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The compulsive gambler process
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Abstract

In the compulsive gambler process there is a finite set of agents who meet pairwise at
random times (i and j meet at times of a rate-νij Poisson process) and, upon meeting,
play an instantaneous fair game in which one wins the other’s money. We introduce
this process and describe some of its basic properties. Some properties are rather
obvious (martingale structure; comparison with Kingman coalescent) while others are
more subtle (an “exchangeable over the money elements" property, and a construction
reminiscent of the Donnelly-Kurtz look-down construction). Several directions for
possible future research are described. One – where agents meet neighbors in a
sparse graph – is studied here, and another – a continuous-space extension called the
metric coalescent – is studied in Lanoue (2014).
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1 Introduction

The style of models known to probabilists as Interacting Particle Systems (IPS) [13]
have found use in many fields across the mathematical and social sciences. Often the
underlying conceptual picture is of a social network, where individual “agents" meet
pairwise and update their “state" (opinion, activity etc) in a way depending on their
previous states. This picture motivates a precise general setup we call Finite Markov
Information Exchange (FMIE) processes [1]. Consider a set Agents of n agents and a
nonnegative array (νij), indexed by unordered pairs {i, j}, which is irreducible (i.e. the
graph of edges corresponding to strictly positive entries is connected). Assume

• Each unordered pair i, j of agents with νij > 0 meets at the times of a rate-νij
Poisson process, independent for different pairs.

Call this collection of Poisson processes the meeting process; the array (νij) specifies the
meeting model. A specific FMIE is a specific rule (deterministic or random) for updating
states, so this encompasses most of the familiar IPS models such as the voter model and
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The compulsive gambler process

contact process. But our emphasis differs from the classical emphasis of IPS in several
ways; the states are typically numerical rather than categorical, the number n of agents
is finite (though we consider n → ∞ asymptotics) and we focus on obtaining rough
results for general meeting rates rather than sharp results for very specific meeting
rates.

One specific FMIE model is the averaging process [2] in which agents initially have
different amounts of money; whenever two agents meet, they share their combined
money equally. In this paper we introduce and study a conceptually opposite model, the
compulsive gambler process. In the “standard" form of the model, agents each start
with one unit money. When two agents meet, if they each have non-zero money (say
amounts a and b) then they instantly play a fair game in which one agent acquires the
combined amount a+ b (so with probabilities a/(a+ b) and b/(a+ b)) respectively). In
the “normalized" form of the model the initial fortunes are non-negative real numbers,
and we scale so that the total money equals 1.

This is an invented model for which we do not claim realism1, but we do claim some
mathematical interest as an intermediary between IPS theory and coalescent theory.

1.1 Elementary observations

First consider a fixed meeting model on n agents. Write Z(t) = (Zi(t), i ∈ Agents)

for the time-t configuration of the standard compulsive gambler process; agent i has
Zi(t) units of money. The following assertions are true, and mostly obvious. We will give
proofs, where necessary, and some crude quantifications in section 2 (Lemmas 2.2 and
2.8).
(i) Z(t) is a finite-state continuous-time Markov chain which, at some a.s. finite random
time T , reaches some absorbing configuration Z∗ in which there is some random non-
empty set T of agents who are solvent, i.e. have non-zero money.
(ii) If νij > 0 for all j 6= i then |T | = 1 a.s., and we call T the fixation time. Furthermore,
because each (Zi(t), 0 ≤ t <∞) is a martingale we have P(T = {i}) = P(Z∗i = n) = 1/n

for each agent i.
(iii) If νij = 0 for some j 6= i then P(|T | = 1) is strictly between 0 and 1.

These facts suggest more quantitative questions to ask, in the setting of a sequence
(ν

(n)
ij ) of meeting models with n→∞. How does T (n) behave? In case (iii), how do |T (n)|

and the distribution P(Z∗i ∈ ·|i ∈ T (n)) of a typical “final fortune" behave? In either case
we can ask how the process of the number of solvent agents

N(t) := |{i : Zi(t) > 0}|

behaves over 0 ≤ t ≤ T . If the meeting model has some spatial structure then what can
we say about the spatial structure of the set of solvent agents at time t?

1.2 Techniques and results

It turns out that a surprising variety of techniques can be exploited in the study of
the compulsive gambler process. Amongst these techniques, to be described in section
2, the most natural are martingale results (Lemma 2.1) and elementary bounds obtained
by comparison with the Kingman coalescent (e.g. Lemma 2.2). Less obvious is Lemma
2.4: instead of making the random choices of game-winners at the meeting times, we
can insert initial randomness and then have a deterministic rule for game-winners.
In the “standard" case that construction has a symmetry property (Lemma 2.6): the

1Any perceived analogy between averaging/compulsive gambler models and socialism/capitalism is entirely
the reader’s responsibility.
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The compulsive gambler process

deterministic rule is based on a uniformly random labeling of initial currency notes
as 1, . . . , n, and conditional on the configuration of fortunes at time t, the allocation of
note-labels to agents is uniformly random. This last method parallels methods used in
the study of exchangeable coalescents [4, 5, 6], though the precise relation is not clear
to us and we have not explicitly used results from that theory.

Our main purpose is to lay the groundwork for future research by describing explicitly
these techniques (section 2). In this paper we pursue analysis in only one direction, by
studying the setting where the meeting model is that agents meet neighbors in a sparse
graph (section 3). We give bounds on the density of the ultimately solvent agents on
regular graphs, and then study the case of trees. There is a general recursion on finite
trees, and that methodology extends to certain infinite trees (regular and Galton-Watson)
on which some expect calculations and bounds are obtained. In particular one can
calculate the asymptotic density (3.14) of solvent agents under the sparse Erdős-Rényi
meeting model, a result which can alternatively be seen in terms of the short-time
behavior of the Kingman coalescent (section 3.3).

Several other, perhaps more interesting, directions of current or future research are
outlined in the final section 4,

2 Four basic techniques

We now abbreviate “compulsive gambler" to CG. Fix a meeting model (νij) on a set
Agents of n agents. In developing these basic techniques we will generally work in the
normalized setting (see remark below).

Write X(t) = (Xi(t), i ∈ Agents) for the time-t configuration of the normalized CG
process; agent i has Xi(t) units of money, and the state space is {x = (xi) : xi ≥
0 ∀i,

∑
i xi = 1}. The CG process is specified by its transition rates. For each ordered

distinct pair (j, k) with min(xj , xk) > 0,

x→ x(j,k) at rate νjk
xj

xj+xk
; where (2.1)

x
(j,k)
i = xi, i 6= j, k; x

(j,k)
j = xj + xk; x

(j,k)
k = 0.

There is an initial state x(0) = (xi(0)), which we will sometimes need to assume has full
support, that is

xi(0) > 0 ∀i.

We remark that, given a result for the normalized CG process X(t), by taking initial
state xi(0) = 1/n∀i and rescaling we can deduce the analogous result for the standard
CG process Z(t) with Zi(0) = 1∀i. In fact we can usually formulate results so that they
remain true with Z substituted for X.

Write
N(t) := |{i : Xi(t) > 0}|

for the number of solvent agents at time t. Note that when νij > 0 ∀j 6= i it is clear there
is a finite fixation time

T = min{t : N(t) = 1} <∞ a.s.

2.1 Martingale properties

We first record some notation for the elementary stochastic calculus of integrable
bounded variation processes. Such a process (Yt) has a Doob-Meyer decomposition
Yt = Mt +At, where (Mt) is a martingale and (At) is predictable, which can be written
in differential notation as dYt = dMt + dAt. To avoid introducing new symbols, we write
E(dYt|Ft) for dAt.
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Lemma 2.1. For the normalized CG process (X(t)), for any meeting rates:
(i) (Xi(t), 0 ≤ t <∞) is a martingale.
(ii) For j 6= i, (Xi(t)Xj(t), 0 ≤ t <∞) is a supermartingale.
(iii) For f : Agents→ R write Mf (t) =

∑
i f(i)Xi(t). Given a metric d on Agents write

Lf := max
j 6=i

|f(j)−f(i)|
d(i,j) , ν∗ := max

j 6=i
νijd

2(i, j).

Then (Mf (t), 0 ≤ t <∞) is a martingale, and

EM2
f (t)−M2

f (0) ≤ 1
2ν
∗L2

f t. (2.2)

(iv) Let ψ : Agents×Agents→ [0,∞) be such that ψ(i, j) ≡ ψ(j, i) and ψ(i, i) ≡ 0. Define

Ψ(x) =
∑
{i,j}

xixjψ(i, j), Ψν(x) =
∑
{i,j}

νijxixjψ(i, j).

Then the process

Ψ(X(t)) +

∫ t

0

Ψν(X(s)) ds

is a martingale.

Proof. (i) and (ii) are straightforward. Inequality (iii) can be deduced from the explicit
formula for EM2

f (t) given later in Lemma 2.7, or directly was follows. Mf (·) is a
martingale, and we calculate

E(dM2
f (t)|F(t)) = dt

∑
{i,j}

νijXi(t)Xj(t)(f(j)− f(i))2,

the sum being over unordered pairs. From (ii) we have EXi(t)Xj(t) ≤ xixj , where
x = (xi) is the initial configuaration, so taking expectation

E(dM2
f (t)) ≤ dt × 1

2

∑
i

∑
j:j 6=i

(ν∗d−2(i, j)× (Lfd(i, j))2 × xixj)

= dt × 1
2ν
∗L2

f

∑
i

∑
j:j 6=i

xixj

≤ dt × 1
2ν
∗L2

f .

This establishes (iii).
For (iv), consider a configuration x and a pair {i, j}. We can write Ψ(x) in the form

Ψ(x) = a+ b(i)xi + b(j)xj + xixjψ(i, j)

where a does not depend on xi or xj , and b(i) =
∑
k 6=i,j xkψ(i, k), b(j) =

∑
k 6=i,j xkψ(j, k).

If i and j meet then Ψ(x) updates to a new value Ψ+(x) as follows:
if i wins (chance xi

xi+xj
) then Ψ+(x) = a+ b(i)(xi + xj)

if j wins (chance xj

xi+xj
) then Ψ+(x) = a+ b(j)(xi + xj).

So, if i and j meet, then the expectation of the increment Ψ+(x)−Ψ(x) equals−xixjψ(i, j).
This implies

E(dΨ(X(t))|F(t)) = −
∑
{i,j}

νijXi(t)Xj(t)ψ(i, j) dt = −Ψν(X(t)) dt

which is assertion (iv).

By scaling Lemma 2.1 applies unchanged to the standard CG process (Z(t)), except
that a scaling factor n2 arises on the right side of (2.2).
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2.2 The Kingman coalescent

In the particular case
νij = 1, j 6= i

of the meeting model, the CG process (assuming the initial state x(0) has full support) is
essentially the well-studied Kingman coalescent [4]. In this case the process (N(t), 0 ≤
t <∞) is the “pure death" Markov chain, started at n, with transition rates qm,m−1 =

(
m
2

)
,

from which it immediately follows that the fixation time

T := min{t : N(t) = 1} (2.3)

is a.s. finite with expectation

ET =

n∑
m=2

1/

(
m

2

)
= 2(1− n−1). (2.4)

Here is a simple application.

Lemma 2.2. Consider the normalized CG process with a meeting model for which
ν∗ := minj 6=i νij > 0, and with arbitrary initial state x(0).
(i) The fixation time T satisfies ET ≤ 2/ν∗;
(ii) P(N(t) > r) ≤ 2

rν∗t
, r ≥ 2;

(iii) EN(t) ≤ C
tν∗
, 0 < t <∞ for some numerical constant C <∞;

(iv) Let L be the agent who has acquired all the money at time T . Then P(L = i) =

xi(0), ∀i ∈ Agents.

Proof. Although the process (N(t)) is typically not Markov, when N(t) = m the condi-
tional intensity of a transition m→ m− 1 is at least ν∗

(
m
2

)
, so (i) follows by comparison

with the Kingman chain result (2.4). Similarly, write T(r) = min{t : N(t) ≤ r} and T King

(r)

for the corresponding quantity for the Kingman chain. Then

P(N(t) > r) = P(T(r) > t)

≤ t−1ET(r)

≤ ν−1∗ t−1ET King

(r) by comparison with the Kingman chain.

And

ET King

(r) =

n∑
m=r+1

1/

(
m

2

)
≤ 2/r.

So (ii) follows by comparison. A similar argument, calculating var(T King

(r) ) and using
Chebyshev’s inequality, establishes (iii). Assertion (iv) follows from the martingale
property (Lemma 2.1(i)) of (Xi(t)), applying the optional sampling theorem at time T .

By comparison with the Kingman chain result (2.4) we also get the lower bound

2(1− n−1) 1
ν∗ ≤ ET (2.5)

for ν∗ := maxj 6=i νij on an n-agent space; this holds for the normalized CG process
whose initial state has full support. But the following result will often be stronger in the
standard case.

Proposition 2.3. For the standard CG process on an n-element space Agents with
ν∗ := minj 6=i νij > 0, the fixation time T satisfies

1

ν∗
≤ 1(

n
2

) ∑
{i,j}

1

νij
≤ ET.
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Proof. Applying Lemma 2.1(iv) with ψ(i, j) := 1(j 6=i)/νij we see that

Ψ(Z(t)) +

∫ t

0

Ψν(Z(s)) ds

is a martingale, for

Ψ(z) =
∑
{i,j}

zizj
νij

, Ψν(z) =
∑
{i,j}

zizj .

By the optional sampling theorem

EΨ(Z(0))− EΨ(Z(T )) = E

∫ T

0

Ψν(Z(s)) ds. (2.6)

But Ψ(Z(0)) =
∑
{i,j}

1
νij

and Ψ(Z(T )) = 0 and∑
{i,j}

zizj = 1
2 (n2 −

∑
i

z2i ) ≤ 1
2 (n2 − n) =

(
n

2

)
.

So (2.6) implies ∑
{i,j}

1

νij
≤
(
n

2

)
ET

which is the inequality 1

(n
2)

∑
{i,j}

1
νij
≤ ET . The leftmost inequality is immediate.

2.3 The augmented process

Given a probability distribution π = (πi) on the set Agents of n agents with each
πi > 0, take independent random variables ηi with Exponential(πi) distributions. Define
a random ordering ≺ on Agents by

i ≺ j if ηi < ηj . (2.7)

This is one of several equivalent definitions of the size-biased random ordering [10]
associated with π. For instance, defining a random bijection F : {1, . . . , n} → Agents by

P(F (1) = i) = πi

P(F (2) = j|F (1) = i) = πj/(1− πi), j 6= i

P(F (3) = k|F (1) = i, F (2) = j) = πk/(1− πi − πj), {i, j, k} distinct

. . .

and so on, then the size-biased random ordering could be defined as

i ≺ j if F−1(i) < F−1(j). (2.8)

We want to consider the normalized CG process with some initial configuration x(0) =

(xi(0)). Take the size-biased random ordering ≺ on Agents associated with the proba-
bility distribution x(0). Conditional on the realization of ≺, we can define a variation of
the CG process in which, when two agents i, j with non-zero money meet, the winner is
always the agent who comes earlier in ≺ (if i ≺ j then i is the winner). In other words,
the transition rates (2.1) become

x→ x(j,k) at rate νjk if min(xj , xk) > 0 and j ≺ k. (2.9)

Call this the augmented process (X(t),≺) with initial state (x(0),≺). Note that the
random order ≺ does not change with time. The notation is justified by the lemma below,
which says that the first component (X(t)) of the augmented process evolves as the
normalized CG process.
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Lemma 2.4. In the augmented process ((X(t),≺), 0 ≤ t <∞) with initial state (x(0),≺),
the component (X(t), 0 ≤ t < ∞) evolves as the normalized CG process with initial
configuration x(0).

Proof. Recall the elementary facts that, for independent Exponential r.v.’s η1, η2 with
rates λ1, λ2,

P(η1 < η2) = λ1

λ1+λ2
(2.10)

the conditional dist. of η1 given η1 < η2 is Exponential(λ1 + λ2). (2.11)

Implement the augmented process using the order ≺ at (2.7) given by independent
Exponential(xi(0)) r.v.’s (ηi, i ∈ Agents). Write F(t) = σ(X(s), 0 ≤ s ≤ t), and note this
does not include the random order ≺. We claim that for each t

conditionally on F(t), the r.v.’s (ηi : i ∈ Agents, Xi(t) > 0) are independent
Exponentials with rates Xi(t).

It is enough to check this remains true inductively over meetings. If agents i and j

meet at t with non-zero fortunes Xi(t−) and Xj(t−), then by the evolution rule for the
augmented process

on the event {ηi < ηj} we have Xi(t) = Xi(t−) +Xj(t−) and Xj(t) = 0

and similarly on the complementary event. By inductive hypothesis ηi and ηj are
independent Exponentials of rates Xi(t−) and Xj(t−); fact (2.11) then says that ηi has
Exponential Xi(t) distribution and the induction goes through.

Having established the claim, consider again what happens when agents i and j

meet at t with non-zero fortunes Xi(t−) and Xj(t−). The probability that the update
is to Xi(t) = Xi(t−) + Xj(t−) and Xj(t) = 0 (and similarly for the complementary
event) is the probability of the event {ηi < ηj}, which by the claim and (2.10) equals
Xi(t−)/(Xi(t−) +Xj(t−)). But this is the dynamics of the CG process.

See [12] for uses of this result in the context of the metric coalescent.

2.4 The token process

For a standard CG process (Z(t)) we can define the augmented process by scaling
from the “uniform" (xi(0) ≡ 1/n) case of the normalized CG process. But there is a
more concrete and informative expansion of this notion, which we will describe here.
First, here is a story which might help visualize what is going on. (In talks we ask
several audience members to each place an actual currency note on the table, so we can
demonstrate the story.) Real-world currency notes have serial numbers; imagine each
agent starting with one note with a random serial number, so that the ranking (smallest
to largest) of the n notes is uniformly random. When two agents with non-zero money
meet, we specify that the agent who wins the game is determined as the agent who
possesses, in their collection at that time, the smallest-ranked note. The winner adds the
loser’s notes to his pile of notes.

In the story, each agent has a set of notes, but what is relevant is not the precise serial
numbers but the relative rankings of each of the n serial numbers. In the formalization
below, (Si(t)) is the set of rankings of all the notes owned by agent i at time t.

Note this story is consistent with the “uniform" case of Lemma 2.4, which is essentially
the context where we record only the relative orders of each agent’s smallest-ranked
note. But in contrast to Lemma 2.4, what we do next is useful only in the “standard"
context.

To formalize the story above, given meeting rates (νij , i, j ∈ Agents) we first take
a uniformly random bijection F : {1, . . . , n} → Agents. Visualize tokens 1, . . . , n being
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randomly dealt to the agents. Define a process S(t) = (Si(t), i ∈ Agents) to have initial
configuration

Si(0) = {F−1(i)}, i ∈ Agents

and transition rates (copying (2.9))

S→ S(j,k) at rate νjk if Sj and Sk non-empty and minSj < minSk (2.12)

where

S
(j,k)
j = Sj ∪ Sk, S(j,k)

k = ∅, S(j,k)
i = Si for i 6= j, k.

So Si(t) is just the set of tokens held by agent i at time t, and at a meeting the game is
always won by the owner of the smallest (lowest-ranked) token. Call (S(t), 0 ≤ t < ∞)

the token process, and write

Z(t) = (|Si(t)|, i ∈ Agents); F(t) = σ(X(s), 0 ≤ s ≤ t).

As discussed above, Lemma 2.4 implies

Corollary 2.5. In the token process (S(t), 0 ≤ t < ∞), the process Z(t) := (|Si(t)|, i ∈
Agents) evolves as the standard CG process.

Corollary 2.5 plays a key role in the development of the metric coalescent in [12].
And we will see in sections 2.6 and 3 how it enables us to use simple intuitive arguments
in our discrete setting. Corollary 2.5 is reminiscent of the Donnelly-Kurtz look-down
construction [9] but we do not see a precise connection.

Lemma 2.6 below says: if we just see the number of tokens that each agent has, then
the assignment of tokens to agents is uniformly random over possible assignments.

Lemma 2.6. In the token process, for each t, the conditional distribution of (Si(t), i ∈
Agents) given F(t) is uniformly random over all partitions (Bi, i ∈ Agents) of {1, . . . , n}
with |Bi| = Xi(t) ∀i.

Here (Bi) is a labeled set partition and |Bi| is the cardinality of block Bi.

Proof. As in the proof of Lemma 2.4, it is enough to check that the assertion remains
true inductively over meetings. Given that Sj1(t) and Sj2(t) are non-empty, the event of a
meeting of (j1, j2) in (t, t+ dt) is independent of (Sj1(t), Sj2(t)). Such a meeting causes
either Sj1 or Sj2 to become Sj1(t) ∪ Sj2(t) and the other to become empty. Now checking
that the induction goes through reduces to checking the following elementary fact about
merging components of uniformly random partitions, which we leave to the reader.

Take (ni, i ∈ I) with each ni ≥ 1 and
∑
i ni = n. Take two elements j1, j2 of I, write j0

for a new symbol and let I ′ := (I \ {j1, j2}) ∪ {j0} and nj0 = nj1 + nj2 . Take a uniformly
random partition (Bi, i ∈ I) of {1, . . . , n} into components with |Bi| = ni ∀i ∈ I. Construct
a random partition (B′i, i ∈ I ′) by setting Bj0 = Bj1 ∪Bj2 and B′i = Bi for other i. Then
(i) (B′i, i ∈ I ′) is a uniformly random partition of {1, . . . , n} into components with |B′i| =
ni ∀i ∈ I ′;
(ii) The event “the minimum element of Bj1 is smaller than the minimum element of Bj2"
is independent of the random partition (B′i, i ∈ I ′).

In applying this fact in our setting, the point is that the information revealed by the
change in Z(·) at the meeting is precisely the identity of j1, j2 and whether the event in
(ii) occurs, but conditioning on these does not destroy uniformity.

Lemma 2.6 can be extended to the general normalized process – a more detailed
treatment is given in [12] section 2.4.
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2.5 Moment calculations

Lemma 2.6 allows us to do various calculations with a standard CG process (Z(t)),
such as the second-moment calculations below. Recall that (by the martingale property)
we know EZi(t) ≡ 1.

Lemma 2.7. For a standard CG process,

E[Zi(t)Zj(t)] = exp(−νijt), j 6= i. (2.13)

E[Zi(t)(Zi(t)− 1)] =
∑
j:j 6=i

(1− exp(−νijt)). (2.14)

So for f : Agents→ R we have

E
(∑

i fiZi(t)
)2

=
∑

i f
2
i

[
1 +

∑
j:j 6=i(1− exp(−νijt))

]
+
∑

i

∑
j:j 6=i fifj exp(−νijt)). (2.15)

Proof. Lemma 2.6 gives

P(1 ∈ Si(t), 2 ∈ Sj(t)|F(t)) =
Zi(t)Zj(t)

n(n− 1)

and taking expectation

P(1 ∈ Si(t), 2 ∈ Sj(t)) =
1

n(n− 1)
E[Zi(t)Zj(t)].

From the dynamics of the token process, the event {1 ∈ Si(t), 2 ∈ Sj(t)} happens if and
only if F (1) = i, F (2) = j and τij > t, where τij is the first meeting time of i and j. So

P(1 ∈ Si(t), 2 ∈ Sj(t)) =
1

n(n− 1)
P(τij > t).

These last two identities give (2.13). One can deduce (2.14) from (2.13) and the “mar-
tingale" fact E|Si(t)| = 1, but let us see how it follows by the same kind of argument as
above. Lemma 2.6 gives

P({1, 2} ⊆ Si(t)|F(t)) =
Zi(t)(Zi(t)− 1)

n(n− 1)

and taking expectation

P({1, 2} ⊆ Si(t)) =
1

n(n− 1)
E[Zi(t)(Zi(t)− 1)].

From the dynamics of the token process, the event {{1, 2} ⊆ Si(t)} happens if and only if
F (1) = i and F (2) = some j for which τij ≤ t, and so

P({1, 2} ⊆ Si(t)) =
1

n(n− 1)

∑
j:j 6=i

P(τij ≤ t).

These last two identities give (2.14). Finally, (2.15) follows from (2.13) and (2.14) by
expanding the square.

2.6 Elementary properties of the standard CG process

Here we prove the remaining “mostly obvious" assertions about the standard CG
process from section 1.1, and some minor extensions. Fix a meeting model (νij) on
n agents. Write G for the graph whose edges are the pairs (i, j) with νij > 0. Recall
G is connected by assumption. An anticlique (or independent set) in G is a set A of
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vertices such that there is no edge with both end-vertices in A. There is a finite set of
configurations z that can be reached by the standard CG process. Such a configuration
is absorbing if and only if {i : zi ≥ 1} is an anticlique. The process must reach some
absorbing configuration at some a.s. finite time T , because N(t) (the number of solvent
agents) decreases by one every time the configuration changes. Write T for the random
set of agents with non-zero money at T .

Lemma 2.8. For the standard CG process:
(i) ET ≤ (n− 1)/δ, where δ := min{νij : νij > 0}.
(ii) For each pair {i, j} with νij = 0 we have P(i and j ∈ T ) ≥ 2

n(n−1) .

(iii) P(i ∈ T ) ≥ 1
1+d(i) and so E|T | ≥

∑
i

1
1+d(i) , where d(i) is the degree of vertex i in G.

(iv) P(|T | = 1) > 0.

Note that, if νij = 0 for some pair {i, j}, then (ii) implies P(|T | = 1) < 1.

Proof. If N(t) = m and the configuration is not an anticlique then the conditional
intensity of a transition m → m − 1 is at least δ, implying (i) by comparison with the
pure death process with constant transition rate δ. For (ii) consider the token process
from section 2.4. If νij = 0 then with probability 1/

(
n
2

)
agents i and j have tokens 1 and

2; if so, then neither can lose a game, so both must end in T . Similarly for (iii), with
probability 1/(1 + d(i)) agent i’s token is smaller than all its d(i) neighbors’ tokens; if
so, then agent i cannot lose a game, implying i ∈ T . So P(i ∈ T ) ≥ 1/(1 + d(i)), which is
(iii). For (iv), consider a spanning tree for G. We can order its edges as

e1 = (`1, v1), e2 = (`2, v2), . . . en−1 = (`n−1, vn−1)

in such a way that each `i is a leaf of the subtree in which edges e1, . . . , ei−1 have been
deleted. With non-zero probability, the first n − 1 meetings in the meeting process
are over the edges e1, . . . , en−1 in that order; and with non-zero probability, the game
involving (`i, vi) is won by vi for each i. If this happens then vn−1 ends up with all the
money.

3 The sparse graph setting

Throughout section 3 we study the standard CG process (Z(t)). Consider a connected
finite graph G with n vertices and which is r-regular, for r ≥ 3 (so if r is odd then n must
be even). Take the set Agents as the vertices of G, and the meeting rates as

νij = 1 if (i, j) is an edge (3.1)

= 0 if not.

As observed in section 1.1, the standard CG process must terminate in a random
configuration Z∗ with some random set T of solvent agents. We study the density of
solvent agents:

ρ(G) := n−1E|T |.

What are the possible values of ρ(G), in terms of n and r? Consider first the lower bound.

Lemma 3.1. (i) ρ(G) ≥ 1
r+1 .

(ii) If n is a multiple of r then there exists a graph G such that

ρ(G) ≤ 1
r (1 + 2κr

r(r−1) )

where κr, defined by (3.2) below, is such that κr ↑ κ∞ <∞ as r ↑ ∞.

EJP 20 (2015), paper 35.
Page 10/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3582
http://ejp.ejpecp.org/


The compulsive gambler process

Proof. Assertion (i) repeats Lemma 2.8(iii). For (ii), consider the graph G constructed
as follows. Take n/r disjoint graphs C1, . . . , Cn/r, each being the complete graph on r

vertices with one edge (ai, bi) removed. Then add edges (b1, a2), (b2, a3), . . . , (bn/r, a1) to
make G.

For each 1 ≤ i ≤ n/r, the only possible way for T to contain more than one vertex of
Ci is for T to contain the two vertices {ai, bi} (because any other pair of agents in Ci will
meet). So

E|T ∩ Ci| ≤ 1× P(|T ∩ Ci| ≤ 1) + 2× P(|T ∩ Ci| = 2)

= 1 + q, where q := P({ai, bi} ⊆ T )

and then

ρ(G) := n−1E|T | ≤ n−1(n/r)(1 + q) = 1
r (1 + q).

To study q we use the token process representation from section 2.4. Observe first that
if the smallest token amongst Ci is initially possessed by some agent ci which is not ai or
bi, then agent ci can never lose a bet, because each agent that ci meets has either zero
money or has its original token as its smallest token. Moreover in this case neither ai
nor bi can be in T , because each meets ci. So the only way that the event {ai, bi} ⊆ T
can occur is if one of {ai, bi} has the smallest original token amongst agents Ci. For
2 ≤ m ≤ r consider the event

Dm := { ai has the smallest, and bi has the m’th smallest, original token amongst agents Ci}.

Because the tokens are initially uniformly randomly distributed,

q = 2

r∑
m=2

P(Dm and {ai, bi} ⊆ T ) = 2
r(r−1)

r∑
m=2

P({ai, bi} ⊆ T |Dm).

Now we need to study what happens on the event Dm in order to bound the (conditional)
probability of {ai, bi} ⊆ T . First note that the possibility of a loss by ai or bi to its
neighbor outside Ci can only lower this probability, so we can ignore this possibility. And
the possibility of a win by ai or bi against its neighbor outside Ci makes no difference.
So we need only consider meetings within Ci. But then we need only consider meetings
within the set Cmi of the agents with the m smallest tokens, because these cannot lose
to the other agents. And then we only need to consider such meetings between solvent
agents, and each such meeting will reduce the number of solvent agents by 1. In order
that bi ∈ T it is necessary that no such meeting involves bi. Inductively on j such
meetings having occurred without involving bi, there are m− j − 1 other solvent agents
in Cmi , so the conditional probability that the next such meeting also does not involve bi

equals
(m−j−1

2 )
(m−j

2 )−1
, where the “-1" arises because the edge (ai, bi) is not present. So now we

have shown

q ≤ 2
r(r−1)

r∑
m=2

σm, where σm :=

m−3∏
j=0

(
m−j−1

2

)(
m−j
2

)
− 1

.

But σm decreases as order m−2, establishing the bound in (ii) for

κr =

r∑
m=2

σm. (3.2)
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Finding somewhat tight upper bounds complementary to those in Lemma 3.1 seems
more difficult. In the following sections we study the standard CG process on trees, in
particular on the infinite r-ary tree Tr, where the random set T of solvent agents in the
t→∞ limit has some density

ρ(Tr) := P(i ∈ T ).

It is well-known [8] that there exist, for fixed r ≥ 3, sequences (Gn,r, n ≥ n0(r)) of
r-regular n-vertex connected graphs (derived e.g. from typical realizations of random r-
regular graphs) which converge to Tr in the sense of local weak convergence (Benjamini-
Schramm convergence). That is, the distribution of the restriction of Tr to vertices
within any fixed graph distance from a uniformly random root vertex converges to that
restriction of rooted Tr. It is intuitively clear (we outline the argument in section 3.4)
that for such a sequence we will have

lim
n
ρ(Gn,r) = ρ(Tr). (3.3)

By analyzing the CG process on Tr we will show (Corollary 3.5) that ρ(Tr) ∼ 2/r as
r →∞. Granted that result, we can summarize Lemma 3.1 and the discussion above as
follows.

Proposition 3.2. Define

a∗(r) = sup
(Gn,r)

lim sup
n

ρ(Gn,r)

a∗(r) = inf
(Gn,r)

lim inf
n

ρ(Gn,r)

the sup and inf over sequences (Gn,r, n ≥ n0(r)) of r-regular n-vertex connected graphs.
Then

a∗(r) ∼ 1

r
as r →∞

a∗(r) ≥ 2− o(1)

r
as r →∞.

We conjecture (based solely on vague intuition) that in fact a∗(r) ∼ 2/r as r →∞, in
other words that locally tree-like graphs are asymptotically extremal for this problem.

3.1 Finite trees

Consider the standard CG process on a finite tree T, with the constant meeting
rates (3.1) over edges. We establish a recursion, Lemma 3.3, for the distribution of
Z(T,o)(t), the fortune of agent o at time t. The CG process uses only (some of) the first
meeting times τe across edges, which are independent with Exponential(1) distribution;
by a deterministic time-change we can suppose instead the distribution is Uniform(0,1),
simplifying calculations below.

For 0 ≤ t, z ≤ 1, set

φ(T,o)(z, t) := 1− E
[
zZ(T,o)(t)

]
.

For a neighbor i of o (written i ∼ o), we let Ti denote the subtree of T (as viewed from
root o) consisting of i and all its descendants.

Lemma 3.3. For 0 ≤ z, t ≤ 1,

φ(T,o)(z, t) =

∫ 1

z

∏
i∼o

(
1−

∫ t

0

φ(Ti,i)(ξ, u)du

)
dξ.
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Proof. Let Y (t) denote the fortune of agent o at time t in the modified process where o
systematically wins every game she plays. Clearly,

Y (t)
d
= 1 +

∑
i∼o

Z(Ti,i)(τoi)1{τoi≤t}, (3.4)

with the terms in the sum being independent. The original process can be coupled with
the modified process in the natural way, such that they coincide as long as o has not lost
a game (in the original process). Hence, almost surely under this coupling,

Z(T,o)(t) = Y (t) or Z(T,o)(t) = 0.

From the “fair game" structure of the CG process we know E
[
Z(T,o)(t)

]
= 1. But

conditioning on the times of meetings does not alter the “fair game" structure; and
because the times of meetings determine Y (t), we have E

[
Z(T,o)(t) | Y (t)

]
= 1. So the

conditional distribution of Z(T,o)(t) given Y (t) must be

Z(T,o)(t) =

{
Y (t) w.p 1/Y (t)

0 w.p 1− 1/Y (t).
.

Hence,

φ(T,o)(z, t) = E [E[1− zZ(T,o)(t)|Y ] ] = E

[
1− zY (t)

Y (t)

]
=

∫ 1

z

E
[
ξY (t)−1

]
dξ. (3.5)

Now (3.4) gives

E
[
ξY (t)−1

]
=
∏
i∼o

(
1−

∫ t

0

φ(Ti,i)(ξ, u)du

)
and substituting into (3.5) completes the proof.

3.2 Infinite trees

The infinite d-ary tree. We next consider the case where (T, o) is the infinite d−ary
tree rooted at o, that is each vertex has d ≥ 1 children. Writing

φd(z, t) = 1− E
[
zZ(T,o)(t)

]
(3.6)

Lemma 3.3 gives the functional identity

φd(z, t) =

∫ 1

z

(
1−

∫ t

0

φd(ξ, u)du

)d
dξ. (3.7)

We could not determine φd(z, t) explicitly, but we will establish the following bounds,
which are sufficient to obtain asymptotics as d→∞.

Lemma 3.4. Setting εd = 2
d log

(
1 + d

2

)
< 1, we have for 0 ≤ z, t ≤ 1 and d ≥ 1,

2(1− z)(1− εd)
2(1− εd) + d(1− z)t

≤ φd(z, t) ≤
2(1− z)

2 + d(1− z)t
.

In particular, P(Z(T,o)(1) 6= 0) = φd(0, 1) ∼ 2/d as d→∞.

Proof. First note that, by (3.7),

−∂φd
∂t

(z, t) = d

∫ 1

z

φd(ξ, t)

(
1−

∫ t

0

φd(ξ, u)du

)d−1
dξ,
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whereas, using again (3.7) and the fact that φd(1, t) ≡ 0,

(φd(z, t))
2

= −2

∫ 1

z

φd(ξ, t)
∂φd
∂z

(ξ, t)dξ

= 2

∫ 1

z

φd(ξ, t)

(
1−

∫ t

0

φd(ξ, u)du

)d
dξ.

Combining these two identities, we obtain

∂(1/φd)

∂t
(z, t) =

d

2
×

∫ 1

z
φd(ξ, t)

(
1−

∫ t
0
φd(ξ, u)du

)d−1
dξ∫ 1

z
φd(ξ, t)

(
1−

∫ t
0
φd(ξ, u)du

)d
dξ

. (3.8)

Since φd is [0, 1]−valued, we see that

∂(1/φd)

∂t
(z, t) ≥ d

2
.

Integrating with respect to t gives

1

φd(z, t)
≥ 1

φd(z, 0)
+
td

2
=

1

1− z
+
td

2

which rearranges to the claimed upper bound. From this upper bound, it follows that for
0 ≤ z, t ≤ 1, ∫ t

0

φd(z, u)du ≤ εd, (3.9)

which we may plug into (3.8) to obtain:

∂(1/φd)

∂t
(z, t) ≤ d

2
× 1

1− εd
.

Integrating with respect to t gives

1

φd(z, t)
≤ 1

φd(z, 0)
+

td

2(1− εd)
=

1

1− z
+

td

2(1− εd)

which rearranges to the claimed lower bound.

The r−regular tree. The r−regular infinite tree consists of r copies of a (r − 1)−ary
tree, connected to a root. Letting φ∗r(z, t) denote the corresponding function, as at (3.6),
the general recursion from Lemma 3.3 gives

φ∗r(z, t) =

∫ 1

z

(
1−

∫ t

0

φr−1(ξ, u)du

)r
dξ.

Comparing with (3.7) and using (3.9), it follows that

(1− εr−1)φr−1 ≤ φ∗r ≤ φr−1,

so that φ∗r satisfies the same r →∞ asymptotics as does φr−1. In particular,

Corollary 3.5. On the r−regular infinite tree Tr, the probability ρ(Tr) = φ∗r(0, 1) that a
given agent finishes with non-zero money is 2/r + o(1/r) as r →∞.

EJP 20 (2015), paper 35.
Page 14/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3582
http://ejp.ejpecp.org/


The compulsive gambler process

Galton-Watson trees. When the rooted tree (T, o) is a random Galton-Watson tree
with degree distribution {πn : n ≥ 0}, the general recursion from Lemma 3.3 immediately
leads to a recursive distributional equation for the annealed generating function

φ(z, t) := 1− E
[
zZ(T,o)(t)

]
,

where expectation is now taken with respect to both the randomness of the rooted tree
and the randomness of the CG process. Letting Fπ(x) =

∑
n πnx

n denote the degree
generating function of the Galton-Watson tree, we readily obtain:

φ(z, t) =

∫ 1

z

Fπ

(
1−

∫ t

0

φ(ξ, u)du

)
dξ. (3.10)

Extracting useful information from this equation for a general distribution {πn : n ≥ 0}
remains an open problem.

3.3 The Poisson-Galton-Watson tree, the sparse Erdős-Rényi graph and the
short-time behavior of the Kingman coalescent

In the case where {πn : n ≥ 0} is the Poisson distribution with mean c ≥ 0 we have
Fπ(z) = ecz−c) and equation (3.10) specializes to

φ(z, t) =

∫ 1

z

exp

(
−c
∫ t

0

φ(ξ, u)

)
dξ. (3.11)

Differentiating with respect to z and t yields the partial differential equation

∂2φ

∂z∂t
= −cφ∂φ

∂z
.

In other words, the bivariate function ∂φ
∂t + c

2φ
2 is constant in the variable z. Taking z = 1

in (3.11) shows that the constant is in fact 0, so in fact ∂φ
∂t + c

2φ
2 = 0. This implies

∂(1/φ)

∂t
=
−∂φ∂t
φ2

=
c

2
.

Since φ(z, 0) = 1− z we deduce that

1

φ(z, t)
=

1

1− z
+
ct

2
.

Rearranging,

φ(z, t) =
2(1− z)

2 + c(1− z)t
.

Identifying this generating function, we find that the fortune Z(t) of the agent at the
root has distribution specified by

P(Z(t) > 0) = 2
2+ct (3.12)

the conditional distribution of Z(t) given Z(t) > 0 is Geometric( 2
2+ct ). (3.13)

Because the Poisson-Galton-Watson tree T∗c is the local weak limit of the sparse Erdős-
Rényi random graph G(n, c/n) it seems intuitively clear (see section 3.4) that

Eρ(G(n, c/n))→ Eρ(T∗c) = P(Z(1) > 0) = 2
2+c . (3.14)
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Let us outline an interesting alternative explanation of why (3.12, 3.13) arise here.
Under our time-change (first meetings occur at Uniform(0, 1) random times) consider
the process of all first meetings (whether or not agents are solvent) on G(n, c/n). This
process arises from a two-stage construction: for each edge e of the complete graph
on n vertices, first select e with probability c/n, then (if selected) assign the Uniform
random meeting time. But for large n this is tantamount to saying that, for each edge
e of the complete graph, the first meeting occurs at rate c/n over 0 < t < 1. Now with
this description of the meeting process, the process of fortunes of solvent agents in the
standard CG process on G(n, c/n) becomes

each pair of fortunes is, at rate c/n, replaced by one fortune, the sum of the
pair of fortunes

Here we are considering the collection of fortunes as unordered – not retaining the
identity of agents.

Now consider the Kingman coalescent, in the spirit of more general stochastic
coalescence models [3, 4, 5, 6], as a process of coalescing partitions of {1, 2, . . . , n},
being the special case in which each pair of blocks merges at constant rate. But take
this rate to be 1/n instead of 1. The n → ∞ limit distribution of block sizes at time τ
(for uniformly random choice of block) in this short-time limit regime is known to be
Geometric( 2

2+τ ) – see Construction 2 and equation (25) in [3] for an intuitive explanation
in terms of a process of coalescing intervals on Z, or [11] for an analytic derivation. The
evolution of the process of block sizes in this Kingman coalescent is

each pair of blocks is, at rate 1/n, replaced by one block, whose size in the
sum of the two block sizes.

So up to the factor c, in the n → ∞ limits the process of fortunes of solvent agents in
the standard CG process on G(n, c/n) is the same as the process of block sizes in this
Kingman coalescent. In particular the distribution in (3.13), for the fortune at time t of a
uniformly random solvent agent in the standard CG process on G(n, c/n), is the same as
the distribution of a uniformly random block in the Kingman coalescent at time τ = ct,
which is Geometric( 2

2+ct ).

3.4 Local weak convergence

It seems plausible that, in some considerable generality, when we have Benjamini-
Schramm convergence of a sequence (Gn) of finite graphs to a rooted infinite graph
G∞, then one can define uniquely the standard CG process on G∞, and this process is
the limit (in the natural analogous “local weak convergence" sense) of the standard CG
processes on Gn. We have asserted this as “intuitively clear" in the particular cases
(3.3,3.14) where the limit graph is the infinite r-ary tree Tr or the Poisson-Galton-Watson
tree T∗c . In fact a sufficient condition is as follows. Write N(d) for the number of length-d
paths from the root in G∞. The sufficient condition (clearly satisfied in our two cases) is

EN(d) = o((d− 2)!) as d→∞. (3.15)

By the token process representation the probability that the root acquires a token along
a given path of length d is at most 1/d!, so condition (3.15) ensures that the behavior of
the CG process at the root of G∞ is determined “locally" by the initial tokens in an a.s.
finite region. More details of this argument can be found at [14].

4 Directions for future research

Here are some other directions of current or future research.
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The metric coalescent. This concerns a continuous-space extension. Take a suitable
space S, write P(S) for the space of probability measures µ on S and write Pfs(S) ⊂ P(S)

for the subspace of finite support probability measures. Consider a symmetric function
ν : S2 → R≥0. For any µ ∈ Pfs(S), we can consider the normalized compulsive gambler
process for which the set Agents is the support {s1, . . . , sn} of µ, the meeting rates are
the ν(si, sj), and the initial distribution of money is µ; and moreover we can regard
the states of the process as elements of Pfs(S). So we can reconsider the normalized
compulsive gambler process as a Markov process, specified by the function ν, whose
state space is (all of) Pfs(S). Then we can ask, inspired by the Kingman coalescent and
its extensions [5], whether it makes sense to imagine this process starting with a general
(in particular, non-atomic) initial state µ0 ∈ P(S). This topic is studied in detail in [12]
in the context of a complete separable locally compact metric space (S, d) and meeting
rates of the form

ν(s, s′) = φ(d(s, s′))

for some continuous function φ(·) > 0. The main result of [12] is that, under the condition
limx↓0 φ(x) = ∞, the standardized compulsive gambler process on Pfs(S) extends to a
Feller process (the metric coalescent) on all of P(S). In particular, for an initial µ0 ∈ P(S)

with compact support, the metric coalescent process (µt, 0 ≤ t <∞) has finite support
at each t0 > 0, evolves as the compulsive gambler process over [t0,∞) and satisfies the
initial condition

P(lim
t↓0

µt = µ0 in P(S)) = 1.

A key ingredient in the proof is Corollary 2.5 of this paper. In informal language, Corollary
2.5 says that for the standard compulsive gambler process, instead of determining the
game winners at the meeting times, we can do so via initial randomization, as follows.
Initially each agent has a currency note with a random serial number; when two solvent
agents meet, each has a collection of notes, but now the winner is always the owner
of the lowest-ranked note, ranking by serial number. In other words we start with
a uniformly random ordering s1, . . . , sn of Agents, ranked by serial number of note.
In the continuous-space setting we can do the same construction but starting with
i.i.d. (µ0) random samples s1, . . . , sn. For each n we now have a Pfs(S)-valued process

(µ
(n)
t , 0 ≤ t <∞). But as n varies these processes have a natural coupling and the metric

coalescent can be constructed as the a.s. n→∞ limit process.

Infinite discrete space. For a countable infinite set Agents where we do not (as we
did at (3.15)) require meeting rates to be constant or zero, an alternative sufficient
condition for the standard compulsive gambler process (Z(t)) to be well-defined is

ν∗ := sup
i

∑
j:j 6=i

νij <∞. (4.1)

In section 3 we studied the case of the r-regular tree. For another direction, consider
the case where Agents = Zd and the meeting rates are

νij = ||j − i||−α (4.2)

for some α > d, implying (4.1). Consider the mean density of solvent agents at time t

ρ(t) := P(Zi(t) 6= 0)

and the conditional distribution Z∗(t) of Zi(t) given Zi(t) 6= 0, for which EZ∗(t) = 1/ρ(t)

because EZi(t) ≡ 1. Heuristic arguments, based on supposing the positions of solvent
agents do not become “clustered", suggest that

ρ(t) � t−β for β = d
α .
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It is then plausible that

ρ(t)Z∗(t)→d Z
∗, for some Z∗ such that EZ∗ = 1

and then that the process has a scaling limit, the limit being a process whose states are
(locally finite support) measures on Rd.

Long-range meeting on the torus. Consider the d-dimensional discrete torus Zdm
and take meeting rates as at (4.2). By the heuristics above, for α > d we expect the
fixation time T to scale as ρ−1(m−d) = mα. In this setting it makes sense to consider also
the case α < d. In that case an agent will tend to meet distant agents rather than nearby
ones – loosely speaking, there is a “phase transition" in the behavior of the process
at α = d. (Let us mention in passing that a detailed study of phase transitions in the
first-passage percolation model with rates (4.2) has been given in [7]). However by
comparison with the Kingman coalescent in the case α < d we still expect T to scale
as mα, reflecting the minimum meeting rate of m−α. And somewhat surprisingly we
can establish the order of magnitude of T in both cases without any detailed analysis:
Proposition 2.3 easily implies that in the torus model there exist constants cd,α and Cd,α
such that

cd,αm
α ≤ ET ≤ Cd,αmα. (4.3)
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