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Abstract.—Stochastic modeling of phylogenies raises five questions that have received varying levels of attention from
quantitatively inclined biologists. 1) How large do we expect (from the model) the ratio of maximum historical diversity
to current diversity to be? 2) From a correct phylogeny of the extant species of a clade, what can we deduce about past
speciation and extinction rates? 3) What proportion of extant species are in fact descendants of still-extant ancestral species,
and how does this compare with predictions of models? 4) When one moves from trees on species to trees on sets of species
(whether traditional higher order taxa or clades within PhyloCode), does one expect trees to become more unbalanced as
a purely logical consequence of tree structure, without signifying any real biological phenomenon? 5) How do we expect
that fluctuation rates for counts of higher order taxa should compare with fluctuation rates for number of species? We
present a mathematician’s view based on an oversimplified modeling framework in which all these questions can be studied
coherently. [Diversification; macroevolution; neutral model; phylogeny; speciation; stochastic.]

There is a long tradition, dating back at least to Yule
(1924), of study of simple stochastic models for aspects
of biodiversity or macroevolution—the evolutionary his-
tory of speciations and extinctions. Such models have
several distinct potential uses.

• As null models when seeking to attribute biological
significance to data. Is a particular clade expansion an
instance of adaptive radiation (Bond and Opell 1998)?
Does a typical clade expansion represent expansion
into novel niches or replacement of other clades
(Benton 1999)? Were speciation rates unusually high
during the Cambrian radiation (Lieberman 2001)?
Are the apparent “pulses” of extinctions and speci-
ations seen in the fossil record of large mammals in
southern and eastern Africa over the last 3 myr real,
or could they be an artifact arising from the limited
number of different dates of sites yielding the fossils
(McKee 1995, 2001)?

• Detecting analogs of the regression fallacy in which
some observed effect (predictable on statistical
grounds) is incorrectly thought to require some
causal explanation.
• Among several approaches to reconstructing phy-

logenies on extant species from molecular data, the
Bayesian approach requires a prior distribution on
possible trees (Huelsenbeck et al. 2002).

In this paper, we present five questions that we
hope will interest quantitatively inclined biologists
and describe the predictions made by certain probabil-
ity models. The first three questions are studied using
the Aldous and Popovic (2005) model for a clade with

n extant species, described in the next section, and the
final two questions use the induced models for phyloge-
netic trees on genera introduced in Aldous et al. (2008),
described later. We quote analytic results from those
papers and give new simulation results but no new
analytic results.

Over the last 15 years, a huge range of stochastic mod-
els for specific aspects of evolution related to our ques-
tions have been studied, and we make no attempt to
mention them all. Nee (2004, 2006) provides a useful
overview of the relevant biology literature.

As an alternative to potentially more realistic but
incompatible models for different aspects, in a “back
to basics” approach we use a simple neutral model of
species-level macroevolution plus models of how biolo-
gists might assign species to higher level taxa. This is all
set up so that questions about both tree shape and time
series of taxa, at both species level and higher levels, for
both extant and extinct clades, can be addressed within
the same framework. In contrast, no previous modeling
framework we have seen is capable of addressing all
five questions we pose.

An ultimate goal of probability modeling is to iden-
tify which features of observed data might have arisen
by chance and which require biological explanation. But
this is valuable only if one believes that the chance mod-
els are realistic, in the sense of plausible null hypotheses.
The authors of this paper are mathematicians, and our
intention is to present models for the consideration of
biologists, not to address the more substantial issues of
realism of models. We focus on a neutral model because
there the mathematics is simple enough to permit ana-
lytic results. As will be discussed in the conclusion, one
could replace our species-level model with some other
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2 SYSTEMATIC BIOLOGY VOL. 60

model while retaining our methodology for extension to
higher order taxa.

OVERVIEW OF MODEL

A standard model (Nee 2006) is the linear birth-and-
death model in which each species becomes extinct
at rate (probability per unit time) μ and has daugh-
ter species at rate λ. Our focus is on the case where
λ = μ. In mathematical terminology, this is the criti-
cal case; biologically one could call it the neutral case,
meaning there is no assumption that diversity intrin-
sically tends to increase. The supercritical case λ > μ,
leading to exponential growth in diversity, has quite
different mathematical behavior, discussed briefly in
the conclusion. Choosing the time unit to be mean
species lifetime, the critical case has λ = μ = 1. In other
words, species lifetime has the exponential (mean 1)
distribution, and during the lifetime, daughter species
arise after independent exponential (mean 1) random
times.

The following conditioned critical branching process
model, discussed in Aldous and Popovic (2005) and
further discussed in Gernhard (2008), for the phyloge-
netic tree on a clade with n extant species (for given n) is
intended to capture the intuitive idea of “purely random
macroevolution.”

The Bayesian terminology (prior, posterior) is conve-
nient but keep in mind we are just making a mathemat-
ical definition, not doing statistical analysis.

1. The clade originates with one species at a random
time before present, whose prior distribution is
uniform on (0,∞).

2. As time runs forward, diversity evolves as the lin-
ear birth-and-death model with λ= μ= 1.

3. Condition on the number of species at the present
time t= 0 being exactly equal to n.

The “posterior distribution” on the evolution of lin-
eages given this conditioning now yields a probability
distribution on phylogenetic trees on n extant species
and a variable number of extinct species. Note that this
is a “complete” tree in which lineages of extant species
pass through explicit extinct species, but of course
removing this information gives what we will call
the “lineage tree” on the n extant species (and this
is what is usually called the “phylogenetic tree” on
extant species). Figure 1 shows some realizations of the
model.

Our first three questions will be studied using this
species-level model, but the final two involve higher
order taxa (for concreteness of language we write gen-
era) and will be studied using schemes introduced in
Aldous et al. (2008) for extending the underlying species-
level model to trees whose terminal taxa are clades. This
extension, explained later, involves a numerical
parameter θ (the chance a new species is a “new type”)
and one of three classification schemes for partitioning
species into genera so that (to a different extent in

each of the schemes) new types are founders of new
genera.

PAST FLUCTUATIONS IN SIZES OF EXTANT CLADES

Question 1. Within a typical clade, how do we expect
current diversity to compare with the maximum histor-
ical diversity?

Readers will be familiar with the following intuitively
appealing biological explanation of readily identifiable
clades. A successful clade begins with a key innovation
in one species, followed by a rapid adaptive radiation
of species sharing that innovation; clade size increases
until a level set by ecological constraints and stays at
roughly this maximum level (while individual species
arise and disappear) until some extrinsic factor upsets
the equilibrium. Notwithstanding textbook examples
of clades (horse, rhinoceros) that were much larger
in the past, some version of this “logistic” picture is
often taken to be self-evident, as the following quote
indicates:

[We study] theoretical clades that have
either been growing exponentially through-
out their history or have been of constant
size, such that each time a new lineage has
appeared by speciation another lineage has
gone extinct. These extremes bracket the plau-
sible dynamical histories of real clades. . . .
Logistic growth, in which diversity rises to
some maximum, is a convenient model for
macroevolutionary clade expansion . . . .
In this framework, exponential growth is
the early phase of logistic growth, and the
constant size model describes a clade that
has been at its maximum size for some time.
(Nee and May 1997, p. 692; our emphasis
added)

This may be a perfectly reasonable view of large clades
(flowering plants, birds, mammals), but what about
small clades? Let us quantify Question 1 by considering
the statistic

R=
maximum number of species at any one past time

current number of species
.

Here R ≥ 1 because we include “current time” in “any
past time.” How large should we expect R to be? Our
species-level model (Aldous and Popovic 2005, Corol-
lary 6) predicts a 1/r law

Pr(R ≥ r) = 1/r, 1 ≤ r <∞,

so that R would vary widely between clades, with a
median value of 2. This contrasts with the view, implicit
in the quotation above, that typically R will be close to 1.
It would be interesting to attempt to estimate the distri-
bution of R from the fossil record.
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2011 ALDOUS ET AL.—FIVE STATISTICAL QUESTIONS 3

FIGURE 1. Three tree realizations (a, b, and c) of the lineage tree in our model, n= 20.
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4 SYSTEMATIC BIOLOGY VOL. 60

VARIABILITY OF REALIZATIONS AND CONSERVATIVE
ANALYSIS OF BIOLOGICAL SIGNIFICANCE

Though the intrinsic variability of realizations of
stochastic models of macroevolution has often been
noted, the classical statistical practice of comparing
averages of quantities derived from data with averages
predicted by models often makes it hard to keep vari-
ability in mind. Let us illustrate one aspect of vari-
ability. Consider three quantities associated with our

species model: the time T
origin
n of clade origin; the time

Tmrca
n of the most recent common ancestor of extant

species; and the number Zn of species at the time of most
recent common ancestor (recall the time unit equals
mean species lifetime). It turns out that these quantities
grow linearly with n, but there is no “law of averages”;
instead as n → ∞, there is a limit joint distribution,

say (Torigin,Tmrca,Z), for the normalized statistics

(n−1T
origin
n , n−1Tmrca

n , n−1Zn), and an explicit formula
for this limit joint distribution can be found in Aldous
and Popovic (2005, Corollary 8).

Figure 2 illustrates this by showing 10 realizations
from the limit joint distribution. The key point to note is
that each of these quantities varies by a factor of 10 over
the realizations.

A complete tree from our species process is easy to
simulate using the structure of the time-reversed pro-
cess given in Aldous and Popovic (2005, Lemma 8).
Three realizations of the lineage tree on n extant species
for n= 20 are shown in Figure 1, demonstrating vividly
that different realizations can look very different. If
we saw three real trees with such radically different
radiation patterns and times, then we would surely
be inclined to attribute biological significance to the

FIGURE 2. Scatter diagram of 10 realizations of the standardized

joint distribution (Torigin,Tmrca,Z). Torigin is the time of origin,
Tmrca is the time of the most recent common ancestor, and Z is the
number of species at the time of most recent common ancestor. Points

× give the (Torigin,Tmrca) values, and the length of the line segment
is the Z value. Note the extreme variability of Z; the smallest value
was 0.03 and the largest was 1.56. Note that points are necessarily

below the diagonal line Tmrca = Torigin.

differences. This recognition of variability is central to
any perspective on the following question.
Question 2. From a correct phylogeny of the extant
species of a clade, what can we deduce about past spe-
ciation and extinction rates?

This question is already much discussed in the bi-
ological literature; we will just make one qualitative
comment and one quantitative comment.

Qualitative Assessments of Nonrandomness

Wollenberg et al. (1996) show three published exam-
ples of lineage trees (columbines, cranes, the Drosophila
virilis group: our comments refer to the B examples)
that look quite different. After doing a statistical test
of significance, with reference to a probability model
that is similar to ours but with realizations with large
fluctuations of species count censored, they conclude
(p. 842)

. . . consistent with the original authors’
impressions, the columbines and the cranes
do indeed display nonrandom phyloge-
netic patterns of diversification, with the
columbines showing recent and the cranes
showing ancient significant clustering of
speciation events . . . [also consistent were]
the results for the D. virilis group, where no
evidence of temporal nonrandomness [could
be identified].

But the visual difference between these three empirical
trees is no larger than the visual difference between re-
alizations of our model—indeed, the three realizations
in Figure 1 resemble the (recent, ancient, steady) diver-
sification visible for (columbines, cranes, D. virilis)—
and we suspect that any reasonable test statistic would
indicate that each data tree from Wollenberg et al. (1996)
might plausibly arise “by chance” within our model.
The point is that our model, with its intrinsic greater
variability, provides a more conservative approach to
assessing significance of observed features of phyloge-
netic trees.

Estimating Rates in Birth-and-Death Processes: A
Simulation Study

More concretely, consider the problem of estimating
past speciation and extinction rates within a clade using
only the lineage tree (assumed correct) on
extant species. An often used model is the linear birth-
and-death model, which we now regard as having three
parameters (t∗, λ,μ), where

t∗ = time before present of clade origin,
λi = total speciation rate, when i species,
μi = total extinction rate, when i species.

It is routine to calculate numerically maximum like-
lihood estimates (MLEs) of the parameters, based on
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2011 ALDOUS ET AL.—FIVE STATISTICAL QUESTIONS 5

TABLE 1. MLEs of linear birth–death parameters

Realization 1 2 3 4 5 6 7 8 9 10

MLE of λ 0.4 0.6 1.3 1.5 0.6 1.3 0.3 0.3 0.9 1.2
MLE of μ 0.1 0.4 0.2 1.0 0.3 0.3 0.2 0.1 0.4 0.2
MLE of t∗ 9.1 6.5 1.7 3.1 4.7 2.5 11.4 13.8 4.2 1.5
Tmrca 8.4 6.0 1.5 2.8 4.3 2.4 11.3 13.3 3.9 1.4
Torigin 37.1 13.3 1.7 8.2 8.9 11.9 36.2 154.7 21.8 1.7

Notes: MLEs of linear birth–death parameters based on each of 10
realizations from the conditioned critical branching process model
with n=8. Estimated parameters: λ is the per-species speciation rate, μ
is the per-species extinction rate, t∗ is the time before present of clade

origin, Tmrca is the time of the last common ancestor, and Torigin is
the time of origin.

a lineage tree as data. (The only subtle issue is that
one should compute the likelihood without condition-
ing on n. To see why, note that when μ/λ is large, the
process is a priori unlikely to reach n species; this is
a real effect that would incorrectly be factored out by
conditioning.)

We studied what happens if one applies this
procedure—estimating parameters assuming the
underlying model of species diversity is a linear birth-
and-death process—to simulated data from our (condi-
tioned critical branching process) model. Of course, in
our model we really have λ = μ = 1 in each realization

and realization-dependent values of Tmrca and Torigin.
Table 1 shows the MLEs derived from each of 10 typical
realizations of the model, with n= 8.

So in this “small n” setting, the estimated values of λ
and μ in the linear model are very misleading. Not only
does a “pull of the recent” effect make the estimated λ
larger than the estimated μ but also the estimated val-
ues are varying widely between realizations. However,
it is quite possible that (unlike other variability effects
in our model) these particular effects might diminish for
larger n.

Discussion

The results above are not directly comparable with
previous results such as Nee, Holmes et al. (1994), Nee,
May, and Harvey (1994), Nee (2001), Paradis (1997, 1998,
2004), Rabosky (2006), and Rabosky and Lovette (2008),
whose conclusions range from optimistic

It is possible to estimate the rate of diver-
sification of clades from phylogenies with a
temporal dimension (Nee 2001, 661)

to equivocal

. . . the speciation rate was correctly esti-
mated in a wide range of situations . . .
However, this estimator was substantially
biased when the simulated extinction rate
was high. On the other hand the estimator

of extinction rate was biased in a wide range
of situations. (Paradis 2004, 19)

See also Barraclough and Nee (2001) for discussion of
practical difficulties. But to us, the results in Table 1 cast
serious doubt on the ability to reconstruct at any level
of detail the history of a single small clade from the phy-
logeny of extant species. In contrast, a statistical study of
phylogenetic trees (with relative timescale) from many
clades might provide some insight into typical patterns
of recent speciation and extinction rates.

EXTANT ANCESTRAL SPECIES

Polar bears are often said to be a recent (perhaps 200
Kyr) daughter species of brown bear (DeMaster and
Stirling 1981). This is an unusual (among familiar ani-
mals) instance where an ancestral species is extant and
suggests the following.

Question 3. Within well-studied extant clades, what
proportion α of extant species have some extant
ancestor?

Anecdotally, biologists regard α as small, though
we have been unable to find useful data, perhaps
in part because cladistics dogma discourages asking
this question. Our species model predicts (Aldous
and Popovic 2005, Corollary 11) that for about 63% of
extant species, some ancestral species should be itself
extant (note that this is different from saying it has
an extant descendant). Although this numerical value
depends on arbitrary details of the particular model, an
informal mathematical argument suggests that for any
model incorporating extinctions and speciations that
are not “tightly coupled” (in the sense that a specia-
tion would usually be followed quickly by extinction
of either daughter of parent species), the model will
predict that some constant percentage (not close to
0%) of extant species will have extant ancestors. The
argument is that a typical extant species has random
age T; the chance p that the direct ancestor species is
extant would be (assuming independence—see below)
the expectation of g(T), where g(t) is the chance that
a species lifetime is at least t, and this quantity does
not tend to 0 as n → ∞. This calculation assumes
independence of future species lifetimes and current
speciation rate, which is only true in the simplest mod-
els, but to make p ≈ 0, one would need almost complete
dependence.

This contrast between models and data is striking to
us, though biologists with whom we have discussed this
issue tend to dismiss it as simply reflecting the practi-
cal difficulty in distinguishing similar species. See also
the related recent work of Funk and Omland (2003) on
species-level paraphyly. But our point is that all exist-
ing statistical study of questions involving past specia-
tion or extinction rates implicitly depends on models of
the type that predict nonsmall α, and so all such work
would appear less convincing if data really show α to be
small.
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6 SYSTEMATIC BIOLOGY VOL. 60

MODELING HIGHER ORDER TAXA

Our final two questions concern higher order taxa and
involve a probability model for phylogenetic trees on,
and diversity of, higher order taxa. In this section, we
describe the model from Aldous et al. (2008). For con-
creteness of language, we write genera, but we mean any
reasonable way of partitioning species into groups.

Three Classification Schemes

Imagine a systematist is given a correct phylogeny
on species and chooses a number of apomorphies (a trait
that characterizes an ancestral species and its descen-
dants; we call the ancestral species a new type) judged
significant. Figure 3 illustrates three ways in which the
same underlying data (a phylogeny on 22 species, of
which 2 are new type) can be used to define genera
and hence a tree on genera. We call the three schemes

fine, medium, and coarse. Very roughly, one can interpret
the fine scheme as attempting to conform with cladistic
principles by making taxa be monophyletic, whereas
the coarse scheme is what a traditional taxonomist
given only fossil data showing these two apomor-
phies (and not knowing the true tree on species) might
devise.

Here are some logical properties one might like such
a classification scheme to possess.

Property 1. A genus cannot contain both a species a,
which is a descendant of some “new type” species s, and
also a species b, which is not a descendant of s.
Here “descendant” includes s itself, so in particular a
“new type” species and its parent must be in different
genera.

Next note that if we required every genus to be a clade
(monophyletic), then we could never have more than
one genus because otherwise some parent–daughter

FIGURE 3. Illustration (from Aldous et al. 2008) of our schemes for defining genera in terms of new types. Above left is a complete clade (a)
of 6 extant and 16 extinct species (abcd ∙ ∙ ∙ uv), with 2 species {i, s} designated as new types and marked •. In the fine scheme (b), this induces 8
genera (3 extant), whose tree is shown above right. The other schemes are shown below, with compressed timescale, giving in the coarse scheme
(c) 3 genera and in the medium scheme (d) 4 genera.
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2011 ALDOUS ET AL.—FIVE STATISTICAL QUESTIONS 7

pair {a, b} would be in different genera and then the
genus containing a is not a clade. We will consider a
weaker property. Any two distinct species a, b have a
most recent common ancestor MRCA(a, b), which is some
species (maybe a or b). Given three distinct species
{a, b, c}, say (a, b) are more closely related than (a, c) if
MRCA(a, b) is a descendant of MRCA(a, c). Here again
we allow MRCA(a, b) =MRCA(a, c).

Property 2. Given three distinct species {a, b, c}, with a
and b in the same genus and c in a different genus, then
(a, b) are more closely related than (a, c).

As another kind of desirable property, one would like
to be able to draw a tree or cladogram on genera in some
unique way, and the next property (for a classification
scheme) provides one formalization of this idea.

Property 3. Choosing one representative species from
each genus and drawing the cladogram on these species
give a cladogram that does not depend on the choice of
representative species.

Note that the trivial scheme of assigning each species
to a different genus possesses all these properties, so the
issue is to find the coarsest schemes with such proper-
ties. It turns out that we can define three genera clas-
sification schemes (coarse, medium, fine) as the coarsest
schemes with the following properties.

Coarse Property 1
Medium Properties 1 and 3
Fine Properties 1 and 2

Theorem 1 of Aldous et al. (2008) gives simple algorith-
mic descriptions of the constructions of the genera in
each scheme. The coarse scheme is always at least as
coarse as the other schemes. Proposition 2 of Aldous
et al. (2008) shows that (except for one atypical possibil-
ity) the medium scheme is at least as coarse as the fine
scheme. Because these three schemes seem mathemati-
cally and biologically reasonable, we did not investigate
other possible schemes. We do not know any extensive
previous work along these lines, though Scotland and
Sanderson (2004) study one aspect of a model similar to
our coarse scheme.

Probability Models and Higher Taxa

The classification schemes above do not involve
probability but are one ingredient in the probability
model we now describe. Start with the (conditioned
critical branching process) species model. Declare each
new species to be “new type” with probability θ (the
parameter θ will indirectly determine the mean num-
ber of species per genus). Then choose one of the three
classification schemes above.

To compare real data with the predictions of the
model, one would do some appropriate conditioning
(recall that in the species-level model we conditioned
on the number n of extant species). The model results
we present in this paper do not depend on the details of
such conditioning. As explained in Aldous et al. (2008)

the model can be applied to extinct clades, but here we
give results only for the case of extant clades.

PHYLOGENETIC TREE SHAPE AND
HIERARCHICAL LEVEL

It is a long-standing puzzle (Mooers and Heard 1997),
with recent confirmation via exhaustive analysis of Tree-
BASE (Blum and François 2006), that real phylogenetic
trees seem more “imbalanced” than predicted by a nat-
ural Markov model, though more balanced than a (less
natural) uniform or PDA (proportional to distinguishable
arrangements) model. Imbalance in a particular clade is
often taken as evidence of some particular biological
effect, as illustrated by the following quote:

We combine statistical and phylogenetic
approaches to test the hypothesis that adap-
tive radiation and key innovation have
contributed to the diversity of the order
Araneae. The number of unbalanced araneid
clades (those whose species numbers dif-
fer by 90% or more) exceeds the number
predicted by a null Markovian model. The
current phylogeny of spider families con-
tains 74 bifurcating nodes, of which 31 are
unbalanced. As this is significantly more
than the 14.8 expected unbalanced nodes,
some of the diversity within the Araneae
can be attributed to some deterministic cause
(e.g., adaptive radiation). (Bond and Opell
1998, p. 403)

A statistical analysis of 61 phylogenies concluded

Nodes with a given number of higher taxa
descended from them were on average more
unbalanced than were nodes with the same
number of species as descendants. (Purvis
and Agapow 2002, p. 844)

And in the different context of “deep phylogeny”
relating extinct and extant groups, one frequently sees
“comb” cladograms—see, for example, the phylogeny
of terrestrial vertebrates by Laurin (2007)—in which
single leaves split off one after another.

One can think of three interpretations of such clado-
grams. One possibility is that they are just wrong, that
is, do not show the correct relationship between mono-
phyletic terminal clades. An opposite possibility is that
they are correct and show some significant biological
effect, such as successive replacement or marginal-
ization of “more primitive” groups by less primitive
groups. An intermediate possibility is that such clado-
grams are simultaneously correct and artifactual, in the
sense that a species-level tree would be more balanced,
but the procedure of drawing cladograms whose termi-
nal taxa are clades tends intrinsically to produce more
unbalanced trees.

Question 4. When one moves from trees on species to
trees on sets of species (whether traditional higher order
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8 SYSTEMATIC BIOLOGY VOL. 60

taxa or clades within PhyloCode), does one expect trees
to become more unbalanced as a purely logical con-
sequence of tree structure, without signifying any real
biological phenomenon?

Measuring Tree Balance

To address Question 4 one needs to decide how to
measure tree balance. There is a sizable literature (Purvis
and Agapow 2002) on summary statistics Tn measuring
“balance” of an n-leaf tree and their distribution under
the usual Markov model as a null hypothesis. Although
this is the natural way to study individual trees, it is not
satisfactory for studying the overall statistical properties
of a collection of trees of different sizes because to com-
pare different n one needs to standardize and the stan-
dardization requires some null model, which begs the
question.

A different method, used in Aldous (2001) on a few
large trees, seems a less arbitrary and more powerful
way of analyzing individual large trees or collections of
small trees. Each branch point of a binary tree splits a
clade of size m (say) into subclades of sizes a and m− a,
where we take a ≤ m/2 as the size of the smaller daugh-
ter clade. Given a collection of trees, take all the splits in
all the trees and then calculate the function

a(m) = average size of smaller daughter clade in split
of size-m clade.

Here we average over all size-m clades within all trees
in the collection—we are not comparing properties of
different sized trees. This function provides a mea-
sure of “balance” in a collection of trees that has three
advantages over using summary statistics (uses more
within-tree structure; avoids arbitrary choice of sum-
mary statistic; avoids issues of normalization required
to compare different size trees). A companion function,
useful in the context of studying occurrence of comb-
like cladograms, is

p(m) = proportion of splits of size-m clades where
smaller daughter clade size = 1.

Predictions of Our Model

Table 2 shows the measures a(m) and p(m) of tree bal-
ance within our model.

Recall that we are talking about trees whose terminal
taxa are the genera. Within such trees, we look at clades
consisting of m=5, 10, 15 genera, and for the root split of
such clades, we record the mean size a(m) of the smaller
subclade and the proportion p(m) of smaller subclades
with size 1. This is repeated for different values of the
parameter θ chosen to make the mean number of species
per genus to be μ = 1, 5, 10, 20. The first row (μ = 1) is
just the species-level model, where our model coincides
with the usual Markov model and predicts uniformly
distributed splits. Increasing imbalance as m increases

TABLE 2. Shape of trees on extant genera

Parent clade size m

μ= mean number
5 10 15

species per genus a(5) p(5) a(10) p(10) a(15) p(15) θ

Coarse
1 1.50 0.50 2.77 0.22 4.02 0.15 1
5 1.42 0.58 2.51 0.30 3.67 0.19 0.198

10 1.35 0.65 2.36 0.35 3.59 0.19 0.100
15 1.31 0.69 2.28 0.38 3.5 0.19 0.066
20 1.28 0.72 2.34 0.35 3.64 0.20 0.050

Medium
1 1.50 0.50 2.77 0.22 4.02 0.15 1
5 1.54 0.46 2.72 0.24 3.91 0.16 0.136

10 1.52 0.48 2.69 0.24 3.87 0.17 0.061
15 1.51 0.49 2.66 0.25 3.91 0.17 0.040
20 1.50 0.50 2.67 0.26 3.83 0.19 0.029

Fine
1 1.50 0.50 2.77 0.22 4.02 0.15 1
5 1.26 0.74 2.55 0.34 3.78 0.21 0.042

10 1.17 0.83 2.40 0.41 3.71 0.25 0.011
15 1.13 0.87 2.18 0.49 3.47 0.31 0.005
20 1.12 0.88 2.04 0.54 3.68 0.38 0.003

Notes: For the given size (number of genera) m in a parent clade,
the table shows the probability p(m) that smaller daughter clade size
equals 1 and the mean size a(m) of smaller daughter clade. Results
from Monte Carlo simulations of model with 200 extant species. For
μ = 1, the true values of a(15) and p(15) are 4 and 1/7 = 0.143; the
values shown indicate the (small) errors from simulation.

would be indicated by p(m) increasing and by a(m)
decreasing.

So our model predicts the following:

1. Imbalance increases with size of genus, that is, as
we go up the taxonomic hierarchy;

2. the increase in imbalance is most prominent
for the fine scheme and least prominent for the
medium scheme.

This analysis is consistent with the possibility that
observed imbalance in trees on higher level taxa may be
in part an artifact of classification. On the other hand,
two studies (Heard 1992; Mooers 1995), based on sum-
mary statistics of published small trees, discussed in
Mooers and Heard (1997), conclude that there is no such
hierarchical trend in imbalance. It would be interesting
to repeat such data analysis on larger trees.

FLUCTUATIONS AT DIFFERENT HIERARCHICAL LEVELS

The compendia by Sepkoski (1992) are justly cele-
brated for providing raw data for the statistical study
of long-term evolutionary history (see also Benton
1993). Because of the difficulty of resolving fossils to
the species level, such data are typically presented as
time series for numbers of genera and families, raising
the issue of how reliable is it as a proxy for time series
for numbers of species. Paleontologists tend to regard it
as reliable, as indicated in the first sentence below and
confirmed from data such as Lane and Benton (2003).

The complex trajectory of taxonomic diver-
sity through [600 myr] has proved robust
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to continued sampling and, as shown by
simulations, to very different phylogenetic
approaches to grouping species into higher
taxa. But diversity time series become
increasingly jagged and disparate at lower
taxonomic levels and on regional scales,
both because sampling is less complete
and because lower-diversity lineages really are
almost inevitably more volatile. (Jablonski 1999,
p. 2114; our emphasis added)

We focus on the emphasized assertion: is this inevitability
a biological or a mathematical effect?

Question 5. How do we expect that volatility for counts
of higher order taxa should compare with volatility for
number of species, as a purely mathematical effect?

Suppose we have data, for a sequence of times τ(0),
τ(1), . . . , τ(k), on number of families at each time and
numbers of genera in each family at each time. There is
a technical issue of how to measure volatility as a “stan-
dardized fluctuation rate” to permit fair comparisons.
After deciding that, within our model we can see how
volatilities do vary between levels, as a purely mathe-
matical effect.

Standardized Fluctuation Rates

We now take the basic species-level model (con-
ditioned critical branching process) but (now think-
ing of extinct clades) do not condition on number of
extant species. Write N(t) for number of species at time
t and G(t) for number of genera at time t, using one
of our schemes for defining genera, and recall that the
time unit is mean species lifetime. A basic mathematical
property of our model is that the stochastic fluctuations,
measured by variance of changes in the time series,
have a simple form over time intervals whose duration
t is of the same order as mean species lifetime. Given
N(t0) = n(0), we have

var(N(t0 + t)− n(0)) ≈ 2n(0)t.

Intuitively, this holds because

given N(t) = n(t),
d
dt

varN(t) = 2n(t)

and because N(t)=n(0)±O(
√

n(0)) over times of order
mean species lifetime. Translating into real time units τ
(measured in myr, say) and writing μs for mean species
lifetime,

var(N(τ0 + τ)− n(0)) ≈ 2n(0)τ/μs.

In other words, the ratio

μsvar(N(τ0 + τ)− n(0))
2n(0)τ

(1)

is approximately 1 regardless of the value of n(0)
(assumed not too small) or the value of τ (assumed
of order μs).

This analysis suggests a way to define standardized
fluctuation rates for time series of genera. Write μg
for mean genus lifetime. If we were to model genera
directly as behaving statistically like species, then the
standardized fluctuation rate for genera, defined
below by copying Equation 1, would equal 1. Given
G(τ0) = g(0), define the analog of Equation 1 as

standardized fluctuation rate for genera

=
μgvar(G(τ0 + τ)− g(0))

2g(0)τ
(2)

for τ of order μg. So fluctuation rate for genera that turns
out to be different from 1 is indicating a mathematical
effect of working with genera composed of species,
rather than genera envisaged as autonomous entities.
Table 3 gives numerical values predicted by our model.

Returning to the original question, the point is that
our model treats different higher taxonomical levels
(genera and families, for concreteness) in the same
way, simply using two different parameter values to
fit mean number of species per genus and mean num-
ber of species per family. So from the kind of results
shown in Table 3, one can derive relative volatilities. For
instance, if the data showed an average of 4 genera per
family, and if we were willing to guess an average of
5 species per genus, then Table 3 shows that (within our
model) the fluctuation rate for families relative to the
fluctuation rate for genera would be

0.68/0.84 = 0.81 [coarse] ; 0.89/1.08= 0.82 [medium] ;
0.50/0.95 = 0.53 [fine].

Of course, it would be interesting to try to estimate such
ratios in paleontological data.

Previous Work

Previous work such as Sepkoski and Kendrick (1993)
and Robeck et al. (2000) had a rather different focus,
motivated by the incompleteness of the fossil record.
What classification scheme, applied to data from ran-
domly sampled species, enables one to most accurately
estimate the underlying trends in species diversity?

TABLE 3. Standardized fluctuation rates for genera

Mean number species per genus 1 5 10 15 20

Coarse
Standardized fluctuation rate 1.00 0.84 0.72 0.70 0.68
Mean genus lifetime 1.00 1.89 2.35 2.66 2.85

Medium
Standardized fluctuation rate 1.00 1.08 1.03 0.94 0.89
Mean genus lifetime 1.00 2.44 3.52 4.24 4.90

Fine
Standardized fluctuation rate 1.00 0.95 0.71 0.58 0.50
Mean genus lifetime 1.00 2.41 3.26 3.82 4.21

Notes: Results from Monte Carlo simulations of model started with
200 species. Ratio (2) estimated with τ =mean genus lifetime.
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That previous work studied a variety of schemes that
(roughly speaking) started with what we have called the
coarse scheme but then applied various ad hoc methods
of dealing with resulting paraphyletic groups; they also
assumed logistic or exponential clade expansion and
occasional mass extinctions. It would be interesting to
study performance of our classification schemes under
the latter assumptions.

Of course, it is easy to criticize any scheme as “not
what taxonomists actually do”, but it is not clear that
our schemes are less realistic than those used in previous
work.

GENERAL DISCUSSION

We should reemphasize that our purpose is not to
propose models realistic enough to use directly in the
analysis of real data, but rather to set out a general mod-
eling framework. Mathematical models of real-world
phenomena can be placed on a spectrum, with “crude
toy models” or “thought experiments” at one end of
the spectrum and models that claim to give numerically
accurate predictions (testable by experiment or statisti-
cal analysis of data) at the other end. Our models should
be placed firmly at the “thought experiment” end, and
indeed the reader will have noticed that some of the
questions we pose seem unanswerable with known
data. The novel feature of the models is that they treat
different taxonomic levels, tree shape and time series,
extinct and extant clades, all in a logically consistent
way. This contrasts with literature modeling time series
of genera separately as a random walk (Gould et al.
1977) or a birth-and-death process (Stoyan et al. 1983).

We used a “neutral” species-level model for two rea-
sons. One is mathematical simplicity. Our model has
one parameter (mean species lifetime). The linear birth-
and-death model has two parameters, but diversity can-
not grow exponentially forever, so to force logistic-type
behavior one needs a third parameter, representing,
for example, ecological constraints on diversity. Such
models have been studied in recent literature on quan-
titative aspects of adaptive radiation, such as Rabosky
and Lovette (2008), Phillimore and Price (2008), and
Rabosky (2009), which implicitly focus on estimation of
speciation and extinction rates within individual large
clades. We do not have anything to contribute to such
studies at a technical level but offer two observations.
First, technical studies assume that some particular
probability model is true. The exercise (following Ques-
tion 2) of repeating an analysis on hypothetical data
from a different model provides a useful reminder that
conclusions may be surprisingly sensitive to assump-
tions. Second, existing studies such as those cited above
and Mooers and Heard (1997), Purvis and Agapow
(2002) and Webster et al. (2003) have been done in the
context of testing some specific statistical hypothesis.
But a useful parallel project would be to work toward
some overall statistical description of histories of typical
clades.

Of course, our methodology for extension to higher
order taxa could be applied to the potentially more real-
istic multiparameter species models. Branching process
theory suggests the following behavior in the supercrit-
ical (λ > μ) setting. There will be two qualitatively dif-
ferent cases. If the growth rate λ/μ of number of species
is sufficiently large compared with the parameter θ con-
trolling rate of formation of new genera, then there will
be large genera—that is, the largest genus will contain
a nonzero proportion of all n extant species, for large n.
The other case, when λ/μ is closer to 1, will be more sim-
ilar to the neutral case in this paper, in that the genera
size distribution will have a limit for large n.
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