in Figure 11.

By inspection, this network has normalized length =
√

2 and satisfies:

route-length from v to w is "
√

2 for each city pair (v, w) at Euclidean distance 1. (8·1)

We can prove this network is optimal with respect to those properties.

PROPOSITION 8·2. Any network on the square grid configuration satisfying (8·1) has
normalised length !

√
2.
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COROLLARY 8·3. !worst(
√

2) !
√

2.

We call Proposition 8·2 a “local optimality” result because (8·1) is a “local” analog of stretch.

Proof of Proposition 8·2. Take some network connecting the cities in the square grid con-
figuration. Consider a route through cities . . . → (−2, 0) → (−1, 0) → (0, 0) → (1, 0) →
(2, 0) → . . . using minimum-length routes between each successive pair of cities. As we
traverse this route, we might backtrack, meaning that the x-coordinate of position might
decrease, but discarding any backtracking segments leaves a (maybe disconnected) non-
backtracking route ((x, y(x)), −∞ < x < ∞). Call this “horizontal” route H0. Define the
measure UH0 on H0 as the measure induced by Lebesgue measure on x ; that is, a line seg-
ment in H0 from (x1, y(x1)) to (x2, y(x2)) has measure x2 −x1. Repeat for routes Hj through
· · · → (−2, j) → (−1, j) → (0, j) → (1, j) → (2, j) → · · ·. The key observation is that
assumption (8·1) implies that routes Hj are disjoint as j varies, except that routes Hj and
Hj+1 can meet at isolated points of the form (i + 1/2, j + 1/2), as happens in the “alternate
diagonals” network.

Let µH = ∑∞
j=−∞ µHj . It is clear that µH has “density 1”, in the sense that for increasing

squares A
µH (A)

area(A)
−→ 1 as area(A) −→ ∞. (8·2)

Repeat the construction with vertical routes Vi through · · · → (i, −2) → (i, −1) →
(i, 0) → (i, 1) → (i, 2) → · · · to define a measure µV which also satisfies (8·2).

Now write 5 for length measure on the edges of the network. Consider a point (x, y) on
a road segment at angle θ . By the disjointness property, this point is in at most one Hj , in
which case the density dµH/d5 at the point equals | cos θ |, and in at most one Vi , in which
case the density dµV /d5 at the point equals | sin θ |. It follows that

d(µH + µV )

d5
(x, y) " | cos θ | + | sin θ |. (8·3)

But always | cos θ | + | sin θ | "
√

2, so for any region A

µH (A) + µV (A) "
√

2 5(A)

and then (8·2) implies

5(A) ! (
√

2 − o(1)) area(A) as area(A) −→ ∞.

That is, normalised network length is at least
√

2.

8·2. Another bound from hexagons

Here we show how the argument scheme above can be adapted to the hexagonal config-
uration of cities (Figure 13).

PROPOSITION 8·4. Let N be a network on the hexagonal configuration such that

r(v, w)

d(v, w)
"

√
3 for all (Euclidean) nearest-neighbour pairs (v, w). (8·4)

Then its normalised length is at least 2−133/4.

COROLLARY 8·5. !worst(
√

3) ! 2−133/4 = 1.14.....



24 DAVID ALDOUS AND TAMAR LANDO

A

B C

D

Z

Fig. 12. An optimality property.

a b

c d

e f

g h

i j

k l

angle = π/6

angle π/2
Fig. 13. The hexagonal configuration. Points abcde f are on a “angle = π/6 staircase” parallel (in an

symptotic sense) to the “angle = π/6 line”.

Proof of Proposition 8·4. Consider the hexagonal configuration with ℓ = distance
between nearest neighbors. The density of cities (number per unit area) is

ρ(ℓ) = 4 · 3−3/2 ℓ−2. (8·5)

Figure 12 shows four adjacent cities ABC D in one hexagon. In that figure we see the route
lengths satisfy

len(AZ B)

d(A, B)
= len(DZC)

d(D, C)
=

√
3

and it is easy to check the optimality property:

if π1 and π2 are paths in the plane from A to B and from C to D respectively, and if
max ( len(π1)/d(A, B), len(π2)/d(D, C)) "

√
3, then the paths cannot meet except pos-

sibly at Z .

Now consider the minimum-length route in N through an “angle π/6 staircase” like
abcde f . . . in Figure 13. By assumption (8·4) and the optimality property above, this route
does not meet the corresponding route through the next staircase ghi jkl . . . except at isol-
ated points. As in the previous section, each path segment on such a route is at some angle
θ to the “angle = π/6” line; put a measure on the non-backtracking parts of the route with
density cos θ w.r.t. length measure 5 on the segment. Repeating for each angle = π/6
staircase gives a measure µπ/6 on network edges, which has the property (for squares A)

µπ/6(A)

λπ/6(A)
−→ 1 as area(A) −→ ∞
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a b c

d

e

h

i

k l

Fig. 14. The triangular configuration.

where λπ/6 is length measure on the parallel “angle = π/6” straight lines through the stair-
cases. The orthogonal distance between such lines equals 3ℓ/2 (this is easiest to see with the
angle = π/2 lines, where the distance is the average of d(c, d) and d(b, k)), so

λπ/6(A)

area(A)
−→ 2

3ℓ
as area(A) −→ ∞

and thus
µπ/6(A)

area(A)
−→ 2

3ℓ
as area(A) −→ ∞. (8·6)

Repeat the construction with staircases like cdkl · · · with angle = −π/6 to get a measure
µ−π/6 on the associated routes; repeat again with staircases like jkde · · · with angle = −π/2
to get a measure µπ/2. These measures also satisfy (8·6). Note each adjacent pair of cities is
in two staircases, of different angles. The analog of (8·3) is that, at a point (x, y) on a road
segment at angle θ ,

d(µπ/2 + µπ/6 + µ−π/6)

d5
(x, y) " | cos (θ − π/2)| + | cos (θ − π/6)| + | cos (θ + π/6)|

because the point is in at most one route for each of the three angles. But

| cos (θ − π/2)| + | cos (θ − π/6)| + | cos (θ + π/6)| " 2

and so

(µπ/2 + µπ/6 + µ−π/6)(A) " 25(A).

Use (8·6) to see

5(A) ! (ℓ−1 − o(1)) area(A) as area(A) −→ ∞. (8·7)

Our normalisation convention is that cities have density 1, that is ρ(ℓ) = 1 at (8·5), so
ℓ = 2 · 3−3/4 and the lower bound in (8·7) becomes ℓ−1 = 2−133/4.

8·3. The triangular lattice

We sketch the minor modification which uses the triangular lattice (Figure 14).

PROPOSITION 8·6. Let N be a network on the triangular configuration such that

r(v, w)

d(v, w)
" 1

2
+

√
3
4

for all (Euclidean) nearest-neighbor pairs (v, w). (8·8)
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A

B C

D

Z

Fig. 15. An optimality property.

Then its normalised length is at least 2−1/233/4.

COROLLARY 8·7. !worst
(√

3/4 + 1/2
)

! 2−1/233/4 = 1.61.....

Outline proof of Proposition 8·6. We indicate changes in the previous argument. The
density of cities is now

ρ(ℓ) = 2 · 3−1/2 ℓ−2. (8·9)

Figure 15 shows four adjacent cities ABC D in the triangular configuration. In that figure
we see

len(AZ D)

d(A, D)
= len(B Z D)

d(B.C)
= 1

2
+

√
3
4

and it is easy to check the optimality property:

if π1 and π2 are paths in the plane from A to D and from C to B respectively, and if
max ( len(π1)/d(A, D), len(π2)/d(B, C)) " 1/2+√

3/4, then the paths cannot meet except
possibly at Z .

As before, there is a measure µ0 on routes through cities like abckl on “angle = 0” routes,
and measures µπ/3 and µ−π/3 associated with angles π3 (like hicde) and −π/3. These satisfy

d(µ0 + µπ/3 + µ−π/3)

d5
(x, y) " | cos (θ)| + | cos (θ − π/3)| + | cos (θ + π/3)| " 2.

The orthogonal distance between parallel lines is ℓ
√

3/4, and repeating the argument for
(8·7) leads to

5(A) ! (31/2ℓ−1 − o(1)) area(A) as area(A) −→ ∞.

Taking ρ(ℓ) = 1 in (8·9), the lower bound on normalized length is 31/2ℓ−1 = 2−1/233/4.

8·4. Other configurations

One could seek to repeat the arguments above with less symmetric configurations, but the
calculations become messier, and we have not pursued details.
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